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ABSTRACT 

Partial Differential Equations (PDEs) have been already widely used to simulate various complex phenomena in porous 
media. This paper is one of the first attempts to apply PDEs for simulating in real 3D structures. We apply this scheme 
to the specific case study of the microbial decomposition of organic matter in soil pore space. We got a 3D geometrical 
representation of the pore space relating to a network of volume primitives. A mesh of the pore space is then created by 
using the network. PDEs system is solved by free finite elements solver Freefem3d in the particular mesh. We validate 
our PDEs model to experimental data with 3D Computed Tomography (CT) images of soil samples. Regarding the cur- 
rent state of art on soil organic matter decay models, our approach allows taking into account precise 3D spatialization 
of the decomposition process by a pore space geometry description. 
 
Keywords: Partial Differential Equations; Soil; Microbial Decomposition; Pore Space; 3D Geometry Modelling; 

Computed Tomography 

1. Introduction 

It is a fact that soil structure is a heterogeneous media 
and organic matter decomposition in soil is one of the 
most complex ecological processes. The nature of or- 
ganic matter, the dynamic of microorganisms, the envi- 
ronmental conditions etc. are the major factors which 
influence the decomposition of organic matter. Despite 
that microbial dynamics plays an important role in soil 
organic matter decomposition, the majority of organic 
matter models make the assumption that carbon limita- 
tion is controlled only by the intrinsic degradability of 
organic matter [1]. There are few models that take into 
account the rule of exoenzymes produced by microor- 
ganisms to convert complex substrates into available 

compounds [2]. Moreover, most of organic matter mod- 
els do not consider the physical heterogeneity that con- 
trols partly the availability of organic matter to microor- 
ganisms [3]. 

In the recent contributions [4,5], the authors tried to 
simulate the diffusion of soluble carbon substrate in soil 
in 2D or 1D. Some attempts were also made to simulate 
enzyme diffusion in artificial structured environments 
[6,7]. But none of these models consider explicitly the 
real 3D soil structure. It is obvious that soil organic mat- 
ter modeling needs to be in 3D soil structure because 1D 
or 2D representations of soil structure [8,9] can only 
supply partial information on the nature of overlapping 
[10]. Yet the improved performance of 3D X-ray com- 
puted tomography sensors now makes it possible to ob- 
tain very high resolution images of soil sample volume.  *Corresponding author. 
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Indeed, such non-destructive imaging technologies (X- 
ray tomography or CAT, laser scanning confocal micros- 
copy or LSCM) can generate digital gray scale images 
that visualize 3D soil structure at aggregate [11] and also 
smaller intra-aggregate scale (16 μm in [12]; 3 μm in 
[13]). 

Recently, the new model of Monga et al. in [14] simu- 
lated the decomposition of organic matter at a microscale 
using computer tomography images of real 3D soil but it 
does not take into account the diffusion process of dis- 
solved organic matters. The main reason is that it costs a 
lot of time for computing diffusion process in 3D soil 
structure even with a very strong computer. 

In this study we present an organic matter model that 
focuses on both transformation and diffusion processes in 
a 3D soil structure. We use Partial Differential Equations 
(PDEs) in order to simulate biological activity. In fact, 
models available in literature that simulates the biologi-
cal activity in porous media use different techniques like 
cellular automata to simulate biomass growth in biofilms 
[15], Partial Differential Equations (PDEs) to simulate 
biomass recycling in fungal colonies [16] and multi- 
agent system to simulate the impact of earthworms on 
soil structure [17]. In this work, we focus on the PDE 
method because 1) PDEs have been widely used to simu- 
late various complex phenomena, particularly including 
transformation and diffusion processes in porous media 
but few studies have used this approach to biological soil 
systems; 2) the recently increasing performances of 
computer PDE solvers make it possible to simulate more 
and more complex systems. 

This paper dealt with the application of PDEs to simu- 
late organic matter degradation in real micro 3D struc- 
tures and also took the diffusion into account. We tested 
our method using high resolution 3D CT of real soil im- 
ages. Our work faces the problem of solving a nonlinear 
PDE system (reaction-diffusion) in a non-regular 3D 
mesh. 

The paper is organized as follows. Section 2 presents 
the biological model. Section 3 presents the mathemati- 
cal model of soil organic matter decay using PDE system. 
The PDE system is formed by reaction diffusion equa- 
tions. The approximation of the model weak solutions is 
found by using a finite element method and a Newton 
algorithm. In Section 4, we implement the resolution 
algorithm by using Freefem3d software [18,19]. In Sec- 
tion 5, we present a validation of our PDE model to a 
experimental result. Section 6 presents a conclusion and 
some perspectives. Detailed Freefem3d code is given in 
Appendix. 

2. Biological Model 

Our aim is to simulate microbial decomposition in a non- 
regular 3D geometric volume shape defined by pore 

space. In this case pore space is described by a set of 
volume primitives [14,20-22]. Therefore, we take as 
input the following data: 
 Geometrical representation of pore space using a 

network (attributed relational valuated graph) volume 
primitives [14,20-22]. 

 Parameters describing the initial spatial distribution of 
elements involved in biological activity: microbial 
biomass (MB), fructose (F), solid microbial wastes 
(SW), decomposed soluble microbial metabolites 
(DSM), un-decomposed soluble microbial metabo- 
lites (UDSM) and inorganic organic matter (CO2). 

Thus, we assume that the microbial decomposition 
process involves six biological elements noted MB, F, 
SW, DSM, UDSM and CO2. We denote F the amount of 
fructose which is added into the environment. And we 
assume that it diffuses through water path to be con- 
sumed by microbial biomass (MB) for their maintenance 
and growth. It is supposed that MB does not move, so we 
assume that their diffusion coefficient is very small com- 
paring with others. We further assume that the dead MB 
is transformed into three kinds of organic matters: solid 
microbial wastes (SWs) which cannot be consumed by 
MB and cannot diffuse, un-decomposed soluble micro- 
bial metabolites (UDSMs) which can diffuse but cannot 
be consumed by MB, decomposed soluble microbial 
metabolites (DSMs) which can be consumed again by 
MB and can diffuse. MB breathes to produce inorganic 
carbon (CO2) [2]. Figure 1 summarizes the biological 
process inside one spatial unit. The output of the simu- 
lation system for each step time is the precise distribution 
of biological activity parameters, i.e.: MB density, F 
density, SW density, DSM density, UDSM density and 
CO2 density. 

Therefore, we provide a kind of animated film show- 
ing spatially the evolution of biological characteristics. 
From these information, we can easily compute the clas- 
sical global evolution curves: CO2 content, UDSM con- 
tent, MB content... 

3. Presentation of the Model Using PDE 

Let 3  
t

 be the domain representing the soil pore 
space. Let  be a given time and  0

T 3, ,x x x x1 2   be a point of the pore space. We 
denote  ,b x t ,  ,f x t , , ,  1 ,m x t  2 ,m x t  ,n x t  
and  ,c x t  the densities of microbial (MB), of fructose 
(F), of solid microbial wastes (SW), of un-decomposed 
soluble microbial metabolites (UDSM), of decomposed 
soluble microbial metabolites (DSM) and of inorganic 
organize matter (CO2) at position  and at time , 
respectively. 

x t

In the next subsections, we presented replicator equ- 
ations for the variations of quantities of the six biological 
elements. 
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Figure 1. Biological processes inside one spatial unit (geometrical primitive). 
 
3.1. Microbial Biomass (MB) 

Let  be an elementary volume in . The variation 
of the quantity of MB in  is due to: microbial diffu- 
sion, microbial growth, microbial mortality and micro- 
bial breathing. Thus during the breathing, microbial de- 
composers lose a part of their masses. The following 
equation summarizes the process: 

V 
V

variation of diffusion of growth of

mortality and breathing of .

b b

b

 



b
 

We assume that the MB growth depends on the quan- 
tities of fructose (F) and of decomposed soluble micro- 
bial metabolites (DSMs). We also assume that microbial 
consumes F and DSMs according to the Monod equation, 
proposed in J.D. Murray’s book [23], as follows: 

,
b b

b kf kn
b

t K f K n


 

  
b            (1) 

where the variables are set as follows. b is the concen- 
tration of microbial decomposers, k is the maximal 
growth rate, bK  is the half-saturation constant, f is the 
concentration of fructose, n is the concentration of de- 
composed soluble microbial metabolites. 

The above equation describes microbial decomposers 
growth rate.Thus, the variation of b is expressed by the 
following equation: 

,b
b b

b kf kn
D b r b

t K f K n



        


     (2) 

where  is the diffusion operator, b  represents the 
microbial decomposers diffusion coefficient, 

 D
  is set to 

the mortality rate,  is set to the breathing rate. r

3.2. Fructose (F) 

F density variation comes from: F diffusion and con- 

following equation summarizes F density variation pro- 
cess: 

 

variation of

diffusion of growth of consumption .

n

n b 
 

F variation is ruled by the following equation: 

,f
b

f kf
D f b

t K f
  

 
           (3) 

where is the diffusion operator, fD   represents the 

3.3. Solid Microbial Wastes (SWs) 

ansformation of 

F diffus n coefficient. io

SW quantity variation comes from the tr
a part of MB mortality. 

1variation of m  a part of mortality of .b  

Thus SW quantity variation is expressed b  the 
fo

y
llowing equation: 

1 ,
m

b
t







                 (4) 

where     0,1 
 SW. 

 is the rate of dead MB trans- 

3.4. Undecomposed Soluble Microbial 

UDS used by the transformation 

formed o int

Metabolites (UDSM) 

M quantity variation is ca
of a part of MB mortality and the diffusion process as 
follows: 

2

2

variation of

diffusion of a part of mortality of .

m

m b 
 

UDSM quantity variation is expressed by the follow- 
ing equation: sumption of F by microbial decomposers. Thus, the 
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 
2

2
2 1 ,m

m
D m b

t
  


    


       (5) 

where is the diffusion operator,   1      
  1 0,1     is the rate of de ran

in
ad MB t sformed 

DSM ation comes from: DSM diffusion, a 

to UDSM. 

3.5. Decomposed Soluble Microbial Metabolites 
(DSM) 

 density vari
part of dead MB and consumption of DSM by microbial 
decomposers. Thus, the following equation summarizes 
DSM density variation process: 

 

variation of diffusionn  of

a part of mortality of

growth of consumption .

n

b

b





 

DSM variation is ruled by the following equation: 

,n
b

n k n
D n b b

                (
t K n 

6) 

where Δ is the diffusion operator,  represents DSM nD
diffusion coefficient and   is th ate of dead MB 
transformed into DSM. 

3.6. Inorganic Carbon (CO

e r

2) 

e to its diffusion Inorganic carbon (CO2) variation is du
and to its production by microbial decomposers (MB) 
during breathing. 

variation of c diffusion of production of .c c   

The CO2 dynamics equation reads as follows: 

,c

c
D c rb


                

t
  (7) 

where  is the diffusion operator,  is set to the 

 

ivities act only insde 


fu

cD
CO2 dif sion coefficient. 

3.7. Boundary Conditions

We assume that biological act   
heand there is not any outside forces that effect on t  

dynamics inside  . It means that flow is null on   
for all variables. erefore, on the border of Th   no  
 , we use the Neumann boundary conditions. 

DE System 

ted

3.8. The Complete P

uations describing In this section we use the above eq
variable variations to set a global PDE system modeling 
biological dynamics. Let 0T   be a fixed time and let’s 
define 

 0,T .T                   (8) 

Therefore, the whole system of partial differential equ- 
ations governing the biological model becomes in T : 

,b
b b

b kf kn
D b r b

t K f K n


 
         

(9)   

,f
b

f k
D f b

t K


  

 
f

f
                (10) 

1 ,
m

b
t







                         (11) 

 2 1 ,m b
2

2
m

m
D

t
  


 


            (12) 

,n
b

n
D n b b

t K


   
 

k n

n
           (13) 

.c

c
D c rb

t


  


          

We use Neumann hom
and the following initial conditions in 

           (14) 

ogeneous boundary conditions 
Ω:      0,0b x b x

for MB,    0,0f x f x  for F,    1 10,0m x m x  for 
SW,    2 20,0m x m x  for UDSM,    0,0n x n x  
for DSM and  ,0c x 

ns are given by t
 0c x  f titial 

conditio he functions of 
or CO2. The in

position x , i.e. 
amount of the bi ts at the beginning are 
known at any position in 

ological elemen
 . 

Therefore, the above PDE system describes precisely 
microbial decomposition o organic matter in soil. In the 
fo

f 

 

g it into a 
g way: 

) 

The diffusion coefficients matrix 

llowing section, we show how to solve this PDE 
system which can practically simulate soil biological 
activity. 

4. Numerical Solution of the Complete PDE 
Model

4.1. PDE Vectorial System Formulation 

We simplify the system writing by transformin
vector form. Let’s define vectors in the followin

 
 

T

1 2 3 4 5 6

t

, , , , , ,

, , , , ,

u u u u u u u

b f m m n c




            (15

1 2

0 0 0 10 20 0 0, , , , ,u b f m m n c T
.           (16) 

D  is defined as 
follows: 

0 0 0 0 0bD

0 0 0 0 0

0 0 0 0 0 0
.

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

f

n

c

D

D

D

D

 
 
 
 

  
 
 
 
 

         (17) 


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The reaction terms of equations are represented 
functions defined as follows: 

by 
, 1,2, ,6iF i    

  52
1 1,

2 5s s

kuku
u

K u K u


 
     

r u


     (18) F

  2
2 1

2

,
s

ku
F u u

K u
 


                    (19) 

3 1 ,F u u     

1

                      (20) 

   4 1 ,F u u                       (21) 

  5
5 1 1,

s

ku

5

F u u u
K u

 


                (22) 

 6 1.F u ru                             (23) 

Let’s define the vector function F  such that 

 
       T

1 2 3 4, , ,

F u

F u F u F u F u     5 6, , .F u F u
 (24) 

The vector form of the system is 

   

 0 on 0, ,
u

T

       

  00 in .

tu div

n
u t u

 




   

(25) 

4. lation 

Let’s introduce the following Sobolev space 

in ,TD u F u  

2. System Variational Formu

  61 : 0 in
u

V v H
n

      
 

 .

Assuming that data are sufficiently regular, the vari- 
ational formulation consists in finding a function 

    (26) 

 u t V  such that: 

 d d d
u

v x D u v x F u v x v


       .V
t  




  (2

4.3. Resolution Scheme of the Variational System 

7) 

4.3.1. Building a Mesh h  of Domain   
A mesh of pore space    can be built from a geo- 

representatiometrical n pore space [14,20-22]. The 
following algorithm can then be use to build a mes
 Computing the geometrical primitives netwo

presenting pore space 

jac resenting pore 

ere 

 

 of 
h: 
rk re- 

We follow the approach described in [14,20-22]. In 
detail, we compute an ad ency graph rep
space using 3D computed tomography image of a soil 
sample. Geometrical primitives can be chose, for in- 
stance, the balls as in [12]. Therefore, we obtain an 
adjacency graph of balls describing pore space wh

each node is attached to a ball representing a pore within 
common sense [14,20-22]. 

Building a mesh by using all centers of the balls 
From all centers of the balls, we build a tetrahedra 

mesh for  . In order to do that, we propose using the 
Delaunay triangulation program developed at INRIA by 
the GAMMA project [24,25]. 

Building the mesh following this way is exactly the 
same idea as in [14,22] where the transformation pro- 
cess acts inside each ball and the diffusion process acts 

trical 
m

er

el biological activities. 
 

between the connected balls. Instead of the geome
odelling approach using updating graph in [14,22], here 

we consid  in this work the mathamatical modelling 
approach. We are trying to use the benefits of the 
approach in order to better mod

Pruning the mesh 
We do pruning the mesh in order to neglect edges be- 

tween two centers of balls that do not connect. Now we 
get a mesh h  of domain  . 

After building a mesh h  of domain  , we solve 
the variational formulation (27) in the following discrete 
space: 

     6 6

| 1: .h KK v P      (28) 

 t  d

n the finite dimensional space . The pro- 
blem consists in solving the following

hV v C  

4.3.2. Numerical Scheme 
Th ofe numerical resolution he problem is ivided into 
three steps: 
 Step 1: We discretize the problem via finite element 

method i hV
 system 

  ,U
BU F U

t


             (29) 

where 

, d , 1,2, , ,i j i jD x i j Ndof 


        (30) 

and 

B 

    d 1,2, , ,i ii
F U F U x i Ndof        


(31) 

where is the number of freedNdof  
 

om degrees. The 
sequence  i

hV . 
 2: We

1 i Ndof 
 

 use im

defines the basis functions of the 

 Step plicit scheme to discretize ti
Let be a positive integer denoting the number of 

We call the step time 

space 
me. 

tN  
time steps. 

tN

The num al scheme is: 

T
t  . 

eric

 
1

*, ,n nBU F U n
t

          (
n nU U 

32) 

which can be as follows: 
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   1 , ,n n nU U tF U n    *     (33) 

w

I tB

here I  is the identity   matrix, is the solution at 
tim

nU  
e n t . 
Step 3: We linearize the fu  nF U nction . We ignore 

at the time nU  n t
f nU

. Theref
oximation o  and

ore, we note  the *U
appr  U  the correction term. 
We obtain: 

* ,nU U U            

so the numerical scheme becomes: 

     (34) 

   1 * * .n nI    (35) tB U U U t F U BU      

We consider the following approximation: 

   * .nF U F U               (36) 

The numerical scheme becomes: 

4.3.3. Resolution Algorithm 
Fr en in order 
to itialize
to . Afterwa s, we repeat th

   1 *nI tB U U U t F U BU       * * .   (37) 

om the initial conditions, we know U . Th
 find solution nU  knowing 1nU  , we in

0

* *

 *U  
1nU 

replacing the 
rd

U
e numerical scheme by 

term  by U U* U 
fined:

 after 
ite
 we define a maximal number of iterations

 we define a very small positive real  and we stop 

each 
ration. Two stopping criteria are de  

 called 
maxN ; 

a
the loop if the norm of U  is smaller than 

arc . T
rith

a ed. 

 of the loop for linearization. 

8)

a

When one of the stopping criteria is satisfied, *U  
represents the se hed solution hus, the resoluti  
algo m can be described as follows: 

1) maxN  and a re fix
2) 1n  , 1nU   is known. 

 . 

on

 

a) * 1nU U  , 
b) the beginning
i) Solve 

    1 * * * ,nI tB U U U t F U BU         (3  

ii) Update 
* * ,U U U                  (39) 

If the cond r is satisfied, the 
lo

, we give the Freefem3d code we 
implement for solving the system. 

5. Experimental Results on Real Data 

We have validated our PDE mo
Th
ag RA eriment

50 km west of Paris) in France. The soil 
columns were scanned by means of a high resolution 
m

and) operating at 90 
KeV and a current of 112 mA. 

mputed 

iii) iti on on   oa  maxN  
op is stopped. 

*n U . c) U 
In Appendix

del on real data of sand. 
e soil is sampled in the surface layer (0 - 20 cm) of an 
ricultural field at the IN  exp al site of Feu- 

cherolles (FEU) (

icro-CT machine (SIMCT Equipment: SIMBIOS, Uni- 
versity of Abertay Dundee, Scotl

Using X-ray tomography we compute a 3D Co
Tomography (CT) image of a sand sample. The sizes of 
the original image are: 1650 μm × 1650 μm × 1745 μm. 
The voxel is cubic of resolution: 5 μm × 5 μm × 5 μm. 
Figure 2 shows slices (1650 μm × 1650 μm) of the 3D 
volume image. We extract from the (1650 μm × 1650 μm 
× 1745 μm) image a (400 μm × 400 μm × 400 μm) image 
for memory requirements and computing time reasons. 
Figure 3 shows successive slices (400 μm × 400 μm) of 
the (400 μm × 400 μm × 400 μm) 3D image extracted. 

The second stage provides a set of voxels corre- 
sponding to pore space. The threshold is computed using 
the expected porosity of the sample. Figure 4 shows a 
cross section representing pore space (white color), the 
porosity is 35%. Using the geometric model for the 3D 
representation of the pore space described in [14,20-22], 
we calculate the network of balls. 

Afterwards the balls are drained for the following 
values of water pressure ψ = −0.01 MPa and ψ = −0.001 
Mpa corresponding respectively to situations that are re- 
latively wet (high water pressure) and dry (low water 
pressure), respectively. For water pressure ψ = −0.01 
MPa we get 649776 balls and for water pressure ψ = 
−0.001 Mpa we get 569175 balls. Figure 5 shows pers- 
pective views of the ball based pore space represen- 
tation. Figure 6 shows the tetrahedral mesh building 
from all the centers of the balls. 

We built the model for two different values of water 
pressures (high water pressure, wet and low water 
pressure, dry). Initial microbial biomass (40 g) is put on 
the mesh such that probability of microbial being in a 
node is proportional to the radius of the bal which 
corresponds to the node. At the beginning, 300 g fructose 
is uniformly distribute in the mesh. Diffusion coefficients 
of fructose, CO2 and DSM are equal to 6 22 10 m h   
[26] while diffusion coefficient of microbe is equal to 

210 m h  which is very small in comparison with 
diffusion coefficient of the others since we assume that 
microbial does not move. We compare experimental 
carbon flow curves as well as dissolved organic matter 
(DOC) amount with the ones provided by our PDE 
model. We test our PDE model for five different types of 
microbial species: Arthrobacter sp 3R, 7R and 9R, Rho- 
dococcus sp 6L and 5L. Parameter values  
are taken from the investigation of Coucheney in [27] 

r given in Table 1. 
Figure 7 shows an example of the simulation results 

obtained from the PDE model. The four classical global 
evolution curves (CO , DOC, microbial biomass and  

for simulation

which a e 

2
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Figure 2. Successive slices (1650 μm × 1650 μm) of CT im- 
age of a sand soil sample. 
 

 

Figure 3. Successive slices (400 μm × 400 μm) of the (400 
μm × 400 μm × 400 μm) 3D image extracted. 
 

 

 

Figure 5. Perspective views of the ball based pore space re- 
presentation. We display only the balls whose radius is at 
least 10. 
 

 

Figure 6. A tetrahedral mesh building from the centers of 
1000 balls. 
 
Table 1. Parameter values are used in the simulation where 

 k 1day ,  bK 1gCg ,  1day   and  r 1day . 

Species k Kb μ r β α 

3R 17 0.0005 1.5 0.2 0.72 0.2 

9R 9.6 0.001 0.5 0.2 0.55 0.2 

7R 8 0.00014 0.2 0.3 0.20 0.2 

6L 9 0.0005 0.22 0.45 0.20 0.2 

5L 8.16 0.0007 0.4 0.25 0.55 0.2 

 
fructose) are presented for Rhodococcus sp 6L. One can 
see in the figure that fructose was rapidly decomposed by 
microbial for both cases (high and low water pressures). 
It was completely decomposed around the second day. 
The microbial biomass is therefore grows fast in the first 
two days. It is then decreases the days after. Since 
growth of CO2 is propotional to the microbial biom

to what we observe from the data of CO2 

In between experi
mental data and our PDE model ab O2 and DOC of 
o oba er sp , 7R 9R.  lef and side is 
about wet dit gh er p ure  the ht 
han  is abou  co  water pres . 
Bl solid d b  abo O2 OC e- 
dic om he o  Grey soli square 
marks and tri-angle marks are about CO2 and DOC from 

ass in 
our model. Hence, the amount of CO2 grows fast at the 
second day then it grows slower the days after. This re-
ult is similar s

for the both cases with high and slow water pressures. 
Figure 8, we show a comparison - 

out C
f Arthr ct  3R and  The t h

con ion (hi wat ress ) and  rig
d side

ack 
t dry

lack dash
ndition 
 are

(low
ut C

sure)
 pr an and D

ted fr  t  PDE m del. d with Figure 4. Cross section representing pore space (white 
color), the porosity is 35%. 
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Figure 7. Simulation results of four biological elements of Rhodococcus sp 6L are presented. The above figure is about simu-
lation with high water pressure and the below figure is about simulation with low water pressure. In the above figure: grey 
solid with square marks is about experimental CO2, grey solid with tri-angle marks is about experimental DOC. In the below 
figure: grey solid with circle marks is about experimental CO2, grey solid with tetra-angle marks is about experimental DOC. 
Both: black solid is about CO2 from the model, black dash is about DOC from the model, grey dark solid is about microbial 
biomass, grey dark dots is about fructose. 
 

 

Figure 8. Comparison between model and experimental data for Arthrobacter sp 3R, 7R and 9R. On the left hand side is 
about high water pressure, on the right hand side is about low water pressure. Solid line is about CO2 from the PDE mode, 
dash line is about DOC from the model, square is about experimental CO2, circle is about experimental DOC. 
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Figure 9. Comparison between model and experimental data forfor Rhodococcus sp 6L and 5L. On the left hand side is about 
high water pressure, on the right hand side is about low water pressure. Solid line is about CO2 from the PDE mode, dash 
line is about DOC from the model, square is about experimental CO2, circle is about experimental DOC. 
 
experimental data in the wet condition (left), while grey 
solid with circle marks and tetra-angle marks are about 
CO2 and DOC from experimental data in dry condition 
(right). Similar comparison can be seen in Figure 9 for 
Rhodococcus sp 6L and 5L. It is noticed that we assumed 
that the sum of decomposable and undecomposable bac- 
teria metabolites (DMM + UDMM) is simulated at the 
end of the experiment in order to measure the bound 

cases except the case Arthrobacter 3R and 9R with high 
water pressure. It can be seen that CO2 fits very well to 
CO2-data for all cases. It is sligtly different between the 
two with Arthrobacter 7R in low water pressure. 

6. Conclusion and Perspectives 

In this study we have proposed a new model of organic 
matter decomposition in the 3D soil pores. The novelties 
of our approach are to consider the real 3D microstruc- 
tures of soil, to take into account diffusion and trans- 
formation processes. To our knowledge, this is the first 
attempt to describe diffusion process in 3D soil structure 
thanks to the strength of PDEs. We applied our PDE 
model to real CT images of soil in which we add realistic 
amount of organic matter and microorganisms. We vali- 
dated our model to experimental results. In particular, we 
compare experimental carbon flow curves as well as  

DOC amount with the ones provided by our PDE model 
at two different water pressures. The simulation results 
show that our PDE model fits reasonably well to the ex- 
perimental results. In this current contribution, we just 
consider the dynamics of single microbial species. In 
future studies, simulations with real experimental data 
will be carried out with our model in order to analyze 
microbial competition of degradation nder different 
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Appendix. Algorithm Code Using 
Freefem3D 

The freefem3d code corresponding to the algorithm is the 
following: 

Step 1. Getting the mesh from the source file. 

meshM = read(medit, “tetranuage.mesh”) 

Step 2. Defining the data. Functions , 1, 2, ,6   
of type femfunction defined on the mesh 

if i
M  are used to 

represent reaction terms of the system. To solve the 
nonlinearity of the reaction functions, we use the same 
type to define approximate functions eb, ef, em1, em2, en, 
and ec. The same function type is used to build terms 
correction db, df, dm1, dm2, dn, and dc. The pa

of
rameters

ared

 M
de to imple-

 
 

such as diffusion coefficients, growth and death rate of 
MB are declared using double type. 

Step 3. Defining and initializing the functions repre-
senting variable densities. Initial functions are decl  
with the femfunction type defined on M. The ofstream 
function permits to create a file to save solutions. The 
quantities of the variables are obtained by integrating 
their density in the pore space represented by the mesh
Thus, we use the following Freefem3d co

. 

ment the numerical scheme: 
// opening of a file named “outputpathname” to save re-
sults 

of stream out put = of stream(“outputpathname”); 

// saving of the time and initial quantities  

     0 " " "output int M b int M f       

    1 2[ ] " "int M m int M m     

     " ""int M n int H c     

  1 2 ;int M b f m m n c endl        

// defining the time loop, nt  is the number of time steps 
 1; <= ;for doublet t nt t     

{ 
// we initialize the iteration counter to solve the nonlin-
earity 

0;k   
// we initialize approximate functions 
eb b ; 
ef f ; 

1 1em m ; 

2 2em m ; 
en n ; 
ec c ; 
// loop for linearizing the system  
do 
{ 
//we redefine the reaction terms as functions of approxi-
mate terms. 
// solving the system to find correction terms. 
// Db, Df, Dn, Dc are diffusion coefficients. 

 , ,1 2, , ,solve dn dc inM  
{ 

db df dm dm

 1 2 3 4 5 6, , , , ,test v v v v v v  

      1 1int db v int dt Db grad db grad v       

      2 2int df v int dt Df grad dn grad v       

 1 3int dm v   

 2 4int dm v   

      dn v int dt Dn grad de grad v5 5int        

      6 6int dc v int dt Dc grad dc grad v      

= 

  11int b eb dt f v   

    1int dt Db grad eb grad v    
 

  
    

2

2

2int f ef dt f v

int dt Df grad ef grad v

   

    
 

  1 1 33int m em dt f v      

  2 2 44int m em dt f v      

  55int n en dt f v   

    5int dt Dn grad en grad v    
 

  
    

6

6

6

;

int c ec dt f v

int dt Dc grad ec grad v

   

   
 

} 
// updating of approximate functions 
eb eb db  ; 
ef ef df  ; 

1 1 1em em dm  ; 

2 2 2em em dm  ; 
en en dn  ; 
ec ec dc  ; 
// incrementing of the counter k  

1;k k   
// we stop the loop if one of the criteria is satisfied. 
} 

   
 

1 2

&

awhile int M db df dm dm dn dc

k kmax

     


 

// updating the solutions 
b eb ; 
f ef ; 

1 1m em ; 

2 2m em ; 
n en ; 
c ec ; 
// updating time counter 

;T T dt   
// We save solutions. 
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     M f   " "output T int M b int    


"  1 1 1," / .". , , ;save medit m m t m M  

    " "int M m     2 2 2," / .". , ;1int M m ,save medit m m t m M  2

     " "int M n int M c      ," / .". , , ;save medit n n t n M  

  1 2 ;int M b f m m n c endl        ," / .". , , ;save medit c c t c M  

// We save the isovalues. } 
//End of progam ," .". , , ;  save medit b t b M  

 ," .". , , ;save medit f t f M  

 


