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ABSTRACT 

We prove some value-distribution results for a class of L-functions with rational moving targets. The class contains 
Selberg class, as well as the Riemann-zeta function. 
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1. Introduction 

We define the class  to be the collection of functions  

   1
,s

n
L s a n n




   satisfying Ramanujan hypothesis,  

Analytic continuation and Functional equation. We also 
denote the degree of a function  by L Ld  which 
is a non-negative real number. We refer the reader to 
Chapter six of [1] for a complete definitions. Obviously, 
the class  contains the Selberg class. Also every 
function in the class  is an -function and the 
Riemann-zeta function is in the class. In this paper, we 
prove a value-distribution theorem for the class  
with rational moving targets. The theorem generalizes 
the value-distribution results in Chapter seven of [1] 
from fixed targets to moving targets. 
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Proof of (I). It is known that if , then L
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where 0  is the index of the first non-zero term of the 
sequence of 

k
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, s it   with , t  . Since 

    0R slimL s   , there exists 0 > 0  such that 
   L s s 0R   for 0Re >s   . It follows that 

0<R   for all real part of zeros of the function 
   L s s R . We set      R z P

q
z

,
Q z  where the 

degrees of  are , respectively; and define ,P Q p

     .s s R s   

Thus, there is 1  such that  is analytic in the 
region 

> 1r 
1>s r  since  is a meromorphic function in 

 with the only pole at . We apply Littlewood’s 
argument principle [3] to  in the rectangle 
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  where  are 
parameters satisfying . Thus, 

,c T

0 1b T, > r

   log d 2π , d
b
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where the given logarithm is defined as in Littlewood’s 
argument principle [3]. To prove our result, however, we 
first decompose our auxiliary function by *Corresponding author. 
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Without loss of generality, we may assume that 
 whenever  since we can always write ,p q  p q

       N NR s P s s Q s s  for  due to our 
choice of the parameters which define the rectangle . 
However, the modification will guarantee in the case of 

0s 


1k   that  exhibit polynomial growth, which is 
necessary for our proof. In the case of ,  
already exhibits polynomial growth, and no such 
adjustment is necessary. We now integrate the logarithm 
of  to get 
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where the  terms are the integrals of the maxi- 
mum contribution from writing 

 O T
 s  as a sum of loga- 

rithms. By our choice of T , both  and  
are analytic in Hence, Cauchy’s Theorem gives 

log P log R
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To connect this integral with Littlewood’s argument 
principle [3], we note that the definition of  guaran-  c

tees that 
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In light of (2) and because the quantity given in (3) is 
imaginary-valued, we get for  1,2k 
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We now estimate . For  large enough, we have for  (since ), 1,kI T ,t T k  , 1p q 
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Then for  large enough, , we find in a 

similar fashion that 
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Since we have the same estimate for , we find 
that 
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where the final bound follows from Jensen’s inequality. 
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It is known [2] that for 
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We next move to estimate 2,k . For sufficiently large 
positive real number , we have 
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Since we may take  large enough so that  c
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Taylor series expansion in the rectangle . For 
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We now observe that for sufficiently large T and some 
constant M we have 
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for sufficiently large . In light of these bounds and the 
definition of , we have (6) 
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where the last equality holds because c  could be 
sufficiently large. Replacing  by  in the above 
computations, we see analogously that 

P R
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With the estimates for the ,j kI ’s, we have proved the 
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