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ABSTRACT

For square contingency tables with ordered categories, the present paper gives several theorems that the symmetry
model holds if and only if the generalized linear diagonals-parameter symmetry model for cell probabilities and for cu-
mulative probabilities and the mean nonequality model of row and column variables hold. It also shows the orthogonal-
ity of statistic for testing goodness-of-fit of the symmetry model. An example is given.
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1. Introduction

B _ 5570 (i< ).
Consider an RxR square contingency table with the p;

same row and column classifications. Let p; denote the ) ) )
probability that an observation will fall in the ith row and Especially the LDPS(0) model is equivalent to the
jth column of the table (i=1---,Rj=1---,R). Bow- LDPS mod.el. )
ker [1] considered the symmetry (S) model defined by Let for 1<},

i R R

P =p; (i=]) G, =22 ps and G =ZZ|: Py -

s=1t=j s=j t=1
This model describes the structure of symmetry with

o . The S model may be expressed as
respect to the cell probabilities { o } As a model which

indicates the structure of asymmetry for {p”. }, Agresti G, =G; (i#])
[2] considered the linear diagonals-parameter symmetry
(LDPS) model defined by Thus the S model also has the structure of symmetry

with respect to the cumulative probabilities {Gij},

Pi  oin i # . Miyamoto et al. [4] considered the cumulative
—=0 (' < J)' linear diagonals-parameter symmetry (CLDPS) model
P defined b
efined by
A special case of this model obtained by putting & =1 G oo

is the S model. Yamamoto and Tomizawa [3] considered G =A (' < J),

the generalized linear diagonals-parameter symmetry I

(LDPS(K)) model as follows; for a fixed which indicates a structure of asymmetry for {Gij},

K(K =0,1,2,-~-), i # j. The CLDPS model is different from the LDPS
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model. Yamamoto and Tomizawa [3] considered the
generalized cumulative linear diagonals-parameter sym-
metry (CLDPS(K)) model as follows; for a fixed
K(K=0,1,2,---),
G, K+(i<) (i _ -

Lo AT (< ).
s, (i<7)

Especially the CLDPS(0) model is equivalent to the
CLDPS model.

Let X and Y denote the row and column variables,
respectively. We consider the mean equality (ME) model
as

E(X)=E(Y),

where E(X)=Y"ip. and E(Y)=Y"ip,

p. = ZS: Ps and p; = 221 Py -

Yamamoto €t al. [5] gave

Theorem 1. The S model holds if and only if both the
LDPS and ME models hold.

Yamamoto and Tomizawa [6] gave

Theorem 2. The S model holds if and only if both the
CLDPS and ME models hold.

The present paper gives several decompositions of the
S model using the LDPS(K) and CLDPS(K) models. It
also proposes the mean nonequality model, and gives the
orthogonal decomposition for testing goodness-of-fit of
the S model. An example is given.

2. Decompositions of Symmetry M odel

We shall give five kinds of decompositions of the S
model using the LDPS(K) and CLDPS(K) models.

Theorem 3. For a fixed K(K =0,1,2,---), the S
model holds if and only if both the LDPS(K) and ME
models hold.

Proof. If the S model holds, then both the LDPS(K)
and ME models hold. Conversely, assuming that the
LDPS(K) and ME models hold and then we shall show
that the S model holds. The ME model may be expressed
as

R-1 —1

Z_‘,G.,m = Gi+1,i'

i=1 i

From the LDPS(K) model, we see

P

R-1 i i R

ZZ ZR: 5 Ps = Rz_iz z Prs-

i=1 s=1t=i+l i=1 s=1t=i+l

Therefore we obtain 6 =1. Namely the S model holds.

The proof is completed.

Theorem 4. For a fixed K(K=0,1,2,---), the S
model holds if and only if both the CLDPS(K) and ME
models hold.

Considering the global symmetry (GS) model as
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Pr(X <Y)=Pr(X>Y),

namely

2P =22 Py

i<j i<j

we obtain

Theorem 5. For a fixed K(K=0,1,2,---), the S
model holds if and only if both the LDPS(K) and GS
models hold.

We shall omit the proofs of Theorems 4 and 5 because
these are obtained in a similar manner to the proof of
Theorem 3.

For a fixed K(K=0,1,2,---), consider the mean
nonequality (MNE(K)) model as follows:

E(X)-E(Y)=K(Pr(X <Y)-Pr(X >Y)),
which is

(K +(i=1)) Py =X (K+(i 1)) py-

i<j i<j

This model indicates that the difference between the
means of X and Y is K times higher than the dif-
ference between the global symmetric probabilities.
When K =0, the MNE(0) model is identical to the ME
model. We obtain

Theorem 6. For a fixed K(K =0,1,2,---), the S
model holds if and only if both the LDPS(K) and
MNE(K) models hold.

Theorem 7. For afixed K(K =0,1,2,--+), and for a
fixed L(L=0,1,2,---), theS model holds if and only if
both the LDPS(K) and MNE(L) models hold.

We shall omit the proofs of Theorems 6 and 7 because
there are obtained in a similar manner to the proof of
Theorem 3. Note that: 1) Theorem 6 is an extension of
Theorem 1 because when K =0 Theorem 6 is identical
to Theorem 1; 2) Theorem 7 is an extension of Theorem
3 because when L =0 Theorem 7 is identical to Theo-
rem 3; and 3) Theorem 7 is an extension of Theorem 6
because when K =L Theorem 7 is identical to Theo-
rem 6.

3. Test Statistic and Orthogonality

Let n; denote the observed frequency in the ith row and
jth column of the RxR table with n=XXn;, and let
m; denote the corresponding expected frequency. As-
sume that {nj } has a multinomial distribution. The
maximum likelihood estimates of expected frequencies
{mj} under each model could be obtained, for example,
using the Newton-Raphson method to the log-likelihood
equations. Each model (say, model M ) can be tested for
goodness-of-fit by the likelihood ratio chi-squared statis-
tic G’(M) with the corresponding degrees of freedom,
defined by
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where 1M}, is the maximum likelihood estimate of m)
under the model. The number of degrees of freedom for
the S model is R(R—l)/2, and that for each of the
LDPS(K) and CLDPS(K) models is (R-2)(R+1)/2
(being one less than that for the S model). That for each
of ME, GS, and MNE(K) models is 1. Note that the num-
ber of degrees of freedom for the S model is equal to the
sum of those for the decomposed models.

Lang and Agresti [7] and Lang [8] considered the si-
multaneous modeling of a model for the joint distribution
and a model for the marginal distribution. Aitchison [9]
discussed the asymptotic separability, which is equiva-
lent to the orthogonality in Read [10] and the independ-
ence in Darroch and Silvey [11], of the test statistic for
goodness-of-fit of two models (also see Tomizawa and
Tahata [12], Tahata et al. [13], and Tahata and Tomi-
zawa [14]). On the orthogonality of test statistic for
models in Theorem 6, we obtain.

Theorem 8. For a fixed K(K =0,1,2,--+), test sta-
tisic G?(S) is asymptotically equivalent to the sum of
G*(LDPS(K)) and G*(MNE(K)).

Proof. The LDPS(K) model may be expressed as

(K+j-i)g+¢; (i<]),
log P = b (i: J)» 1
—(K+i=))B+¢; (i>]),
where ¢, =¢;. Let
p:(pn»"'»lespzl»"'»szs""pRla"'spRR)[a

t
ﬂ = (ﬁlaﬂz) 5
where “t” denotes the transpose, and
5 :(¢11:¢12="'=¢1R’¢22""’¢2R"”5¢R—1,R7¢RR)

is the 1xR(R+1)/2 vector. The LDPS(K) model is
expressed as

log p= Xﬂ:(xl’x2)ﬁa

where X isthe R®xL matrix with
L=(R2+R+2)/2, and X, isthe R®x1 vector with

t
)(1 :(Xllﬂ""XlR7XZI""’XQRﬂ"'ﬂleﬂ""XRR) R
where
K+j-i (i<i),
X =10 (i=1),
—(K+i—j) (i>]),
and X, is R*xR(R+1)/2 matrix of 0 or 1 elements
determined from (1). The matrix X is full column rank

Open Access

which is L. In a similar manner to Haber [15], Lang
and Agresti [7], and Tahata and Tomizawa [16], we de-
note the linear space spanned by columns of the matrix
X by S(X) with the dimension L. Note that
Xy lgriy2 =1 Where 1, is the tx1 vector of 1 ele-
ments, and thus le eS(X). Let U be an R2><d1,
where d, =R’ —L=(R-2)(R+1)/2, full column rank
matrix such that the linear space S(U) is the orthogo-
nal component of the space S(X). Thus,

U'X = Oy, where Oy is the sxt zero matrix.
Therefore, the LDPS(K) model is expressed as

h(p)=04.
where 0, isthe d, x1 zero matrix, and
h(p)=U"log p.
The MNE(K) model may be expressed as
h, (p) =0y,
where d, =1,
h,(p)=X/Pp.

Note that XU = 04. From Theorem 6, the S model
may be expressed as

hB(p):0d3,
where d, =d, +d, =R(R-1)/2,

[}

Note that dy(s=1,2,3) are the numbers of degrees
of freedom for testing goodness-of-fit of the LDPS(K),
MNE(K) and S models, respectively.

Let H (p)(s=12,3) denote the d, xR’ matrix of
partial derivatives of hy(p) with respect to p, i.e,
H,(p)=2h,(p)/op'. Let 2(p)=diag(p)- pp'
where diag(p) denotes a diagonal matrix with ith
component of p as ith diagonal component. We see
that

H,(p)p=U"l =0,
because 1, €S(X), and that
H, (p)diag(p)=U",
H,(p)=X;.
Thus we obtain
H, (P)Z(p)H, (p) =U'X, =0,.

Therefore we obtain A; =A, +A,, where

A, =n(p) [H.(P)Z(p)H.(p) | (p)
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From the asymptotic equivalence of the Wald statistic
and the likelihood ratio statistic (Rao [17], Darroch and
Silvey [11], Aitchison [9]), we obtain Theorem 8. The
proof is completed.

4. Analysis of Data

Table 1 taken directly from Agresti [18, p. 232] sum-
marizes responses to the questions “How successful is
the government in (1) providing health care for the sick?
(2) Protecting the environment?”.

Table 2 gives the values of the likelihood ratio test
statistic G*> for models applied to these data. The S
model does not fit these data so well. Also, each of the
ME (i.e, MNE(0)), MNE(K) (K =12,---,5) and the
GS models does not fit these data so well. However each
of the LDPS(K) models (K =0,1,---,5) and the
CLDPS(K) models (K =1,2,---,5) fit these data very
well. Using Theorems 3 through 7 (including Theorems 1
and 2), we shall consider the reason why the S model fits
these data poorly. For the structure of cell probabilities
{p,j }, we see from Theorems 3, 5, 6 and 7 that the poor
fit of the S model is caused by the influence of the lack
of structure of the ME model (the GS model or the
MNE(K) model (K =1,2,---,5)) rather than the
LDPS(K) model (K =0,1,--,5). For the structure of
cumulative probabilities {Gij }, i#]j, we see from
Theorem 4 that the poor fit of the S model is caused by
the influence of the lack of structure of the ME model
rather than the CLDPS(K) model (K =1,2,---,5).

Table 1. Data on success of US government in providing
health care and protecting the environment; from Agresti
[18, p. 232]. (Upper and lower parenthesized values are
maximum likelihood estimates of expected frequencies un-
der the LDPS(1) and CLDPS(4) models, respectively.)

Health Environment
Care Successful Mixed Unsuccessful ~ Total
Successful 199 81 83 363
(199.00) (82.04) (83.79)
(199.00) (83.00) (83.97)
Mixed 129 167 112 408
(127.96) (167.00) (109.78)
(127.24) (167.00) (108.73)
Unsuccessful 164 169 363 696
(163.21) (171.22) (363.00)
(163.09) (171.97) (363.00)
Total 492 417 558 1467
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Table 2. Values of likelihood ratio chi-squared statistic G
for modelsapplied tothedatain Table 1.

Models Degrees of freedom G p-value
S 3 49.77" <0.001
ME (i.e., MNE(0)) 1 48.82 <0.001
MNE(1) 1 49.68 <0.001
MNE(2) 1 49.43 <0.001
MNE(3) 1 49.14" <0.001
MNE(4) 1 48.90° <0.001
MNE(5) 1 48.71° <0.001
GS 1 47.39 <0.001
LDPS(0) 2 0.76 0.685
LDPS(1) 2 0.11 0.948
LDPS(2) 2 0.40 0.821
LDPS(3) 2 0.69 0.708
LDPS(4) 2 0.93 0.630
LDPS(5) 2 1.11 0.575
CLDPS(0) 2 19.56 <0.001
CLDPS(1) 2 3.82 0.148
CLDPS(2) 2 0.87 0.647
CLDPS(3) 2 0.28 0.870
CLDPS(4) 2 0.24 0.888
CLDPS(5) 2 0.35 0.841

"Means significant at the 0.05 level.

5. Concluding Remarks

We have given the new five kinds of decompositions of
the S model. Theorems 3 and 4 are extensions of The-
orems 1 and 2, respectively. Theorem 5 is another de-
composition of the S model. Theorem 6 is another
extension of Theorem 1, and Theorem 7 is an extension
of Theorem 3. These theorems may be useful for seeing
in more details the reason for the poor fit when the S
model fits the data poorly.

From the orthogonality of test statistic given by Theo-
rem 8, we point out that for instance, the likelihood ratio
chi-squared statistic for testing goodness-of-fit of the S
model assuming that the LDPS(K) model holds true is
G*(S)-G’?(LDPS(K)) and this is asymptotically equi-
valent to the likelihood ratio chi-squared statistic for
testing goodness-of-fit of the MNE(K) model, i.e.,
G*(MNE(K)). We see that for the data in Table 1 the
value of G*(8) is very close to the sum of the values of
G*(LDPS(K)) and G*(MNE(K)) (see Table 2).
The orthogonal decomposition of the S model into the
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LDPS(K) and MNE(K) models would guarantee that (1)
if both the LDPS(K) and MNE(K) models are accepted
(e.g., at the 0.05 significance level) with high probability,
then the S model would be accepted, and (2) it would be
impossible to arise such an incompatible situation that
both the LDPS(K) and MNE(K) models are accepted
with high probability but the S model is rejected with
high probability. Therefore, in particular Theorems 6 and
8 would be useful for analyzing the data.
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