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ABSTRACT 

The Laplace distribution is one of the oldest defined and studied distributions. In the one-parameter model (location 
parameter only), the sample median is the maximum likelihood estimator and is asymptotically efficient. Approxima-
tions for the variance of the sample median for small to moderate sample sizes have been studied, but no exact formula 
has been published. In this article, we provide an exact formula for the probability density function of the median and 
an exact formula for the variance of the median. 
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1. Introduction 

Laplace is credited as first discovering the Laplace dis-
tribution in 1774 [1]. The discovery of the normal distri-
bution, which holds a central place in many applications 
of statistics, predates that of the Laplace distribution. It 
was discovered in 1738 by de Moivre according to [2]. 
Gauss and Laplace were contemporaries who both made 
significant discoveries about the normal distribution. 
Keynes [3] wrote “The popularity of the normal law, 
with the arithmetic mean and the method of least squares 
as its corollaries, has been very largely due to its over-
whelming advantages, in comparison with all other laws 
of error, for the purposes of mathematical development 
and manipulation... So powerful a hold indeed did the 
normal law obtain on the minds of statisticians, that until 
quite recent times only a few pioneers have seriously 
considered the possibility of preferring in certain circum-
stances other means to the arithmetic and other laws of 
error to the normal. Laplace’s earlier memoir fell, there-
fore, out of remembrance.” Over the past 100 years, the 
Laplace distribution has enjoyed the resurgence in many 
applications such as economics, engineering and finance 
[4]. The reader is also referred to this book for a history 
of the Laplace distribution, its important properties and 

generalizations. 
Let    ; exp 2xf x x    2  denote the pro- 

bability density function of a one-parameter Laplace dis-
tribution with variance 1. It is well known that from a 
sample of odd size 2n + 1 where n is any positive integer, 
the sample median,  , is the maximum likelihood esti-
mate of μ. Moreover, although the derivative does not 
exist at μ, the Cramer-Rao lower bound for the mean 
squared error of estimation of μ exists and is   1 2 2 1n  . 

Also, we have      1 0,1n N   2 2  which im- 

plies the median is an efficient estimator in the asymp-
totic sense. However,   is not a sufficient statistic and 
there are more efficient estimators for small samples, for 
example the average of the middle three observations can 
be more efficient. Finally, the sample mean is also as-
ymptotically normal and asymptotically the ratio of the 
variance of the mean to the median is 2. 

Previously, [5] investigated approximations to the 
variance of   for small sample sizes. They confirmed 
that although the variance converges to the Cramer-Rao 
lower bound, it does so at a slow rate. Consequently, 
even if the normal approximation was valid for small 
sample sizes, hypothesis tests and confidence intervals 
would not have the correct size if the asymptotic variance 
was used. The former provided the bounds for the ratio 
of the variance to the Cramer-Rao lower bound as fol-

*The views expressed are those of the authors and not necessarily those 
of the US Food and Drug Administration. 



J. LAWRENCE 423

lows: 

   
3 2

3 2

1
1 2 2 1 V

2 2

1
1.51 1

2

n

n

B n
n

B
n

ar      

   
 


 

where 
 

2 1

2 1 ! 2π 1
~ 1

8! !2 2 1
n n

n
B

nn n n





 . For example, if  

499n   and the sample size were 999, the upper bound 
would be approximately 1.513. This suffices for their 
purpose, which was mainly to show that this ratio was 
less than 2, which in turn implies the median is a more 
efficient estimator than the sample mean. However, it 
seems like an inadequate upper bound since we know the 
ratio converges to 1. [6] attempted to tabulate the ap-
proximate variance for , and 8. We found 
that in general his approximations were close to the true 
values (to two digits), but were not correct in two out of 
these five cases (see Section 3). 

1, 2,3, 4n 

This paper makes two contributions. First, we find an 
explicit formula for the distribution of the median of a 
random sample from the Laplace distribution. Next, we 
find an exact formula for the variance of the sample me-
dian. These contributions are important because the me-
dian is the essential estimate of location for the Laplace 
distribution in the same way that the mean is the essential 
estimate of location for the normal distribution. 

2. Exact Distribution of Sample Median 

Without loss of generality, we will consider the case 
where μ = 0. The probability the median is less than x is 
the probability that at least n + 1 values in the sample are 
less than x. The distribution of the median is symmetric 
about 0, so it suffices to consider values of x < 0. Then, 
we have 
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In the Appendix, we show by mathematical induction 
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In both cases, the formulas involve the incomplete beta 
function 
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3. Variance of the Median 

The variance can be calculated exactly using the Bino-
mial expansion as 
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where p qF  is the generalized Hypergeometric function. 
For 1,n 2,3, 4 , and 8, the ratios of the variance of 

the median to the variance of the mean (rounded to 6 
digits) are 0.958333, 0.877951, 0.824767, 0.787808, and 
0.708761. In comparison to the approximations listed in 
the bottom row of Siddiqui, these are close in all cases. 
In the case of n = 3, (corresponding to a sample size of N 
= 7 in his notation) he gives the approximate value of 
0.81, but it should be 0.82 rounded to 2 digits. Also, in 
the case of n = 4, he gives the approximation 0.78, while 
it should be 0.79. 

As a further example, consider the case n = 499, cor-
responding to a sample size of 999. This would be a 
rather large dataset by most standards and one might 
think the asymptotic variance would be accurate. How-
ever, the ratio of the actual variance to the asymptotic 
value is 1.05122, or about 5% larger than the Cramer- 
Rao lower bound. Although not very close to 1, it is sub-
stantially closer than the upper bound of 1.513 provided 
by the Chu and Hotelling approximation (see Section 1). 

For very large values of n, it will still not be possible 
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to calculate the variance exactly using the formula at the 
beginning of this Section. One way to estimate the ratio 
of the true variance compared to the asymptotic variance 
is 
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where Z is standard normal with distribution function 
 Φ x  and density function  x . The numerator can 

be estimated by Monte Carlo simulation or the integral in 
the second to the last line can be estimated by numerical 
integration such as the Riemann sum 
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where  h   denotes the integrand and N is a large inte-
ger. 

It is also possible to sample values having the density 
 f x  by using acceptance-rejection sampling. To do 

this, one needs a candidate distribution with density  

 g x  such that 
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  is bounded by a fixed upper  

bound M. In addition, it is best if M is close to 1 since the 
proportion of candidate values that will be accepted is 
1 M . The Laplace distribution with variance 2 is a very 
good candidate distribution to sample from. Note that the 
ratio 
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and that maximum is 
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4. Conjecture about the Rate of Convergence 

Start with values of n that were the closest integers to 
     exp 3 ,exp 4 , , exp 20 . 

For each of those values of n, calculate the ratio given 
in the previous Section viathe Riemann sum described in 
Section 4 with 10N   million. In Figure 1, we show 
the values of  log n  on the x-axis and log(ratio -1) on 
the y-axis where the ratio means the ratio of the actual 
variance to the asymptotic variance computed by nu-
merical integration. We noticed that the points fell very 
close to the straight line defined by 

   log 1.14 0.5logy n  . 

Hence, at least in this range of n, the ratio is approxi-
mately 1 1.14 n . Note, the largest n here is approxi-
mately 500 million, which corresponds to a sample size 
of about 1 billion. 

This leads to a conjecture about the rate of conver-
gence of the variance. In addition, from the formula near 
the beginning of Section 3, this is also a conjecture about 
the asymptotic behavior of the Hypergeometric function 
for large n. Specifically, 
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using Stirling’s approximation 
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5. Summary and Conclusion 

We found an exact formula for the density and the vari-
ance of the one-parameter Laplace distribution. The mo-
ment generating function and characteristic function are 
also derived. We also describe several methods for ap-
proximating moments or other features of the distribution 
by an algorithm to sample directly from the distribution. 
This article only deals with the case of odd sample sizes. 
The median is the (n + 1)th order statistic and the same  
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y = log(1.14) - 0.5log(n) 
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Figure 1. Transformed values of ratio (actual variance of 
the median divided by asymptotic variance estimated by 
numerical integration) for different large values of n. 
 
approach could be used to find the distribution of any 
other order statistic. For even sample sizes, the median is 
the average of the two middle observations, which makes 
it slightly more complicated to analyze because the joint 
distribution of two order statistics is needed. However, a 
similar approach used here may also handle the even 
sample size case. Furthermore, this approach could also 
be useful in analyzing the variance of other estimators 
such as the average of the middle three or middle five 
and observations. And it could be helpful in finding the 
optimal estimator for small sample sizes. This exact vari-
ance may be useful in constructing approximate confi-

dence intervals or hypothesis tests. But, caution should 
still be used in using the normal approximation. Exact 
tests and confidence intervals can be constructed from 
the exact distribution. Lastly, in the two-parameter 
Laplace model, not considered here, a further adjustment 
may be needed in such procedures due to the estimation 
of the scale parameter. 
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First, note that for any positive integers m and i with i < m, 
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We suppose that the formula for the density is true for 
some positive integer n. 
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Finally, notice that 
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