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ABSTRACT 

In this paper, time-optimal control problem for a liner n n  co-operative parabolic system involving Laplace operator 

is considered. This problem is, steering an initial state  0y u , with control  so that an observation ,u  y t  hits a 

given target set in minimum time. First, the existence and uniqueness of solutions of such system under conditions on 
the coefficients are proved. Afterwards necessary and sufficient conditions of optimality are obtained. Finally a scaler 
case is given. 
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1. Introduction 

The “time optimal” control problem is one of the most 
important problems in the field of control theory. The 
simple version is that steering the initial state  in a 
Hilbert space 

0y
H  to hit a target set K H  in 

minimum time, with control subject to constraints 
.  u U H 

In this paper, we will focus our attention on some 
special aspects of minimum time problems for co-ope- 
rative parabolic system involving Laplace operator with 
control acts in the initial conditions. In order to explain 
the results we have in mind, it is convenient to consider 
the abstract form. 

Let  and V H  be two real Hilbert spaces such that 
 is a dense subspace of V .H  Identifying the dual of 

H  with ,H  we may consider ,V H V    where 
the embedding is dense in the following space. Let 
 A t   T 0,t   be a family of continuous operators 

associated with a bilinear forms  defined on 
 which are satisfied with Gårding’s inequality 

 ;.,.t
V V

  2

0 1; ,
2

H V
t y y c y c y           (1) 

for  , 0,y V t T   and  0

Then, from [1] and [2], for 
10, > 0.c c
 0,t T  and  being a 

bounded linear operator on 
B

,H  the following abstract 

systems:  

       

 

2d
, 0, ;

d
0

y t A t y t f f L T V
t

y Bu

,   

 

  (2) 

have a unique weak solution  such that  y
  0, ; .y C T H  We shall denote by  ;y t u  the 

unique solution of the Equation (2) corresponding to the 
control u. The time optimal control problem that we shall 
concern reads:  

  min : ; ,y u K u U            (3) 

where K  is a given subset of ,H  which is called the 
target set of the Problem (3). A control  is called a 
time optimal control if 

0u
0u U  and if there is a number 

 such that 0 0   0 0;y u K  and  

  0 min : ; , .y u K u U          (4) 

We call the number 0  as the optimal time for the 
time optimal control Problem (3). 

Three questions (problems) arise naturally in connec- 
tion with this problem: 

1) Is there a control  and ,u 0   such that 
 ;y u K  ? (this is an approximate controllability 

problem). 
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2) Assume that the answer to 1) is in the affirmative 
and 

 0 min : ; , .y u K u U      

Is there a control  which steers 0u  0y   to hit a 
target set  in minimum time?  K

3) If  exists, is it unique? What additional pro- 
perties does it have? 

0u

Let  be a bounded open domain with smooth 
boundary  and set 

NR
.  0,Q T    0, .T    In 

the works [1] and [3], the existence of time optimal 
controls of the following controlled linear parabolic 
equations with distributed control  was obtained:  u

   
 

0

in ,

,0 in ,

, 0 on ,

y
y u Q

t
y x y x

y x t

      
  


           (5) 

where  0y x  is a given function in   2 ,L  u U  
and  is a closed bounded set in  The results 
in [3] partly overlap with results in [1] and they were 
shown that if the system (5) is controllable and if 

 then the corresponding time optimal control 
problem has at least one solution and it is bangbang. 

U

0

 .2L

 K 

In the work [4], the authors gave a sufficient and 
necessary condition for the existence of time optimal 
control for the problem with the target set  0K   and 
certain controlled systems. These results will be stated as 
follows. Consider the following controlled system 

   
 

0

in ,

,0 in ,

, 0 on ,

y
y ay u Q

t
y x y x

y x t

       
  




,

         (6) 

where  is a real number. Let 
1i

 
be the eigenvalues of  with the Dirichlet boundary 
condition and   1i i

 be the corresponding eigen- 
functions, which forms an orthogonal basis of 

a   1 2 3,i     


e
 2 .L   

We take the target set  to be the origin K  0  in 
 and the control set  to be the set  2L  U

    2
2., ( ) :

L
U u t L u 


     

where   is a positive number, namely,  0, ,U B 
.
 

the closed ball in  centered at 0 and of radius  2L    
It was proved that if  and  0K ,U U  then the 
corresponding time optimal control problem has at least 
one solution if and only if 1.a   

More early, in the works [5-7], the time optimal 
controls problem for globally controlled linear and semi- 
linear parabolic equations was considered. 

In our papers [8,9], the time optimal control problem 
of n n  co-operative hyperbolic systems with different 
cases of the observation and distributed or boundary 
controls constraints was considered. 

In [10], optimal control of infinite order hyperbolic 
equation with control via initial conditions was consi- 
dered. 

In the present paper, the above results for the time 
optimal control of systems governed by parabolic equa- 
tions are extended to the case of  co-operative 
parabolic systems as well as control via initial conditions. 
First, the existence and uniqueness of solutions for 

n n

n n  
co-operative parabolic system are proved under conditions 
on the coefficients stated by the principal eigenvalue of 
the Laplace eigenvalue problem, then the time optimal 
control problem is formulated and the existence of a time 
optimal control is proved. Then the necessary and 
sufficient conditions which the optimal controls must 
satisfy are derived in terms of the adjoint. Finally, the 
scaler case is given. 

2. n × n Co-Operative Parabolic Systems 

Let  1
0 ,H   be the usual Sobolev space of order one 

which consists of all  2L    whose distributional  

derivatives  2

i

L
x


 


 and 0   with the scalar  

product norm 

     1 2
0

1

, , ,

where .

H L

N

k k

y y y

x

  
 



   


 



2 ,
L 

n

 

We have the following dense embedding chain [11]  

        1 2 1
0 0 .

n n
H L H       

where  1
0H    is the dual of   1

0 .H 
Here and everywhere below the vectors are denoted by 

bold letters. For 
1 1      1

0,
nn n

i iy H   y  i i 
 and 

 0,t T , let us define a family of continues bilinear 
forms  

       1 1
0 0;.,. : by

n n
t H H      

      

 

1

, 1

; , , d

, d

n

i i i i i
i

n

ij j i
i j

t y a x t

a x t y x

 









y x     







y 
  (7) 

where 

     , and , are positive functions in ,

0 when and when

i ij

ij ij i j

a x t a x t L Q

a i j a a a i j

 


    
(8) 

The bilinear form (7) can be but in the operator form: 
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     

 

  
 2

1

, 1

1

; , , d

, d

,

n

i i i i
i

n

ij j i
i j

n

i Li

t y a x t

a x t y x

A t

y x 











    



 







y

y





 

where  A t
 n

 is  matrix operator which maps 
 onto  and takes the form  

n n
 1

0H 

 
 1

0H   
n



a a



n

y

 
 
 
 
 
 

 

1 12 1 1

21 2 2 2

1 2

n

n

n n n

a y

a a a
A t

a a a y

 
   
 
 

  

y




    


. 

Lemma 2.1. If  is a regular bounded domain in 
,NR  with boundary  and if  is positive on , m   

and smooth enough ( in particular ) then the 
eigenvalue problem:  

  ,m L 

  in ,

0 on

y m x y

y

   


  
 

possesses an infinite sequence of positive eigenvalues:  

     
 

1 20 ;

, as .

k

k

m m m

m k

  



    

 

 
 

Moreover  is simple, its associate eigenfunc- 
tion  is positive, and  is characterized by:  

 1 m
me  1 m

  22
1 dm my x y x

 
   d

n

         (9) 

Proof. See [12]. . 
Now, let 

 1 , 1, 2, ,ia n i             (10) 

Lemma 2.2. If (8) and (10) hold then, the bilinear 
form (7) satisfy the Gårding inequality  

 
     2 1

0

2 2

0 1

0 1

; , ,

, 0

n n
L H

t c y c y

c c


 

 



y y
 

Proof. In fact 

   

 

   

2 2

1

, 1

2 2

1

; , , d

( , ) d

, d

2 , ,

n

i i i
i

n

ij i j
i j

n

i i i
i

n

i j i j
i j

t y a x t y

a x t y y x

y a x t y x

a x t a x t y y x















    



    











y y

d

x

 

By Cauchy Schwarz inequality and (9), we obtain  

   

   
   

 
 

2

1 1

11
22 22

1 1

21

1 1

1
π ; , 1 d

1
2 d

d

n

i
i i

n

i j
i j

i j

n
i

i
i i

t y x
a

y x y x
a a

a n
y x

a



 







  





 
    

 

 

 
   

 

 

  

 

y y

d  

From (10) we have  

  2

1

π ; , d 0
n

i
i

t y x 




    
y y   

Add   2 n
L 

y  to two sides, then we have the result. 
. 

We can now apply Theorem 1.1 and Theorem 1.2 
Chapter 3 in [1] (with  and ) 
to obtain the following theorem: 

  1
0

n
V H    2 n

H L 

Theorem 2.3. If (8) and (10) hold, then there exist a 
unique solution  

 

      2 1 1
0 0

0,

: 0, ; ,
n n

W T

L T H H
t



       

y

y
y y

 

satisfying the following n n  system:   1, 2, ,i n 

     
       
 

2 1
0

2

, 0, ; in

,0 , in ,

, 0 on .

i
i ii

i i i

i

y
,A t f f L T H Q

t

y x u x u x L

y x t

          
  


y

(11) 

y  is continuous from      20, .
n

T L Moreover 

3. Minimum Time and Controllability 

We denote the unique solution of (11), at time  for 
each control 

t
 1 2, , , nu u uu   by  Occa- 

sionally, we write 
 ; .ty u

 , ;x ty u  when the explicit depen- 
dence on x  is required. We can now formulate the time 
optimal control problem corresponding to the n n  co- 
operative parabolic system (11):  

  min : ; , ,n nt t K U  y u u      (12) 

with constraints  

   

       
       

2

2

2
1

2
1

; is the solution of 11 ,

, , : ,

, , : ,

nn
n i L

nn
n i id L

t

U u u L u

K z z L z z















     

      

y u

u

z





(13) 

and , 0    and  2
idz L   are given. 
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Theorem 3.1. If (8) and (10) are hold, then the system 
whose state is given by (11) is controllable, i.e.,  

   there exists a 0, and with ;n nT U K   u y u 

 in any finite ti

(14) 

Proof. Let us first remark that by translation we may 
always reduce the problem of controllability to the case 
were the system (11) with  We can show quit 
easily that (11) is approximately controllable in 

0.if 

me   2 n
L  0,   if and only if, 

 is dense in  By the 
Hahn-Banach theorem, this will be the case if  

 ; :y u    2 n
L u   2 .

n
L 

     2, ; d 0, ,i i iz x y x x z L


   u     (15) 

for all  implies that   2 ,
n

L u   0,iz x   1, 2,i   
, .n  
Let us introduce the adjoint state  ;p t u  by the 

solution of the following system  

        

   
   

*; ; 0 in

, i

, 0 on 0, ,

i

i

i i

i

p
t A t t

t
p x z x

p x t





0, ,

n ,



        
  


u p u

 (16) 

where  *A t  is the adjoint of  A t  which is defined by 

      * 1
0, , , ,

n
A t A t H       .  

The existence of a unique solution for the Problem (16) 
can be proved using Theorem 2.3, with an obvious 
change of variables. 

Multiply the first equation in (16) by  ;iy t u  and 
integrate by parts from 0 to ,  we obtain the following 
identity: 

      

   

        

     

*

0

0

0

0 ; ;

; ; d

; ; ;

, ; d 0; d .

i
ii

i i

i i i

i i i i

p
A t t y t x t

t

p t y t x

p t y t A t t x t
t

z x y x x p u x















 

     

 

    
 

 



 

 

p u u

u u

u u y u

u u

d d

d d





 

and so, if (15) holds, then  

  2,0; d 0i i ip x u x u L


    u  

hence  But from the backward unique- 
ness property,  and hence 

 , 0; 0.ip x u
 ipp

1
0

n

i   0.iz x   . 
Now set  

  0 inf : ; fore some .n nK U    y u u  (17) 

Then , the following result holds. 
Theorem 3.2. If (8) and (10) are hold, then there exist 

an admissible control  to the problem (12)-(17), 
which steering 

0u
 0;ty u  to hitting a target set nK  in 

minimum time 0  (defined by (17)). Moreover  

 i iy z      0 0 0 0 0

1

; ; ;
n

d i i
i

n

y y x

U

  




d 0  

 

 u u u

u

(18) 

Proof. Fixe ,x  we can choose 0m   and ad- 
missible controls  mu  such that  

 m m; , 1, 2, .nK m y u   

Set  u .m my y  Since nU  is bounded, we may 
verify that  ranges in a bounded set in  my

      2 2 2;
n n

L L Q   
 

0,L T . 

We may then extract a subsequence, again denoted by 
 ,m mu y  such that  

  
  

0 2 0

2 1
0

weakly in , ,

weakly in 0, ; ( ) .

nm n

nm

L u U

L T H


   


  


u u

y y
 (19) 

We deduce from the equality  

 d

d

m
mf A t

t
 

y
y  

that 

     2 1d d
in 0, ; ,

d d

m
n

f A t L T H
t t

   
y y

y  

and  

    00 0 inm nU . y y u  

But  

   
      

0 0

0 0 0

; ;

; ; ;

m m

m m m m

 

    

y u y u

y y u y u y u



 u

 

0;



 

Now from (19)  

   0 0 0 2; ; weakly in
nm L  y u y u  (20) 

and 

   
  

 
  

 
  

1

0
1

0
1

0

1

22
0

0

d

m m

t

 

  

y u

 ; y

; ;

; d
d

d
; d d

d

n

m

n

m

n

m

H

m

H

m m

H

n

t t

t t t
t

c









 
















 
  
 
 





y u

y u

y u

(22) 

 (21) 

Combine (20) and (21) show that  

     0 0 1
0; 0 weakly in .

nm m H   y u u
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 0 0; nK y uand so,  as nK  
is shows that 

is closed and con
hence 

vex, 
weakly closed. Th nK  is reached in 

time 0  contro 0u . 
For the second part of the theorem, rea from Theorem 

2.3, t mapping  ;t t y u  m 

by admissible l 
lly, 

he fro
is ,

    20,
n

T L   
ntcontinuous for each fixed u  and so  0 ; i nK y u

for any ,nU
 

u  by  of 0. minimality   
 verify that theUsing Theorem 2.3, it is easy to  

mapping  0 ; u y u , from L     2 2n n
L  

set 
, 

is n


 continuous and , the 

   0 0 ; :

linear. the

nU  y u uA  

is the image under a linear mapping of  convex set 
hence 

a
 0A  

K

is convex. Thus we have  

 0 int n
  A  and  0 0; nK y u  (boundary 

of nK ) . Since (from (14)) so 
 hyperpla

int K
ne sep

n
    there exists a 
aratingclosed   0A   and nK  contain-  

ing  0 0; y u , ero   2 n
L g  

such as
i.e. there is a nonz

 

 
    

  

 
  

2 2

2

0 0 0


 g y u g y u

0

, ; , ;

inf , ;

n n

n
n

L L

LK

 



 




y
g y u

 (23) 

From the second inequality in (23),  must support 
the set 

g
nK  at  0 0;y u  i.e.  

   
  2

0 0 0, ; ;g y y y 0n
L

nU

 


 

 

u

u

 

and since is a Hilbert space,  must be of 
the form 

Dividing the inequality (23) by 

  2 n
L   g

  0 0;

for some 0.

idz 



 



g y u
 

  gives the desired 
result. . 

r
ce the adjoint state by the solution 

of

Now Inequality (18) can be interp eted as follows: let 
us introdu  0;p t u  

 the following system 

    0 *;ip
t A t t

   
    
 

0 0

0 0

0

; 0 in 0, ,

, , in ,

, 0 on 0, .

i

i i id

i

t

p x y x z

p x t



 



        


     

u

(24) 

As the proof of Theorem 3.1, we multiply the first 
equation int (24) by  and integrate 
by llo

u p

   0; ;y t y tu u
n the fo

i i

 parts from 0  to ,0  we obtai wing iden- 
tity: 

       0 0 0 0 0; , ; , ; di id i i

  0 00; d .i

y z y x y x x  


  u u u

p x


  u u u
 

hence condition (18) becomes 

      (25) 

Using controllability condition (14), the b

queness property implies  then the opti- 

 
1

,0;i
i

p x



 u u 0 0 d 0

.

n

n

x

U

 

 

u

u

 

ackward uni- 

 0,0; 0.p x u

, 

i

mal control is bang-bang, i.e.
 2

0
i L

u 

  and since  

nU  is strictly convex, then the o l is unique. 
We have thus proved: 

ptimal contro

Theorem 3.3. If (8) and (10) are hold, then there exist 
the adjoint state 

 
      

00,W 

2 0 1 1
0 0: 0, ; ,

n n
L H H

t
       

 

p
p p

 

such that the optimal control of problem (12)-(17) is 
bang-bang unique and it is de ined by (24), (25) toge-  

where in this case, the 
m therefore is  

p

0u  
term

ther with (11) (with 0 , 1,2, ,i iu u i n   ). 

4. Scaler Case 

Here, we take the case 
time optimal proble

2,n   

    2 2min : , ; ,t y x t K u U1 2,u   u u  

 1 2,y yy  The state is solution of the fo owing 
equations  

ll

   

   

       
   

1y

t

 
1 11 1 12 2

0
1

2
2 21 1 22 2

0
2

0 0
1 1 2 2

1 2

0

, ,

, , 0, ,

, ,

, , 0, ,

,0 , ,0 ,

, , , 0,

, 0, ,

y a x t y a x t y

f x t

y
y a x t y a x t y

t

f x t

y x u x y x u x

x y x t y x t

x t







     
      

           


  
   
    



 

with 

   
   1 11 1 22

, , , 1,2 are positive functions in ,

2, 2.

x t i j L Q

a a 

 ija 


  
 

The adjoint is solution of the following equations  
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subject to (11) [except in the trivial case where 
   , ;id iz x y x T i  u   

   

    
    
   

1
1 22 1 12 2

0
1

p2
2 21 1 11 2

0
2

0 0
1 1 1

0 0
2 2 2

0
1 2

, ,

, , 0, ,

, ,

, , 0, ,

, , , ,

, , , ,

, , 0, , 0, .

d

d

p
p a x t p a x t p

t

f x t

p a x t p a x t p
t

f x t

p x y x z x

p x y x z x

p x t p x t x t





 

 



       1, 2, , n  
control u ]. This can be proven in an an
as the necessary and sufficient cond

, 1, 2, ,i iu u i n   ). 

 
      

             


   

  

      


 

The maximum condition is  




5. Comments 

We note that, in this paper, we have chosen to treat a 
special systems involving Laplace operator just for 

f the results we described in this paper 
 change on the results to more general

for some admissible 
alogous man er, 

itions for optim  

Partial Differenti quations,” Springer-Verlag, New York, 
1971. http://dx.doi.org/10.1007/978-3-642-65024-6

n
ality

for this problem coincide with (11), (16) and (25) (with 
0
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