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ABSTRACT 

For square contingency tables with ordered categories, the present paper gives several theorems that the symmetry 
model holds if and only if the generalized linear diagonals-parameter symmetry model for cell probabilities and for cu- 
mulative probabilities and the mean nonequality model of row and column variables hold. It also shows the orthogonal- 
ity of statistic for testing goodness-of-fit of the symmetry model. An example is given. 
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1. Introduction 

Consider an  square contingency table with the 
same row and column classifications. Let ij  denote the 
probability that an observation will fall in the ith row and 
jth column of the table  Bow- 
ker [1] considered the symmetry (S) model defined by 

R R
p

1, ,j  1, , ; .i R   R

 .ij jip p i j   

This model describes the structure of symmetry with 
respect to the cell probabilities  As a model which 
indicates the structure of asymmetry for  Agresti 
[2] considered the linear diagonals-parameter symmetry 
(LDPS) model defined by 

 .ijp
 ,ijp

 .ij j i

ji

p
i j

p
    

A special case of this model obtained by putting 1   
is the S model. Yamamoto and Tomizawa [3] considered 
the generalized linear diagonals-parameter symmetry 
(LDPS(K)) model as follows; for a fixed  

  0,1,2, ,K K  

   .ij K j i

ji

p
i j

p
     

Especially the LDPS(0) model is equivalent to the 
LDPS model. 

Let for ,i j  

1

i R

ij st
s t j

G p
 

   and 
1

.
R i

ji s
s j t

G p
 

  t  

The S model may be expressed as 

 .ij jiG G i j   

Thus the S model also has the structure of symmetry 
with respect to the cumulative probabilities  ,ijG  

.i j  Miyamoto et al. [4] considered the cumulative 
linear diagonals-parameter symmetry (CLDPS) model 
defined by 

  ,ij j i

ji

G
i j

G
    

which indicates a structure of asymmetry for  ,ijG  
.i j  The CLDPS model is different from the LDPS 
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model. Yamamoto and Tomizawa [3] considered the 
generalized cumulative linear diagonals-parameter sym- 
metry (CLDPS(K)) model as follows; for a fixed 

  0,1,2, ,K K  

   .ij K j i

ji

G

G
i j     

Especially the CLDPS(0) model is equivalent to the 
CLDPS model. 

Let X  and Y  denote the row and column variables, 
respectively. We consider the mean equality (ME) model 
as 

    ,E X E Y  

where  and   

 and  

  i
E X  

1

R

i iss
p p 

 

1 1

R i

i s t  
 

1

R

iip 

 

  1
,

R

ii
E Y ip

 
1

.i tip p
R

t
Yamamoto et al. [5] gave 
Theorem 1. The S model holds if and only if both the 

LDPS and ME models hold. 
Yamamoto and Tomizawa [6] gave  
Theorem 2. The S model holds if and only if both the 

CLDPS and ME models hold. 
The present paper gives several decompositions of the 

S model using the LDPS(K) and CLDPS(K) models. It 
also proposes the mean nonequality model, and gives the 
orthogonal decomposition for testing goodness-of-fit of 
the S model. An example is given. 

2. Decompositions of Symmetry Model 

We shall give five kinds of decompositions of the S 
model using the LDPS(K) and CLDPS(K) models. 

Theorem 3. For a fixed  the S 
model holds if and only if both the LDPS(K) and ME 
models hold. 

 0,1,2, ,K K  

Proof. If the S model holds, then both the LDPS(K) 
and ME models hold. Conversely, assuming that the 
LDPS(K) and ME models hold and then we shall show 
that the S model holds. The ME model may be expressed 
as 

1 1

, 1 1,
1 1

.
R R

i i i i
i i

G G
 

 
 

   

From the LDPS(K) model, we see 

 
1 1

1 1 1 1

.
R R i R

K t s
ts ts

i i s t i

p p
 

 

    

    

Therefore we obtain 1  . Namely the S model holds. 
The proof is completed. 

Theorem 4. For a fixed  the S 
model holds if and only if both the CLDPS(K) and ME 
models hold. 

 0,1,2, ,K K  

Considering the global symmetry (GS) model as 

  Pr Pr ,X Y X Y    

namely 

,ij ji
i j i j

p p
 

   

we obtain 
Theorem 5. For a fixed  0,1,2, ,K K    the S 

model holds if and only if both the LDPS(K) and GS 
models hold. 

We shall omit the proofs of Theorems 4 and 5 because 
these are obtained in a similar manner to the proof of 
Theorem 3. 

For a fixed  0,1,2, ,K K    consider the mean 
nonequality (MNE(K)) model as follows: 

        Pr Pr ,E X E Y K X Y X Y      

which is 

      .ij ji
i j i j

K j i p K j i p
 

       

This model indicates that the difference between the 
means of X  and Y  is K  times higher than the dif- 
ference between the global symmetric probabilities. 
When 0,K   the MNE(0) model is identical to the ME 
model. We obtain 

Theorem 6. For a fixed  the S 
model holds if and only if both the LDPS(K) and 
MNE(K) models hold. 

 0,1,2, ,K K  

Theorem 7. For a fixed  and for a 
fixed 

 0,1,2, ,K K  
 0,1, 2, ,L L    the S model holds if and only if 

both the LDPS(K) and MNE(L) models hold. 
We shall omit the proofs of Theorems 6 and 7 because 

there are obtained in a similar manner to the proof of 
Theorem 3. Note that: 1) Theorem 6 is an extension of 
Theorem 1 because when  Theorem 6 is identical 
to Theorem 1; 2) Theorem 7 is an extension of Theorem 
3 because when 

0K 

0L   Theorem 7 is identical to Theo- 
rem 3; and 3) Theorem 7 is an extension of Theorem 6 
because when K L  Theorem 7 is identical to Theo- 
rem 6. 

3. Test Statistic and Orthogonality 

Let ij  denote the observed frequency in the ith row and 
jth column of the R

n
R  ta  anble with n  d let 

ijm note the corresponding expected frequency. As- 
sume that 

ΣΣ ,ijn
 de

 ijn s a multinomial distribution. The 
maximum likelihood estimates of expected frequencies 

 ha

 ij  under each model could be obtained, for example, 
using the Newton-Raphson method to the log-likelihood 
equations. Each model (say, model 

m

M ) can be tested for 
goodness-of-fit by the likelihood ratio chi-squared statis- 
tic  2G M  with the corresponding degrees of freedom, 
defined by 
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 2

1 1

2 log
ˆ

R R
ij

ij
i j ij

n
G M n

m 

 
   

 
  

where  is the maximum likelihood estimate of ij  
under the model. The number of degrees of freedom for 
the S model is 

ˆ ijm m

 1 2,R R   and that for each of the 
LDPS(K) and CLDPS(K) models is   2 1R R  2





 
(being one less than that for the S model). That for each 
of ME, GS, and MNE(K) models is 1. Note that the num- 
ber of degrees of freedom for the S model is equal to the 
sum of those for the decomposed models. 

Lang and Agresti [7] and Lang [8] considered the si- 
multaneous modeling of a model for the joint distribution 
and a model for the marginal distribution. Aitchison [9] 
discussed the asymptotic separability, which is equiva- 
lent to the orthogonality in Read [10] and the independ- 
ence in Darroch and Silvey [11], of the test statistic for 
goodness-of-fit of two models (also see Tomizawa and 
Tahata [12], Tahata et al. [13], and Tahata and Tomi- 
zawa [14]). On the orthogonality of test statistic for 
models in Theorem 6, we obtain. 

Theorem 8. For a fixed  test sta- 
tistic  is asymptotically equivalent to the sum of 

 and  

 0,1,2, ,K K  

  MNE .G K
 2 SG
LDPSG K  2 2

Proof. The LDPS(K) model may be expressed as 

  
 

  

1

1

,

log ,

,

ij

ij ii

ij

K j i i j

p i j

K i j i j

 



 

   


 
    

        (1) 

where .ij ji   Let 

 11 1 21 2 1, , , , , , , , , ,
t

R R Rp p p p p p p     



RR  

 1 2, ,
t    

where “t” denotes the transpose, and 

2 11 12 1 22 2 1,, , , , , , , , ,R R R R RR            

is the  1 1R R  2  vector. The LDPS(K) model is 
expressed as 

 1 2log , ,p X X X    

where X  is the matrix with  2R L  
 2  2L R R  2,  and 1X  is the  vector with 2 1R 

 1 11 1 21 2 1, , , , , , , , , ,
t

R R R RX x x x x x x     R



 

where 

 
 

  

,

0 ,

,

ij

K j i i j

x i j

K i j i j

  


 
   

 

and 2X  is  2 1 2R R R   matrix of 0 or 1 elements 
determined from (1). The matrix X  is full column rank 

which is  In a similar manner to Haber [15], Lang 
and Agresti [7], and Tahata and Tomizawa [16], we de- 
note the linear space spanned by columns of the matrix 

.L

X  by  S X  with the dimension  Note that 

 

.L
22 1 21R R 1

R
X    where 1  is the  vector of 1 ele- 

ments, and thus 
t 1t 
 21

R
 . US X  Let  be an 2

1,R d  
where   2

1  

O

2L  1 2
S U

,


d R

,

R  R 

 .S X

 full column rank 
matrix such that the linear space  is the orthogo- 
nal component of the space  Thus,  

1,d L  where tU X st  is the O s t  zero matrix. 
Therefore, the LDPS(K) model is expressed as 

 h p
1

0 ,d1 

1 1d

 

where  is the 
1d0   zero matrix, and 

  1
th p U log .p  

The MNE(K) model may be expressed as 

 h p
2

0 ,d2   

where 2 1,d   

 h p

.

2 1 .tX p

1
0d

 

Note that 1  From Theorem 6, the S model 
may be expressed as 

tX U

 h p
3

0 ,d3   

where  3 1  2 1 2,d  

1

2

.
h

h
h

 
 
 

d d R R

3 

 

 

Note that  31,2,sd s  are the numbers of degrees 
of freedom for testing goodness-of-fit of the LDPS(K), 
MNE(K) and S models, respectively. 

Let    1, 2,3s sH p  denote the  matrix of 
partial derivatives of 

2Rsd 
 psh  with respect to  i.e., ,p

    .t
s sH p h p p    Let     

where 
   ag ,tppp di p

 di p
p

ag  denotes a diagonal matrix with ith 
component of  as ith diagonal component. We see 
that 

  2
t

R
U

1
1 0d1H p ,p    

because  S X2R
1 ,  and that 

   1 ,tH p diag p U  

 2 1 .tH p X

 t
p

3 1

 

Thus we obtain 

  . p
11 0d1 2H tU X

2 ,

H p   

Therefore we obtain    

 p



H

 where 

 h p  s p  t t

s p 
   .p  

1

s s  sH h
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Table 2. Values ood hi-s atistic G2 
for models applied to the data in Table 1. 

From the asymptotic equivalence of the Wald statistic 
and the likelihood ratio statistic (Rao [17], Darro d 
Si

om Agresti [18, p. 232] sum- 
 questions “How successful is 

ch an
lvey [11], Aitchison [9]), we obtain Theorem 8. The 

proof is completed. 

4. Analysis of Data 

Table 1 taken directly fr
marizes responses to the
the government in (1) providing health care for the sick? 
(2) Protecting the environment?”. 

Table 2 gives the values of the likelihood ratio test 
statistic 2G  for models applied to these data. The S 
model does not fit these data so well. Also, each of the 
ME (i.e. NE(0)), MNE(K)  1, 2, ,5K    and the 
GS models does not fit these data so well. However each 
of the LDPS(K) models 

, M

 0,1, ,5K    

h 7 (including T
ason 


he
u re of the M

and the 
CLDPS(K) models  1, 2, ,5K    fit these data very 
well. Using Theorems 3 throug heorems 1 
and 2), we shall consi why the S model fits 
these data poorly. For the structure of cell probabilities 
 ,ijp  we see from Theorems 3, 5, 6 and 7 that the poor 
fit of the S model is caused by the influence of the lack 

cture of the ME model (the GS model or the 
MNE(K) model  1, 2, ,5K   ) rather than the  
LDPS(K) model  0,1, ,5 .K    For the structure of 
cumulative prob ,  ,i j  we see from 
Theorem 4 that the  S model is caused by 
the influence of the lack o ctu E model 
rather than the CLDPS(K) model  1,2, ,5 .K    
 
Table 1. Data on success of US go o
health care and protecting the environ

der the r

lities G
poor fit of t

f

e

ij

 str

of stru

abi

vernment in pr viding 
ment; from Agresti 

[18, p. 232]. (Upper and lower parenthesized values are 
maximum likelihood estimates of expected frequencies un- 
der the LDPS(1) and CLDPS(4) models, respectively.) 

Health Environment  

of likelih  ratio c quared st

Models Degrees of freedom G  p-value 2

S 3 4 * 9.77 <0.001 

ME ( (0)) 4 * 

MN 1) 

LD  

i.e., MNE 1 8.82 <0.001 

E( 1 49.68* <0.001 

MNE(2) 1 49.43* <0.001 

MNE(3) 1 49.14* <0.001 

MNE(4) 1 48.90* <0.001 

MNE(5) 1 48.71* <0.001 

GS 1 47.39* <0.001 

LDPS(0) 2 0.76 0.685 

PS(1) 2 0.11 0.948 

LDPS(2) 2 0.40 0.821 

LDPS(3) 2 0.69 0.708 

LDPS(4) 2 0.93 0.630 

LDPS(5) 2 1.11 0.575 

CLDPS(0) 2 19.56* <0.001 

CLDPS(1) 2 3.82 0.148 

CLDPS(2) 2 0.87 0.647 

CLDPS(3) 2 0.28 0.870 

CLDPS(4) 2 0.24 0.888 

CLDPS(5) 2 0.35 0.841 

Care Successful Mixed Unsuccessful Total

Successful 199 81 83 363

 (199.00) (82.04) (83.79)  

 (199.00) (83.00) (83.97)  

Mixed 129 167 112 408

 (127.96) (167.00) (109.78)  

 (127.24) (167.00) (108.73)  

Unsuccessful 164 169 363 696

 (163.21) (171.22) (363.00)  

 (163.09) (171.97) (363.00)  

Total 492 417 558 1467

*Mean at the 0.05 level. 

5. Concluding Remarks 

e kinds of decompositions of 
4 are extensions of The- 
heorem 5 is another de- 

ting goodness-of-fit of the S 
m

s significant 

We have given the new fiv
the S model. Theorems 3 and 
orems 1 and 2, respectively. T
composition of the S model. Theorem 6 is another 
extension of Theorem 1, and Theorem 7 is an extension 
of Theorem 3. These theorems may be useful for seeing 
in more details the reason for the poor fit when the S 
model fits the data poorly. 

From the orthogonality of test statistic given by Theo- 
rem 8, we point out that for instance, the likelihood ratio 
chi-squared statistic for tes

odel assuming that the LDPS(K) model holds true is 
    2 2S LDPSG G K  and this is asymptotically equi- 

valent to the likelihood ratio chi-squared statistic for 
testing goodness-of-fit of the MNE(K) model, i.e., 

  2 MNE .G K  We see that for the data in Table 1 the 
value of  2 SG  is very close to the sum of the values of 

  2 LDPSG K  and   2 MNEG K  (see Table 2). 
 model into the The orthogonal decomposition of the S

Open Access                                                                                             OJS 
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LDPS(K) and M

(e.g., at the 0.05 ance level) with

 in Contingenc
Tables,” Journal of the American Statistical Association
Vol. 43, No. 244
http://dx.doi.o 48.10483284

NE(K) models would guarantee that (1) 
if both the LDPS(K) and MNE(K) models are accepted 

signific  high probability, 
then the S model would be accepted, and (2) it would be 
impossible to arise such an incompatible situation that 
both the LDPS(K) and MNE(K) models are accepted 
with high probability but the S model is rejected with 
high probability. Therefore, in particular Theorems 6 and 
8 would be useful for analyzing the data. 
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