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ABSTRACT 

Complete prior statistical information is currently required in the majority of statistical evaluations of complex models. 
The principle of maximum entropy is often utilized in this context to fill in the missing pieces of available information 
and is normally claimed to be fair and objective. A rarely discussed aspect is that it relies upon testable information, 
which is never known but estimated, i.e. results from processing of raw data. The subjective choice of this processing 
strongly affects the result. Less conventional posterior completion of information is equally accurate but is computa- 
tionally superior to prior, as much less information enters the analysis. Our recently proposed methods of lean determi- 
nistic sampling are examples of very few approaches that actively promote the use of minimal incomplete prior infor- 
mation. The inherited subjective character of maximum entropy distributions and the often critical implications of prior 
and posterior completion of information are here discussed and illustrated, from a novel perspective of consistency, 
rationality, computational efficiency and realism. 
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1. Introduction 

The principle of maximum entropy (PME) can be uti- 
lized to determine a probability density distribution func- 
tion (pdf) from incomplete statistical information. The 
approach is not limited to determination of prior pdfs in 
Bayesian estimation, even though that is a common ap- 
plication. It is rather a general recipe how to make known 
but incomplete statistical information complete with the 
most ‘fair’ or the weakest possible hypotheses. As such it 
fits very well into our practice of statistics, where the 
lack of complete information is the rule rather than the 
exception. For instance, knowing only the mean and the 
variance of an uncertain parameter PME results in a 
normal distribution [1]. The known information must be 
well defined in a statistical sense, i.e. be formulated in 
terms of statistical expectations  f   of functions 
 f   of the considered random quantity  . For in- 

stance,  f    yields the mean and  q
f

 k  with estimators [2] f̂  to give testable informa- 
tion     ˆf f

    
produces the  moment around the mean. Their 
expectations can be estimated from any set of observations 

-thq

k     [3]. 
Bayesian estimation generalizes traditional approaches 

limited to observations by inclusion of prior knowledge. 
Its claimed advantage or superiority relies heavily upon 
fair and truthful assignment of the prior pdf. If the 
applied method (like PME) to determine the prior pdf 
turns out to be subjective it would degrade the legitimacy 
of the approach. Indeed, PME is often motivated by its 
fairness or objectivity [1]. A minimum of supplemen- 
tary (unknown) statistical information is imposed by, 
loosely speaking, maximizing the residual randomness as 
measured with the information entropy introduced by 
Shannon [4] and further explored by Jaynes [3]. In prac- 
tice, the procedure does not provide a complete recipe. 
By starting with known testable information, PME 
avoids to define its the best form. There is a widely 
spread practice though, which probably originates from 
the ubiquitous use of Taylor expansions. Testable in- 
formation is usually considered in a hierarchy starting 
from the mean, the covariance, the skewness, and the 
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kurtosis etc. Various statistical moments around the 
mean are tested, as if they were terms of a Taylor series. 
The functions  q

qg     are indeed the  
order monomial related to a Taylor expansion around the 
mean. The expectation 

-thq

qg  will contribute to the non- 
linear displacement   h h   , or scent [5] of 

 order, of the model . For any other statistic like 
e.g. covariance, no such simple direct relation holds [6]. 
Another line of reasoning might be that the mean des- 
cribes the location of the distribution, the second moment 
the width, the third the lowest order asymmetry, while 
the fourth is the lowest order shape indicator etc. We 
might subjectively claim that these properties (location- 
width-asymmetry-shape) provide a hierarchy of testable 
information. This does not imply that the moments 
themselves drop in magnitude or relevance, with their 
order. On the contrary, the linearly scaled even moments 

-thq h

  1 2

2 2

q

q qM g   usually increase with the order . 
In the limit q , 

q
 2 maxq kM k , where k  are 

the observations of  . 
Given a set of observations it is not evident how they 

should be processed to provide testable information of 
the highest possible quality, i.e. with minimal residual 
uncertainty. For instance, which moments qg  should 
be estimated with a quality (variance of estimator) that 
usually decrease with the order ? As will be shown, 
the selection will directly influence the PME distribution 
function. It is also not evident why PME should be re- 
stricted to prior application, as usually practiced. Post- 
erior utilization might in fact simplify the analysis great- 
ly. After all, PME is a general method with no explicit 
reference to what the distribution describes, the input or 
the output of the analysis. 

q

2. Method of Maximum Entropy 

For a continuous sample space , the entropy [4] func- 
tional to be maximized in the method of maximum en- 
tropy is given by the Lebesgue integral, 



    log d .S p p  


           (1.1) 

The bar-symbol restricts the integration over dis- 
tinguishable outcomes     . That accounts for 
our possible ignorance1 of not distinguishing distinct 
outcomes. As there is an obvious contradiction of being 
aware of ignorance, it is better translated into irrelevance 
(for our stated problem). The integration over   can be 
extended to , by locally measuring the relative density 
of 


  with the Lebesgue measure  m  ,  

 d m d   . Consistency requires transformation 
invariance [1] of the probability  in the interval dP

, d   . That is,    pd dp    , giving the 

substitution      p p m   . This invariance is 
equivalent of requiring independence [3] of  dP   on 
the subjectively chosen parameterization. In fact, that 
constraint provides a direct method of determining the 
Lebesgue measure: If   ,    d dmm     . 
For instance, ignorance to change of units correspond to 
the transformation     , where   describes the 
conversion factor between different units. It yields 
      m  d dmd dm m           or 
  1m   . 
Utilizing  m   the integral in Equation (1.1) is con- 

verted into a Riemann integral, 

   
 

log
p

m
d .


S p  


 


 



, 0,1

  

, 2, ,i N

         (1.2) 

The optimization is subject to all known testable 
information i   , 

       p  d dif ,i i if p f           (1.3) 

0 01, 1.f                  (1.4) 

The functions k  will for convenience be denoted 
test functions. The mandatory zeroth constraint 0

f
  

(Equation (1.4)) is the normalization condition. As point- 
ed out [3], for discrete sample spaces and no degeneracy 
( ), there is a general expression for the maxi- 
mum of Equation (1.1) in terms of a partition function 

constm =

Z . It can be generalized to non-constant measures 
 m  , and continuous distributions using calculus of 

variations [7], 

  1e
i i

i
f

Z m
  

d . 





             (1.5) 

The Lagrange multipliers of optimization are implic- 
itly given by the testable information, 

log 0, 1, 2, , ,



i
i

Z i N 



  


        (1.6) 

0 log .Z                  (1.7) 

The maximum entropy pdf is then given by, 

   
 

0e ,

N

i i
i

f

p m
 

  
 

.            (1.8) 

2.1. Testable Information 

The PME solution (Equation (1.8)) does not specify the 
test functions . They are of major importance 
though since the solution is directly expressed in them. 
As stated in the introduction there is a convention of 
setting 1

,kf k 1

f  ,  22f     etc. That is a habit, not 
a prescription. The choice of test functions must con- 
sequently be considered to be at our free disposal. 1Remark: “Ignorance” will here refer to the aspect of counting out-

comes [1], not the concept of entropy [3]. The difficulty or accuracy of estimating  kf   is 
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dependent on the explicit form of kf . Also, the in- 
formation contained in the observation set  k  is to a 
variable degree transferred to the estimate of  kf  . 
For instance, if  f  

q q

 all observations are equally 
weighted, but if f g

   
, 

, ,qg
q               (1.9) 

the exponent  determines how much different obser- 
vations contribute. In the asymptotic limit , the 
observation with the largest deviation is much more 
important than any other (which only contributes to the 
estimate of the mean). A lot of information is obviously 
disregarded. The estimator covariance will accordingly 
be large. Nevertheless, in many situations the range [6]  

q
q 

   1 2
max

k

2limk k kg      is of much larger  

interest than any other information. The confidence in- 
terval is a more general statistic allowing for sample 
spaces without bound. From the perspective of objec- 
tivity, it thus appears difficult to prescribe any specific 
set k , 1, 2, ,f k  N

N

, or even their number (N). Clearly, 
the larger amount of data or independent information that 
is available, the larger  is allowed without resulting 
in unacceptable estimator quality, as expressed with its 
bias and covariance. 

To illustrate how subjectivity enters in practice, 
assume we have gathered a set of prior observations 
 k  of a phenomenological constant   contained in a 
computer model. To calibrate the model [8], i.e. de- 
termine the optimal values of its parameters and their 
uncertainties (  being one of them) from observations, 
Bayesian estimation is applied. That requires complete 
prior information, i.e. knowledge of the prior pdf  p  . 
Applying PME starting from  k , test functions 

kf   must be selected. With the choice of  1 1 ,f g   

q  2f g  , the partition function will according to 
Equation (1.5) read, 

 Z m    1 1 2e dqg g   
.  


   

Since we are not aware of any ignorance, we set 
. The condition Equation (1.6) on   1m    1g   im- 

plies, 

 1 20 e
q   1Z d .  


   

A fair amount of subjective pragmatism now suggests 
 to be limited to even numbers and the support q   to 

extend to the whole real axis, since that allows us to 
determine 1  with ease. The symmetry of the integrand 
then implies 1 0  . If 0   is prohibited, 1 0  . 
The current assignment then translates into an appro- 
ximation of the support   as well as the factor 

 1e 1      of  p  . The remaining Lagrange multi- 
plier 2  is obtained by re-scaling, 

 2 1
2e d e d

q qq t ,Z t   
   

 
    

 
2 2

log 1
.q

Z
g

q


 


  


 

The resulting pdf, 

      1
e ,q

qg q
qp

     ,g        (1.10) 

where   describes the  order “width” of the pdf -thq
 p  , is for different  displayed in Figure 1. Clearly, 

the PME pdf is to a significant extent controlled by our 
subjective choice of test function, i.e. . The result 
varies between normal 

q

q
 2q   and uniform  q   . 

More generally, with the understanding of the depend- 
ence on the test functions if  (Equation (1.8)), almost 
any PME pdf can be generated. It is only a matter of 
formulating the question (selecting if ) to obtain the ans- 
wer   p   on virtually any desired form. 

2.2. Quality of Estimation 

In practice, a testable piece of information i  is esti- 
mated from raw observations with quality depending on 
the test function if . The maximum entropy pdf  p   
can be directly formulated in our observations   k , 
using a specific estimator of the  moment around 
the mean. An obvious estimator is given by, 

-thq

       

1 1

1ˆ ,
qn n

q q k k

k k

S B
n

 
 

 
 

  
         (1.11) 

where  is an unknown constant which hopefully   qB
 

 

Figure 1. The maximum entropy pdf  p   for different 

kinds  q  2,4,6,8,10,  of testable information  f  , 

see Equation (1.3). Case q corresponds to knowledge of the 
mean  f   and the q-th statistical moment around the 

mean (  qf g  , see Equation (1.9)). 
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can be selected to eliminate the bias, e.g.    2 1 1B n  . 
To express the bias of  in terms of  expand 
and calculate its expectation over observations 

 ˆ qS  qB ,
  k , 

   
0

0 1

0

2

0

! 1ˆ .
!

j

n

j
j

q k n
kq q k k

n
j

k q j
j

S B n
n

k
 












    
 

 


q
 

(1.12) 

On the other hand, 

     
 0

1 !
.

! !

q kq
q kqq k

k

q
S

k q k
  







 

   (1.13) 

Clearly, the number of terms of  qS  is much less 
than for  ˆ qS  for . Elimination of bias by 3q 

 qBproper selection of  requires proportionality be- 
tween  qS  and  ˆ qS . That cannot in general be 
achieved since one of them have much more terms than 
the other. Thus, no scaling of  ˆ qS  can make it uni- 
versally unbiased. Evaluating the first two coefficients of 
the expansion in Equation (1.12), 

       
   

 


 

1
1

12

1
0

ˆ

! 1 1
1

! !

q q q qq q
q q

kq
q q

q q
k

S B n c q c

q
c c q

k q k n n

  







  

                




.
q  

(1.14) 

Surprisingly, these two terms satisfies the proportio- 
nality required to eliminate the bias. Bias can thus be 
eliminated by rescaling up to , but not for  
(see estimation of kurtosis in [9]). This suggests the 
normalization, 

3q  4q 

 

   
1

12

0

! 1 1
1

! !

k qq
q

k

q
B n q

k q k n n





                    
 .




(1.15) 

While    2 1 1B n  ,    4 2 31 4 6 3B n n    n



. 
Clearly,  bears little resemblance to the  
conventional form 

 4B
1 n z  of , where  is the 

number of degrees of freedom. 

 2B z

After failing to obtain an unbiased estimator of the 
 moment around an unknown mean, we may lower 

the ambition by assuming the mean 
-thq

  is known. The 
corresponding estimator reads, 

    
1

ˆ ,
n qq q

k
k

T B  


             (1.16) 

This is a considerably simpler situation for which the 
normalization   1qB 

   ˆvar
ˆ .

ˆ

M
M

M
              (1.17) 

The least possible variance of any unbiased estimator 
 of  qS  qg   is given by the Cramer-Rao lower 

bound [2]  q , evaluated in Appendix A, 

     .
2

q q
S

n
    q           (1.18) 

Since  q  increases with , it is indeed more 
difficult to determine higher order moments accurately 
on an absolute scale, with any estimator. The efficiency 

q

  of our specific estimator  measures its relative 
quality, 

 qT̂

 
 

  
 

   
1 !!

1,
ˆ 2 2 1 !! 1 !!

q
q

q

q q

T q q



  
     

  (1.19) 

where     !! 2 4 1m m m m   
 

,  is even and the 
precision 

q

 ˆ qT
1

 is evaluated in Appendix B. For an 
efficient [2] estimator,   . A low value of   means 
that the potential for improvement of our estimator is 
large. Since  q  decreases rapidly with ,  also 
becomes worse on a relative scale as  increases. Nev- 
ertheless, the actual precision  may or may not be 
satisfactory. The performance of the estimators  is 
illustrated and compared to the Cramer-Rao lower bound 
in Figure 2, by evaluating their relative variation 

q T̂ q

ˆ,S T

q


ˆ

  
and bias   numerically with multiple Monte Carlo 
ensembles. 

To conclude, the determination of the PME pdf in- 
volved several subjective choices of processing the ob- 
servations. The shape was here restricted by using mono- 
mial test functions  qg . The order  was limited to 
be even, to simplify the calculation of the integrals. 
Likewise, an infinite symmetric sample space 

q

  was 
assigned. The difficulty of estimating various statistical 
moments around the mean increases rapidly with the 
order. If there are not more than a few samples it is in 
most cases impossible to reliably estimate any other 
moments than the first and the second. The application of 
PME thus relied upon rational selection rather than ob- 
jective deduction. 

2.3. Prior vs Posterior Application of PME 

The PME constructs complete pdfs from incomplete 
testable information. It can be applied to the input (PME 
prior), or the output (PME post(-erior)) of the analysis. 
As no restriction or preference is stated in PME, both 
alternatives deserves to be considered and evaluated for 
efficiency and accuracy. The default method of lineari- 
zation (LIN) [10] as well as the unscented Kalman filter 
(UKF) [11,12] and deterministic sampling (DS) [6]  

n  makes the estimator unbiased 
for all . The expected precision of any estimator q M̂  
describing its typical relative variation may be defined 
by, 
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Figure 2. The relative precision  and  (dashed, 

Equation (1.17)) for the estimators 

S
 ˆ q

T

S  (Equation (1.11)) 

and  (Equation (1.16)), respectively, compared to the 
Cramer-Rao lower bound  (solid, Equation (1.18)), for 

 (connected by lines for clarity) and 

 ˆ qT

2,4,6


q   10, 1000n   

samples. The relative bias  q  of  qŜ  (dotted,  
given by Equation (1.15)) is also shown. The calculations 
were made for  randomly generated samples of a 
normal distributed variable, equally split into ensembles of 

 samples. Scaling with  account for the main 
dependences on the number  of samples (Equation 
(1.18)). 

 qB

710

n n0.5

n

 
in general propagate statistics like covariance which later 
can be expanded to information related to entire pdfs, e.g. 
confidence intervals. That is, LIN, UKF, and DS pro- 
motes PME post. Monte Carlo simulations [13] or ran- 
dom sampling (RS) must start with complete statistical 
information to determine its random generator, i.e. RS 
requires PME prior. 

An elementary example illustrates the principal dif- 
ferences between PME prior and PME post. Assume it is 
of interest to calculate the 95%  confidence interval 
 ,a bh h  of an uncertain model h  , dependent on one 
parameter  . Let the model uncertainty [8] be given by 
the mean 0   and the variance  2

1  . PME 
prior determines the input pdf  f   to be normal 
distributed. Repeated generation of RS ensembles esti- 
mates their variation as function of their size: To achieve 
a standard deviation of the input  confidence in- 
terval 

95%
 ,a b   for   of about , no less than 

around  randomly generated samples of 
5%

3000   are 
required. In RS, the model is evaluated for all these 
samples of   and  ,

1, 2,
a bh h

,
 is found by evaluating the 

results , ordering them, and 
extracting the 95%  percentiles. The known statistics 

   ,kh k 3000

0   and  2
1  can however be encoded 

exactly in no more than two(!) deterministic (calculated 
with a rule) samples . Assuming the 
model is close to linear-in-parameters, the model vari- 
ance is mainly determined by the parameter variance, 
here represented by the parameter ensemble . In 
DS, the model variance is then with the argument of 
consistency given by the second moment around the 
mean of the model ensemble , i.e.  

   1 21, 1   

   ,kh  

(2)(1) ,

1,2k

             2 21 2 2h h h h 2 2
h       .  

Applying PME post to the result h  and  2
h  

implies that the resulting pdf is normal distributed, ana- 
logously to the input pdf in RS. That implies a coverage 
factor of 1.96k   resulting in a confidence interval, 

 

         
 

2 21 2

,

1,1 .
2

a bh h

h h
h k

   
  

   (1.20) 

For estimating confidence intervals, PME does not in 
fact need to be utilized at all. By using another DS tech- 
nique of ours, sampling on confidence boundaries [5], 
the desired interval can be found directly as, 

 

   2 2

,

, .

a bh h

h k h k          

     

  (1.21) 

Consistency in evaluating confidence intervals of 
models here lead to the related concept of confidence 
boundaries in parameter space. For multivariate models 
with non-linear dependencies on parameters, both these 
results needs to be properly generalized [5,6]. Propa- 
gating a PME prior probability density function thus 
typically require several thousands of model samples 
[13,14] or complex algorithms [15]. The number of 
model samples propagated with DS for final completion 
with PME post can be as few as  for  para- 
meters and increases with the known statistical infor- 
mation, the complexity of the model and acceptable 
accuracy of evaluation [16]. 

1n n

PME prior requires much more information to be 
analyzed, than PME post. For the example above, it 
means 3000 or 2 model evaluations. Plain rationality thus 
strongly favors PME post. The reason for requesting 
complete prior information is likely an ambition to find 
unique unquestionable answers, even if that in practice 
requires an extensive amount of blind assignments or 
assumptions. Unique is not equivalent to accurate how- 
ever, and the quality of any assignment should be 
critically judged. The loss in efficiency of PME prior 
compared to PME post is not compensated by superior 
accuracy. In a number of cases, DS produces the correct 
result without any error: Any moment of any model 
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given by a finite Taylor expansion can be exactly cal- 
culated with stratified DS [16]. Similarly, the confidence 
interval of any model    Th    

T
,



 of any number 
(n) of parameters can be evaluated exactly [5], where 

 are constants,   1 2 n    
 T

1 2 n      all parameters, and  x  is 
any non-linear monotonic function. For comparison, we 
are not aware of any general analytic method to pro- 
pagate a univariate pdf determined by PME prior through 
any non-linear model. In this case, RS is a numerical 
method that yield arbitrarily small errors, but at very high 
computational cost. For “genuinely” multivariate prob- 
lems RS seizes to be accurate. Multivariate refers to non- 
trivial finite dependencies of any order, as required for 
optimal modeling [16]. As far as we know, higher order 
dependencies (beyond second moments and not normal 
distributions) can only be implemented in RS by ex- 
cluding samples. Exceptionally dense sampling is then 
required to accurately represent sampling density over 
the entire -dimensional sampling domain. Neverthe- 
less, it is straight-forward to represent any arbitrary 
mixed moment in stratified DS [16]. The difficulty is just 
that the more requirements, the more samples are re- 
quired. If not enough samples can be afforded it is 
possible to find the best approximating ensemble where 
different requirements are given different weights of im- 
portance. There are thus several reasons (as exemplified 
here) for PME post methods to not only be superior to 
PME prior approaches in efficiency, but also accuracy. 
The lean set of known input information in PME post is 
much simpler to analyze or propagate through any model 
than the complete information in PME prior. 

n

With these observations, the traditional preference to 
prior instead of posterior completion of information with 
PME appears biased and strongly subjective. It is highly 
questionable if PME post methods like DS [6,11,16,17] 
can be claimed less accurate than state-of-the-art RS 
relying upon PME prior per se. As both practice sta- 
tistical sampling once defined by Enrico Fermi [18], they 
are fully comparable. The choice is critical for complex 
models, as the low efficiency of RS easily render an 
impossible numerical task. Indeed, that is the main cur- 
rent obstacle for wide utilization of uncertainty quan- 
tification with RS. 

Bayesian estimation is formulated for PME prior. The 
combination of the maximum likelihood function and the 
prior distribution makes Bayes approach superior to 
traditional approaches limited to the former. In practice 
though, two functions (PME prior) or two discrete sets of 
statistics (PME post) derived from observations are fused. 
Indeed, the common assumption of Gaussian noise and 
PME prior derived from the mean and covariance results 
in combination of covariance matrices (numbers) and not 
pdfs [8]. A non-trivial posterior distribution function 

requires non-Gaussian and/or correlated noise and uti- 
lization of no less than an infinite set of testable reliable 
information in the PME prior. If not so, Bayes estimation 
can without any loss of accuracy and relevance be made 
with PME post instead of PME prior, e.g. with DS 
instead of RS [8]. 

PME post (DS) makes it evident that results seldom 
are unique, while PME prior (RS) conceals ambiguities 
in more or less dubious or blind assignments in the 
problem set up. The indefiniteness of the result is an 
unavoidable consequence of starting with incomplete 
information, not the analysis. For PME post analyses (DS) 
this can easily be illustrated, for instance using different 
ensembles [6]. It is considerably more difficult for PME 
prior analyses (RS) due to their prohibiting numerical 
complexity. The contradictory consequence is that PME 
prior generally are considered more credible than PME 
post analyses, even if the latter are more honest and real- 
istic as their flaws easily can be illustrated. 

2.4. Towards Consistency and Rationality 

The PME test functions should be selected according to 
the evaluation of the model, its behavior, and the quality 
of estimating the corresponding testable information. If 
we are interested in propagating the covariance of a 
signal processing model [6], we should consequently use 
a distribution which has been tested for representation of 
covariance. That is a consistent rather than an objective 
choice. Objectivity is an impossible target—selecting any 
method is a subjective choice. Our ignorance of  p   
is rather reflecting relevance in perspective of our pri- 
mary interest, or consistency throughout the analysis. It 
appears that consistency summarizes the goals of objec- 
tivity as well as our ignorance [1,3,4] and emphasizes the 
context. In contrast to objectivity, consistency expresses 
a relativity that can indeed be achieved in many situa- 
tions, as well as measured, questioned and criticized.   

The ubiquitous sparsity of statistical information in 
virtually all practical problems needs to be seriously 
addressed. If the realism of two approaches are com- 
parable but their efficiency distinctively different, the 
choice should be based on rationality rather than con- 
sistency. Realism is distinct from resolution. Any com- 
plete set of assumptions will result in arbitrary high reso- 
lution, no matter how realistic the assumptions are. As 
the fidelity of the result never can be enhanced with blind 
assignments, it is questionable when statistical analyses 
should be made with distribution functions, rather than 
the testable information (statistics) these are derived from 
with PME. If desired, both approaches results in dis- 
tribution functions. The completion of information is just 
made before (PME prior) or after (PME post) the ana- 
lysis. The rational choice is PME post, as it propagates a 
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minute fraction of the statistical information used in 
PME prior. 

3. Conclusions 

The character of maximum entropy (PME) distribution 
functions has been discussed. There are two principal 
innovations of our study. The PME solutions can to some 
extent be controlled by how primary data is processed. 
The prevailing preference for applying PME to the input 
(prior) and not the output (posterior) of statistical analy- 
ses is difficult to justify, as the their accuracy is compa- 
rable but the latter is computationally superior. The 
choice appears governed by the method of analysis. 
Hence, subjectivity enters into the processing of data as 
well how the analysis is made. 

A non-trivial selection enters when observations are 
processed into testable information. A simple example 
illustrated common subjective choices, giving different 
results for identical observations.   

Redirecting the focus from the treatment of known in- 
formation to the targeted evaluation of the analysis em- 
phasizes consistency, rather than objectivity. When con- 
sistency is indecisive, rationality or efficiency of the 
analysis provides obvious guidance. PME can be applied 
to find prior as well as posterior distributions. Its uncon- 
ventional posterior application deserves to be seriously 
considered, as the analysis involves much less statistical 
information and is correspondingly more effective, than 
the prior. Consistency and rationality thus fundamentally 
questions the prevailing method of completing statistical 
information prior to the analysis, as in e.g. Monte Carlo 
simulations.   

Maximal consistency and rationality are indeed pri- 
mary goals of all our proposed methods of deterministic 
sampling. For complex models, such lean and custom- 
ized approaches are often required to obtain any measure 
of modeling quality at all (within acceptable computa- 
tional time). Without assessment of quality, any (model- 
ing) result is of no value. These aspects are thus of para- 
mount importance to our society where complex calcula- 
tions (technical, physical, econometrical etc.) are rapidly 
increasing due to the fast development of computers. 
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Appendix A Cramer-Rao Lower Bounds of  
Statistical Moments of a Normal Distributed  
Variable 

Assume a random variable   with zero mean is normal 
distributed, 0,N  

 q qM 
  1 3q 

. By integrating by parts it can 
be shown that , where  

 is the semi-factorial 
function. The probability distribution function for 


5q 

1 !!q 
 1 1 !!q q 

  
can then be expressed in )(qM , 

     
 

 
 

2

2
2

1 !!1 !!
0, exp .

2

q

q
qq q

qq
p N

M M
  

 
      

    

  

(1.22) 

For  independent observations   , 
the likelihood function is given by, 

n , 1, 2, ,k k n  

    
 

 
 

 

 
 

   
 

2

2
2

1

2

2
2

1

1 !!1 !!1
exp

2π 2

1 !!1 !!
exp .

2

q
k

q
n

q
k qq qk

qn q
n

kqq q k

p M

qq

M M

qq

M M












      

    
 

         
     










   (1.23) 

Cramer-Rao lower bound ([2]) now states that for any 
estimator  ˆ qM  of  qM , 

    1ˆvar ,qM F             (1.24) 

where  F   is the Fisher information matrix (scalar 
for one parameter), 

 
    

  

2

2 2
2

ln 2
.

q
k

q

p M n
F

q M







  


  (1.25) 

The expected precision  (Equation (1.17)) of the 
estimator 


 qM  hence satisfies, 

  
 

ˆvar
.

2

q

q

M q

nM
             (1.26) 

Appendix B Variance of Estimator of  
Statistical Moments around Given Mean 

An estimator of the  statistical moment  -thq
   qqM     of   around a known mean   

from a set of n  independent observations  k  is 
given by, 

  
1

ˆ ,
n qq

k
k

M B  


             (1.27) 

where the normalization constant B is chose to minimize 
its bias    ˆ qM M q . Since   is a known constant 
it is trivially found that 1B n  eliminates all bias, for 
all values of . Its variance is found to be, q

      
    2
22 2

ˆvar .

q
q

q q q
MM

M M M
n n

 
        

(1.28) 

An explicitly value can be found for a normal dis- 
tributed parameter,  0,N  . Then, by recursively 
integrating by parts it is found that , 
where 

   1 !!q qM q 
    1 3q  5 1q  1 !!q q   is the semi- 

factorial function, giving 

      2 1 !! 1 !!ˆvar .q q q q
M

n


  
       (1.29) 
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