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ABSTRACT

We prove some value-distribution results for a class of L-functions with rational moving targets. The class contains

Selberg class, as well as the Riemann-zeta function.
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1. Introduction

We define the class M to be the collection of functions
L(s)= Z:;]a(n)/ n°®, satisfying Ramanujan hypothesis,
Analytic continuation and Functional equation. We also
denote the degree of a function Le M by d, which
is a non-negative real number. We refer the reader to
Chapter six of [1] for a complete definitions. Obviously,
the class M contains the Selberg class. Also every
function in the class M is an L -function and the
Riemann-zeta function is in the class. In this paper, we
prove a value-distribution theorem for the class M
with rational moving targets. The theorem generalizes
the value-distribution results in Chapter seven of [1]
from fixed targets to moving targets.

Theorem. Assume that Le M and R is a rational

function with lims,.R(S)#1. Let the roots of the
equation L(s)—R(s)=0 bedenoted by pg =SB +iyg.
Then

(D For any b>max{%,1_é}’
> (B—-b)=0(T), as T > .
TffszzT

(ID) For sufficiently large negative b,

“Corresponding author.
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m Y (,BR—b):(—b)dLTlog%+O(logT),

T<yr<2T

as T — oo,
Proof of (I). It is known that if L € M, then

L(S)z 2 aﬁ?) =1+O<k65), as o —> oo;
where k, is the index of the first non-zero term of the
sequence of {a(n)}:: , S=o+it with o,teR. Since
limo.L(S)—R(s)#0, there exists o, >0 such that
L(s)-R(s)#0 for Res=o>o, . It follows that
fr <o, for all real part of zeros of the function
L(s)-R(s). We set R(z)=P(z)/Q(z) where the
degrees of P,Q are p,q, respectively; and define

?(s)=(s)=R(s)-

Thus, there is I, >1 such that ¢ is analytic in the
region |S|>r1 since L is a meromorphic function in
C with the only pole at s=1. We apply Littlewood’s
argument principle [3] to 7 in the rectangle
R={o+it:b<o<c,T<t<2T} where cT are
parameters satisfying ¢ > max{c, +1,b},T >r,. Thus,

LRlogZ(s)ds = —2nij:v(G,R)dG

where the given logarithm is defined as in Littlewood’s
argument principle [3]. To prove our result, however, we
first decompose our auxiliary function by
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L—S)—L =P(S S) for p<
<>[ N j P erpss
s for p>q

Without loss of generality, we may assume that
p,g>1 whenever p<(q since we can always write

J‘mlogz(s)ds :{ "

where the O(T) terms are the integrals of the maxi-
mum contribution from writing /¢ (5) as a sum of loga-
rithms. By our choice of T, both logP and logR
are analytic in R. Hence, Cauchy’s Theorem gives

. log/?,(s)ds+O(T) for p<q
log7(s)ds = Lo tog 1 (8)as+0(T) @
jmlogﬂz(s)ds+O(T) for p>q

To connect this integral with Littlewood’s argument
principle [3], we note that the definition of ¢ guaran-

2ni Y (Br—b)
Tf}RRszT
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R(s) :(P(S)SN )/(Q(S)SN ) for s#0 due to our

choice of the parameters which define the rectangle R .
However, the modification will guarantee in the case of
k=1 that P,Q exhibit polynomial growth, which is
necessary for our proof. In the case of p>q, R
already exhibits polynomial growth, and no such
adjustment is necessary. We now integrate the logarithm
of 7 to get

[ logt (s)+logP(s)ds+O(T) for p<q
[ logt,(s)+logR(s)ds+O(T) for p>q

tees that

—27tiJ-va(0",R)d0=—2ni Z bﬂRdO'

Br>b
T<yp<2T

==2mi Y (B-b).

Pr>b
T<yg<2T

3

In light of (2) and because the quantity given in (3) is
imaginary-valued, we get for k=1,2

= iImchlong (cr+iT)|+iarg£k (O'-i-iT)dO'-i—iJ:T log|€k (C+it)|+iarg£k (c+it)dt

—I:10g|£k (o+2T )|+iarg€k (cr+2iT)d0'—iJ.T2T 10g|!§k (b+it)|+iarg£k (b+it)dtJ+O(T) 4)

:—i“ﬂlong b+it)|dt—szTlog|€k(c+it)|dt—_[bcarg€k(o-+iT)da+_Earg€k(o-+2iT)do-}+O(T)

4
Z X +O( )
for instance.

We now estimate I, , . For T large enough, we have

| (b+|t) 1

for t>T,k=1 (since p,q=>1),

10g|€1(b+it)| :log|P b+it)

Then for T large enough, t>T k=2, we find in a
similar fashion that

log|£2 (b+ it)| =log

L(b+it) |
R(b+it)_‘

<log"|(b+ it)| +log?2.

Since we have the same estimate for k =1,2, we find
that

Open Access

| | b+|t| 1
Q(b+it | | P(b+it | |Q b+it)|

Slog(| (b+|t)|+ )zlog (

(b+|t)|+1)_ (b+|t)|+1og2.
I (T,b)= it)|dt+O(T)
T o1 10g+ (b+|t)
=5L %dHO(T)

T, (1o 2
< log (?L |L(b+it) dtJ+O(T)
where the final bound follows from Jensen’s inequality.
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It is known [2] that for b > max {l —L} ,
27 d,
lim — j IL(b+ |dt—z|a I o(1)
Tow | :
Hence, 1, (T,b)<O(T) uniformly in

b > max l,l—L .
2 d,

We next move to estimate |,, . For sufficiently large
positive real number C, we have

L(c+it) L(c+it)
— (< —<1, (5)
P(c+it) R(c+it)
SO
. L(c+it
10g|f1(c+lt)|ﬁlog 1- PEC+it;
since q=1. Furthermore,
. L(c+it)
1Og|f2 (C+ |t)| = l—m .

Since we may take C large enough so that
|€k (c+ it)| <1, we may write log/, (C+it) using a
Taylor series expansion in the rectangle R . For k=1,
we have after taking real parts that

log|£1 (c+ it)| < R{_; k[P(C1+ it)]k [g igi)j }
R{Z;ZZ a_<”1>'“a<“_k>}

kzlk[P(C+it)]k E (n1"'nk)c+lt

We now observe that for sufficiently large T and some
constant M we have

t T

2T - < _<MT" <1,
it (n,---n)' | [P(c+iT)
for keN and
hmsupk—[i j :i !
k—o0 k n n=1 n®"

for sufficiently large c. In light of these bounds and the
definition of M, we have (6)
where the last equality holds because € could be
sufficiently large. Replacing P by R in the above
computations, we see analogously that |I2’2L: 0(1).
Finally, we estimate 1, and I,,. We show the com-
putation for I, explicitly and note that the bound for
l,, follows analogously. We first suppose that ¢, (o +iT)
has exactly N zeros for b <o <c. Then, there are at
most N +1 subintervals, counting for multiplicities, in
which Re(/, (o+iT)) is of constant sign. Thus,

|arg(€k (0'+iT))|S(N +1)m. @)

It remains to estimate N . To this end, we define

o (z):%(zk (2+1T)+ £, (Z+1T)).

Then
gk(a):%(ék(a+iT)+fk(0+iT)):Re£k(o-+iT),
so that if /¢, (oc+iT)=0 for oe[bc] , then
g(O'):0.

Now let R,=c-b and R’>max{r,R,} , and
choose T large enough so that T >2R' . Then
|Z + |T| >R'>R, for |Z c| <R’, showing that no zeros
or poles of / (Z +iT) are located in |z—c|<R’. Thus,
both ¢, (z+iT) and g,(z) are analytic in
|z—c|< R' Letting fi;, (r) denote the number of zeros
of g(z) in |z—c|<r, wehave

JAZR nck( )d _JAQR an(r)dl’

R dr
> 1, (R j:f*

=1, (R)log2.
r

By Jensen’s formula

J~2R nck( )d Z_J log‘gk C+2R’ Ig)dg 10g|gk |

0 r

and so

A, (R') <

10g|9k (C)|
log2
®)

2n10g2.[ log‘gk C +2R'" )‘dg_
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By (5), log|gk(c)| is bounded. Further, it is clear
from a property of L functions that we have

IL(s)| < Alt|® as t—>o0,as t —on;

for some positive absolute numbers A,B in any vertical
strip of bounded width. The same estimate must hold for
0, (z) as well. Thus, the integral in (8) is O(logT),
implying_that A , (R)=0O(logT) . Since the interval
[b,c]= D(c,R,) = D(c,R’), it follows that

N <A, (R")=0(logT).
With this bound, we integrate (7) to deduce that
|I3’k| < .|.bc|arg£k (o-+it)|do- < I:(N +1)ndo =O(logT).

As previously noted, we may bound 1,, in the same

way. Thus, we attain the desired bounds for j=1,---,4
and k =1,2. Consequently, the first part of the theorem
is proved by using (4).

Proof of (Il). As in the proof of the first part of the
theorem, we conclude that there exists a real number o,
for which the real parts f; of all R -values satisfy
Pr <o, ; and also, there exist B,T'>0 for each
rational function R such that no zeros of
L(s)-R(s)=0 lie in the quarter-plane o <-B,t>T'.
As before, we define the rectangle
R={s=oc+it:b<o<c,T<t<2T} where b,c,T
are parameters satisfying
b<-B-1,c>max{o, +1,b},T >max{r,T'+1}.

Proceeding as in the proof of the first part of the
theorem, we see that

2 Y (ﬁR—b)=—iUT”1og|2(b+it)|dt—j:Tlog|fk(c+it)|dt

T<yg<2T

=Ibcarg£k (0'+iT)d0'+J:arg!ék (0'+2iT)d0'}+O(T)

4

=L+l +0(T)

i=2

for k=12 where ¢, is defined as in (1). In the
equation above, we note that we have chosen to compute
I, separately. Indeed, this is the only estimate that we
will need. For the integrals | j=2,3,4 and

k =1,2, the bounds given as in the proof of the first part

ko2

of the theorem still hold. First, integral 1,, is

Taking logarithms, we get

log|L(5) R (s)

L(s)]

Since, for t>1, we have, uniformly in o,

- ©)
= log|A, (s)|+log|L(1-5)| +log]1- R(S)‘

10g|A,_ (5)| =log

—log (ﬂtadL )it +log

Open Access

(ﬂtadL )5“"" exp(it +MJ(1+OGD

1+0Gj‘ = G—aj(dL 1ogt+1og(,1Q2))+oGj.

unchanged. On the other hand, the integrals I5,,1,,
have changed by our choice of b, but, as we have done
as before, we still have the desired bound since the only
requirement is that we consider L in a vertical strip
of fixed width, which we have in this case.

We now bound I,. Since b<-B, we have by the
functional equation in the definition of L function,

)

L
S AL(s)L(1-3)

[A(s)[L(1-9)

log|A|_ (S)|

= (2Qt )%7“7" exp(itdL +M)[I+OGD’

where u,A4 are two constants. It follows, for s=o+it
as t— oo, that

< (%— ajlog|/1Q2tdL
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We now consider the last term in (9). Since, . i 4T R
The first integral is d, T log—+T log(/lQ ) , and the
e

. log|L b+ |t)| 1
hmsuplo—|t| 27 b |d,, second integral is O(1) for sufficiently large and
e J negative b by the method used to derive (6). Hence,
and noting b <0, we have forany 6>0 and t>T
1 4T )
1 I =|5-b d,Tlog—+T log(2Q) |+O(logT).
L(b+it) |t|(7bjd“§ ¢

With the estimates for the 1, ’s, we have proved the

for sufficiently large T . Then we see the quotient second part of the theorem.

| b+n|‘Rb+n

| b+n|‘(]

when —b is large enough so that
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<)

Therefore, we find that

R(s)

T

Integrating in light of these estimates, we see

log

[ tog|L(b+it)~R(b+it)]dt

:(__b)j (d, logt +log(2Q%) )t

+IT 10g|L(1—b—it)|dt+O(logT).
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