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ABSTRACT 

Protein tertiary structure is indispensible in revealing 
the biological functions of proteins. De novo perdition 
of protein tertiary structure is dependent on protein 
fold recognition. This study proposes a novel method 
for prediction of protein fold types which takes pri- 
mary sequence as input. The proposed method, PFP- 
RFSM, employs a random forest classifier and a com- 
prehensive feature representation, including both se- 
quence and predicted structure descriptors. Particu- 
larly, we propose a method for generation of features 
based on sequence motifs and those features are 
firstly employed in protein fold prediction. PFP- 
RFSM and ten representative protein fold predictors 
are validated in a benchmark dataset consisting of 27 
fold types. Experiments demonstrate that PFP-RFSM 
outperforms all existing protein fold predictors and 
improves the success rates by 2% - 14%. The results 
suggest sequence motifs are effective in classification 
and analysis of protein sequences. 
 
Keywords: Protein Fold; Structure Analysis; Random 
Forest; Sequence Motifs 

1. INTRODUCTION 

Protein structures are indispensable for revealing the re- 
gularities associated with protein functions, interactions 
and cell cycle [1-3]. In addition to biological context, 
protein structures are frequently used in simulation of 
protein structures that are unsolved experimentally. The 
information about protein structure is crucially important 
for structure-based drug development as elaborated in a 
comprehensive review [4]. Due to the difficulties in pro-  

tein extraction, purification, and crystallization, the amount 
of known protein structures is negligible when com- 
pared to the amount of solved protein sequences. As of 
May 2013, the Protein Data Bank [5] includes 83,695 
protein structures while RefSeq database [6] includes 
31,593,499 non-redundant protein sequences. The struc- 
tures of 31,509,804 protein sequences are not experi- 
mentally solved and need to be studied through computa- 
tional methods. The wide and enlarging gap between 
known protein sequences and known protein structures 
with annotated biological functions motivates the devel- 
opment of in-silico methods for protein sequence analy- 
sis, protein tertiary structure prediction, and protein func- 
tion annotation. In-silico study of protein structures can 
be categorized into two classes: template-based methods 
and de novo methods. The template-based method, in 
essence, is an algorithm that identifies templates, i.e., 
solved protein structures, for a query protein sequence. 
Both homology modeling [7] and threading [8] belong to 
template-based methods, and are successful in protein 
tertiary structure prediction. The difference is that ho- 
mology modeling identifies templates that are tightly 
associated with query sequence while threading is capa- 
ble of recognizing templates that are remotely related to 
query sequence. The de novo methods are focused on 
classification of protein structures. Currently, protein 
structure classification is largely manually implemented. 
Two hierarchical protein structure classification systems, 
the SCOP (structural classification of proteins) database 
[9] and CATH Protein Structure Classification databases 
[10], were established during the last two decades. How- 
ever, SCOP and CATH only provide a classification of 
protein domains with known structures and cannot make 
a classification for proteins that lack tertiary structures. 
The first level of the hierarchy of SCOP and CATH is  *Corresponding author. 
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defined as a protein structural class, which can be furtherly 
categorized into a number of folds. Protein folds are the 
second level of the hierarchy and they are the classifica- 
tion targets in our study. A number of algorithms were 
proposed in detection of structural similarity for se- 
quences that have low sequence similarity [11,12]. In 
general, prediction of protein fold type for a protein se- 
quence is typically processed in two steps: firstly, protein 
sequences are converted into the same feature space, in 
other words, each sequence is represented by the same 
number of features; secondly, build a computational 
model that takes the features as inputs and predicts the 
protein fold types. 

Historically, the first model for prediction of protein 
folds was proposed by Ding and colleagues [13]. They 
represent the protein sequence by a number of sequence 
and structural descriptors, i.e., composition vector, sec- 
ondary structure information and so on. The authors im- 
plemented two machine learning algorithms, including 
neural networks and support vector machine, for classi- 
fication. Several other methods were proposed subse- 
quently [14-21], and these methods implemented more 
sophisticated classification architectures while employ- 
ing similar sequence representation as in Ding’s study 
[13]. In a study proposed by Chen and Kurgan, the pre- 
dicted secondary structure was first used in generation of 
feature space and it provided higher success rates in rec- 
ognition of protein folds [22]. 

In this study, we aim at the development of novel fold 
classification method that improves on known fold rec- 
ognition method. The proposed method utilizes random 
forest classifier [23] and employs an extensive set of 
features, which incorporating sequence-based features, 
i.e., the composition vectors, predicted structure de-
scriptors, i.e., the secondary structure information and 
features based on BLAST. We also designed a method 
for calculating features based on sequence motifs, which 
is for the first time utilized in protein fold classification. 
According to a recent comprehensive review [24] dem-
onstrated by a series of recent publications [25-29], to es- 
tablish a really useful statistical predictor for a protein 
system, we need to consider the following procedures: 1) 
construct or select a valid benchmark dataset to train and 
test the predictor; 2) formulate the protein samples with 
an effective mathematical expression that can truly re- 
flect their intrinsic correlation with the attribute to be 
predicted; 3) introduce or develop a powerful algorithm 
(or engine) to operate the prediction; 4) properly perform 
cross-validation tests to objectively evaluate the antici- 
pated accuracy of the predictor; 5) establish a user- 
friendly web-server for the predictor that is accessible to 
the public. Below, let us describe how to deal with these 
steps. 

2. MATERIALS AND METHODS 

2.1. Datasets 

Similar to existing fold classification methods, the pro- 
posed method is designed on a training dataset with 313 
domains and validated on a test set with 385 domains. 
Both training and test sets were created by Ding and 
Dubchak [13]. The sequence identity for any pair of se- 
quences in the training set is less than 35%. The se- 
quence in test set also share less than 35% sequence 
identity with the sequences in the training set. According 
to the SCOP database [32], these domains can be classi- 
fied into 27 fold types: (1) globin-like, (2) cytochrome c, 
(3) DNA-binding3-helical bundle, (4) 4-helical up-and- 
down bundle, (9) 4-helical-cytokines, (11) EF-hand, (20) 
immunoglobulin-like, (23) cupredoxins, (26) viral coat 
and capsid proteins, (30) conA-like lectin/glucanases, 
(31) SH3-like barrel, (32) OB-fold, (33) beta-trefoil, (35) 
trypsin-like serine proteases, (39) lipocalins, (46) (TIM)- 
barrel, (47) FAD (also NAD)-binding motif, (48) fla- 
vodoxin-like, (51) NAD(P)-binding Rossmann-fold, (54) 
P-loop, (57) thioredoxin-like, (59) ribonuclease H-like 
motif, (62) hydrolases, (69) periplasmic binding protein- 
like, (72) b-grasp, (87) ferredoxin-like and (110) small 
inhibitors, toxins and lectins. Of the above 27 fold types, 
folds 1 - 11 belong to all α structural class, folds 20 - 39 
to all β class, folds 46 - 69 to α/β class and folds 72 - 87 
to α + β class. 

2.2. Feature-Based Representation 

This study utilizes both sequence and predicted structure 
descriptors as inputs. The sequence representation in- 
cludes a comprehensive list of features that was previ- 
ously used for prediction of protein structural class [11, 
33,34], protein fold types [17] and protein folding rates 
[35], and protein sub-cellular locations [36]. As sug- 
gested by Chou, the feature vector of protein sequences 
can be seen as a general form of pseudo amino acid 
composition [37], which can be formulated as 

 1 2 u    T
P               (1) 

where T is a transpose operator, the components 1 , 

2 , … depend on how to extract the desired information 
from the statistical samples, while Ω is an integer stand- 
ing for the dimension of the feature vector P. In our 
study, we generate 7 sets of features, including composi- 
tion vector of amino acids, secondary structure contents, 
predicted relative solvent accessibility, predicted dihe- 
dral angles, features based on the PSSM matrix, features 
based on nearest neighbour sequences and features based 
on sequence motifs, which are denoted by 1 , 2 , … 

7  respectively. The definitions of the 7 sets of features 
are given as below: 
– Composition Vector of Amino Acids is calculated di- 
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rectly from primary sequence. The composition vec- 
tor contains 20 values and each value stands for the 
percentage of a certain amino acid in a given se- 
quence [38-40]. 
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– Secondary Structure Contents are generated by 
PSIPRED [30]. The PSIPRED program generates the 
3-states secondary structures for each residue of the 
sequence. Subsequently, we calculate the contents of 
the 3 secondary structure states, which is similar to 
the calculation of composition vectors.  

– Predicted Relative Solvent Accessibility is generated 
by Real-SPINE3 [31]. We use the real values, which 
quantify the fraction of the surface area of a given 
residue that is accessible to the solvent, for the resi- 
dues in the window. The average of the relative sol- 
vent accessibility of each residue is utilized to stand 
for the relative solvent accessibility of a sequence. 

– Predicted Dihedral Angles are generated by Real- 
SPINE3 [31]. We utilize two real values, which rep- 
resent phi (involving the backbone atoms C’-N-Cα-C’) 
and psi (involving the backbone atoms N-Cα-C’-N) 
angles. Similarly, the phi and psi angles are averaged 
for the entire sequence. 

– Features Based on the PSSM Matrix are generated by 
PSI-Blast [32]. The PSI-Blast provides two position 
specific scoring matrices; one contains conservation 
scores of a given AA at a given position in a sequence 
and the other provides probability of occurrence of a 
given AA at given position in the sequence. The ma- 
trix values are aggregated either horizontally or ver- 
tically to obtain a fixed length feature vector. The de- 
tails of calculation of this set of features were given 
in [46]. 

– Features Based on Nearest Neighbor Sequences are 
generated by Blast [32]. For a test sequence, Blast 
firstly identifies a number of neighbor sequences, 
meaning that these sequences have the lowest p-val- 
ues when performing pairwise alignment to the test 
sequence. In other words, the identified neighboring 
sequences have higher probability to be homologous 
to the test sequence. For each test sequence, the top 5 
neighboring sequences in the training set are identi- 
fied and a vector of n values are utilized to represent 
each neighboring sequence, where n stands for the 
number of fold types, i.e., n = 27 in this article. If the 
neighboring sequence belongs to fold type i, then the 
ith value of the vector is assigned with the p-value and 
the remaining values are set to 0. Totally, this set of  

features includes 27 * 5 = 135 features. 
– Features Based on Sequence Motifs are generated by 

GLAM2 program [41]. Generation of sequence mo- 
tifs includes 2 steps and is performed in the training 
set. Firstly, training set is divided into 27 subsets 
based on the fold types, meaning that sequences in 
the same subset belong to the same fold type. For 
each subset, we perform GLAM2 program and iden- 
tify three sequence motifs with lowest p-values. 
Therefore, we totally generate 27 * 3 = 81 motifs. 
Secondly, we calculate the similarity between a test 
sequence and the 81 motifs. We use the 81 similarity 
scores as input features for classification. 

2.3. Random Forest Classifier 

We validate the predictive quality of 6 representative 
classifiers, including random forest [23], support vector 
machine (SVM) [42], kstar algorithm [43], nearest neigh- 
bour (IB1) [44], Naïve Bayes [45] and multiple logistic 
regression. The random forest classifier is employed by 
PFP-RFSM as it outperforms the remaining classifiers 
and the detailed results are given in the following sec- 
tion.  

Random forest is an ensemble learning method that 
generates a multitude of decision trees. The method in- 
cludes 2 parameters, i.e., the number of selected features, 
denoted by n, and number of constructed trees, denoted 
by k. The method generally includes 4 steps. Firstly, we 
randomly select n features from the full feature set. Sec- 
ondly, we perform the bagging algorithm on the training 
set and generate a training set with re-sampled instances. 
Thirdly, employ a decision tree algorithm on the re- 
sampled training set and the randomly selected feature 
space, and build a decision tree, which serves as base 
classifier in Step 4. Repeat Steps 1, 2 and 3 for k times 
and generate k decision trees. Lastly, summarize the k 
decision trees and generate final predictions. The archi- 
tecture of random forest algorithm is given in Figure 1. 

2.4. Evaluation Criteria 

The assessment of the predicted results was reported 
using several measures including success rate and Mat- 
thews’s correlation coefficient (MCC) for each class. 
The two measures are frequently used in previous studies 
on protein fold prediction [13-16,20,21]. In this study, 
we utilize the same measures for evaluation and they are 
defined in Equations (2) and (3). 

 

Number of correctly predicted instances in fold type 
Success rate

Number of instances in fold type 

k

k
                 (2) 

     
MCC

TP TN FP FN

TP FN TP FP TN FP TN FN

  


   
                        (3) 
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Figure 1. Architecture of random forest classifier. Random forest generally includes 4 steps. 
Firstly, we randomly select n features from the full feature set. Secondly, we perform the 
bagging algorithm on the training set and generate a training set with re-sampled instances. 
Thirdly, employ a decision tree algorithm on the re-sampled training set and the randomly 
selected feature space, and build a decision tree, which serves as base classifier in Step 4. 
Repeat Steps 1, 2 and 3 for k times and generate k decision trees. Lastly, summarize the k 
decision trees and generate final predictions. 

 
where TP, TN, FP and FN stand for true positives, true 
negatives, false positives and false negatives respec- 
tively. 

3. RESULTS AND DISCUSSION 

3.1. Comparison between Random Forest and 
Other Machine Learning Classifiers 

We first validate the performance of the random forest 
classifier, meaning that random forest classifier is com- 
pared with a variety of machine learning classifiers, in- 
cluding support vector machine (SVM), Kstar algorithm, 
Nearest Neighbour (IB1), Naïve Bayes and Multiple Lo- 
gistic Regression on the same feature representation. 

The success rates and MCC of the 6 representative 
classifiers are shown in Tables 1 and 2 respectively. 
Random Forest (with 300 trees and 60 features) gives the 
highest success rate, i.e. 73.7%, among the six classifiers, 

whereas, the runner up classifier, Naïve Bayes achieves 
an average success rate of 71.4% over the 27 folds. We 
note that the success rates of the remaining classifiers are 
all below 70%. Similar trend is observed for MCC, see 
Table 2. Random forest achieves the highest MCC, i.e., 
0.746, followed by the Naïve Bayes classifier, which 
outperforms the remaining 4 classifiers. Among the 27 
folds, random forest achieves the highest success rate in 
16 folds and the highest MCC for 15 folds. Overall, ran- 
dom forest classifier is more accurate in prediction of 
protein folds than the remaining classification method. 

3.2. Comparison with Competing Methods 

To demonstrate the performance of PFP-RFSM, evalua- 
tion was performed on the same benchmark dataset 
which was employed by existing methods [13-17,22]. 
PFP-RFSM is compared with 10 representative protein    
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Table 1. Success rates of random forest and other 5 machine learning classifiers. The best results for each fold are shown in bold. 

Individual classifiers 
Folds 

SVM Kstar Random forest IB1 Navie Bayes Logistic Regression 

1 96.30 92.59 96.30 92.59 96.30 88.89 

3 83.33 100.00 100.00 100.00 83.33 83.33 

4 100.00 100.00 100.00 100.00 100.00 100.00 

7 75.00 80.00 85.00 70.00 65.00 75.00 

9 50.00 50.00 75.00 87.50 50.00 37.50 

11 44.44 66.67 55.56 55.56 88.89 0.00 

20 55.56 66.67 77.78 66.67 55.56 33.33 

23 75.00 72.73 77.27 70.45 75.00 72.73 

26 0.00 8.33 33.33 16.67 50.00 25.00 

30 69.23 61.54 92.31 69.23 76.92 76.92 

31 100.00 66.67 100.00 66.67 100.00 100.00 

32 75.00 50.00 75.00 75.00 62.50 50.00 

33 68.42 42.11 63.16 52.63 52.63 36.84 

35 50.00 75.00 100.00 75.00 100.00 25.00 

39 50.00 75.00 100.00 50.00 75.00 75.00 

46 100.00 100.00 100.00 100.00 100.00 100.00 

47 66.67 62.50 66.67 68.75 56.25 66.67 

48 75.00 75.00 83.33 58.33 91.67 75.00 

51 30.77 61.54 69.23 15.38 53.85 15.38 

54 66.67 62.96 70.37 40.74 77.78 74.07 

57 50.00 33.33 41.67 41.67 41.67 58.33 

59 37.50 37.50 37.50 25.00 37.50 25.00 

62 50.00 33.33 66.67 16.67 58.33 41.67 

69 85.71 85.71 85.71 57.14 85.71 85.71 

72 0.00 25.00 25.00 50.00 75.00 25.00 

87 50.00 62.50 50.00 50.00 62.50 12.50 

110 66.67 59.26 62.96 40.74 55.56 55.56 

Overall 61.90 63.18 73.70 59.72 71.37 56.09 

 
fold predictors, including support vector machine (SVM) 
[13], hyperplane distance nearest neighbor (HKNN) al- 
gorithm [14], discretized interpretable multilayer percep- 
trons (DIMLP) [15], specialized ensemble (SE) [16], 
PFP-Pred [17], PFRES [22], adaptive local hyperplane 
classifier [18], PFP-FunDSeqE [20] and MarFold [19]. 
The overall success rate and the success rates in each 
fold are given in Table 3. The PFP-RFSM predictor 
achieves an overall success rate of 73.7% for the 27 folds, 

which is 2% - 17.7% higher than the existing predictors. 
Among the 27 folds, PFP-RFSM achieves the highest 
success rate in 12 folds, while the runner up methods, 
PFP-FunDSeqE and MarFold obtain the highest success 
rate in 10 and 8 folds respectively. 

In the literature, MCC index is only calculated in PFP- 
FunDSeqE method [19]. Therefore, the PFP-RFSM 
method can only be compared with PFP-FunDSeqE for 
the MCC index. Table 4 lists the MCC values for the 27     
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Table 2. Matthews’s correlation coefficients (MCC) calculated for random forest and other 5 machine learning classifiers. 

Individual classifiers 
Folds 

SVM Kstar Random forest IB1 Navie Bayes Logistic Regression 

1 89.06 73.97 97.99 95.96 97.99 93.89 

3 76.76 100.00 92.46 86.37 63.86 91.17 

4 100.00 90.21 94.74 100.00 86.25 100.00 

7 55.53 61.88 66.19 57.72 71.36 54.57 

9 52.53 56.97 66.31 70.73 36.07 42.26 

11 66.23 81.32 74.14 74.14 83.93 0.00 

20 58.00 81.32 77.24 70.05 58.00 57.28 

23 68.88 66.38 72.33 65.68 69.81 67.29 

26 0.00 28.45 57.12 27.64 56.57 49.40 

30 71.12 77.92 95.95 65.50 70.54 76.11 

31 62.49 44.08 67.30 46.01 67.30 64.77 

32 70.05 39.29 66.31 63.08 61.70 45.94 

33 53.63 44.98 53.63 50.16 51.74 38.78 

35 70.52 86.49 100.00 74.74 75.29 49.80 

39 70.52 86.49 100.00 70.52 86.49 86.49 

46 100.00 93.42 100.00 83.33 100.00 93.42 

47 58.67 57.95 67.48 49.44 60.77 58.67 

48 86.25 81.64 91.04 75.87 87.67 77.67 

51 48.65 60.19 65.50 17.43 52.22 20.86 

54 80.64 69.54 82.96 54.42 83.20 80.87 

57 53.45 32.80 49.77 31.41 49.77 34.51 

59 60.83 36.17 60.83 30.49 42.26 40.12 

62 39.79 31.18 42.81 15.85 45.58 27.00 

69 79.79 71.11 92.46 61.07 71.11 62.03 

72 0.00 49.80 49.80 70.52 86.49 49.80 

87 70.34 66.16 70.34 48.93 54.86 24.27 

110 54.04 56.17 58.88 43.97 60.57 51.04 

Overall 62.88 63.92 74.58 59.30 67.83 56.96 

 
fold types. The average MCC values of PFP-RFSM and 
PFP-FunDSeqE over the 27 folds are 0.75 and 0.7 re- 
spectively. We note that PFP-RFSM achieves higher 
MCC values than PFP-FunDSeqE for 18 fold types while 
PFP-FunDSeqE obtains higher MCC values in the re- 
maining 9 folds. Overall, PFP-RFSM generates better 
predictions than PFP-FunDSeqE for majority of the fold 
types. 

4. CONCLUSION 

This study proposes a novel method, PFP-RFSM, that 

takes primary sequence as input and aims at the predic-
tion of protein fold types. The PFP-RFSM method em-
ploys random forest classifier and a comprehensive fea-
ture representation. In particular, the features based on 
sequence motifs are firstly proposed in protein sequence 
classification whereas the random forest classifier is 
firstly utilized for protein fold prediction. PFP-RFSM is 
compared with 10 representative methods on a bench-
mark dataset consisting of 27 folds. Extensive experi-
ments demonstrate that PFP-RFSM outperforms all known 
methods which are predictions by PFP-RFSM and are    
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Table 3. Comparison between PFP-RFSM and 10 representative protein fold predictors on success rates. 

Folds Fold classification methods (%) 

 SVM[12] HKNN[13] DIMLP[14] SE[15] PFP[16] PFRES[20] ALH[17] ALHK[18] MarFold[18] PFP-FunDSeqE[19] PFP-RFSM 

Globin-like 83.3 83.3 85 83.3 83.3 100 83.3 83.3 83.3 100 96.3 

Cytochrome c 77.8 77.8 97.8 88.9 55.6 100 100 100 100 88.9 100 

DNA-binding  
3-helical bundle 

35 50 66 70 85 60 45 50 70 60 100 

4-helical  
up-and-down bundle 

50 87.5 41.3 50 75 75 62.5 87.5 87.5 87.5 85 

4-helical cytokines 100 88.9 91.1 100 100 88.9 100 77.8 100 77.8 75 

EF-hand 66.7 44.4 22.2 33.3 33.3 66.7 55.6 55.6 55.6 66.7 55.6 

Immunoglobulin-like 71.6 56.8 75.7 79.6 70.5 81.8 90.9 75 95.5 77.3 77.8 

Cupredoxins 16.7 25 40 25 16.7 33.3 33.3 50 25 75 77.3 

Viral coat and  
capsid proteins 

50 84.6 80.8 69.2 100 92.3 69.2 61.5 76.9 92.3 33.3 

ConA-like  
lectin/glucanases 

33.3 50 46.7 33.3 33.3 66.7 50 50 50 66.7 92.3 

SH3-like barrel 50 50 75 62.5 37.5 62.5 75 75 75 37.5 100 

OB-fold 26.3 42.1 22.6 36.8 15.8 52.6 36.8 42.1 36.8 42.1 75 

Beta-trefoil 50 50 45 50 75 75 75 75 75 100 63.2 

Trypsin-like  
serine proteases 

25 50 50 25 50 50 50 50 50 75 100 

Lipocalins 57.1 42.9 74.3 28.6 71.4 100 71.4 57.1 71.4 100 100 

(TIM)-barrel 77.1 79.2 83.8 87.5 97.9 68.8 72.9 45.8 87.5 72.9 100 

FAD(also  
NAD)-binding motif 

58.3 58.3 55 58.3 66.7 91.7 66.7 75 83.3 91.7 66.7 

Flavodoxin-like 48.7 53.9 52.3 61.5 15.4 46.2 46.2 53.8 61.5 61.5 83.3 

NAD(P)-binding  
Rossmann-fold 

61.1 40.7 39.3 37 44.4 66.7 51.9 48.1 55.6 66.7 69.2 

P-loop 36.1 33.3 41.7 50 33.3 33.3 41.7 58.3 50 50 70.4 

Thioredoxin-like 50 37.5 46.3 50 62.5 50 50 62.5 75 87.5 41.7 

Ribonuclease  
H-like motif 

35.7 71.4 55 64.3 66.7 66.7 57.1 57.1 64.3 75 37.5 

Hydrolases 71.4 71.4 44.3 71.4 57.1 57.1 57.1 57.1 71.4 71.4 66.7 

Periplasmic binding  
protein-like 

25 25 25 25 50 50 25 50 25 100 85.7 

b-grasp 12.5 25 23.8 25 37.5 25 25 25 25 25 25 

Ferredoxin-like 37 25.9 41.1 33.3 29.6 51.9 63 59.3 55.6 33.3 50 

Small inhibitors,  
toxins, lectins 

83.3 85.2 100 85.2 96.3 96.3 100 100 100 96.3 63 

Overall 56 57.1 61.1 61.1 62.1 68.4 65.5 61.8 71.7 70.5 73.7 

 
complementary to predictions generated by existing me- 
thods. Since user-friendly and publicly accessible web- 
servers represent the future direction for developing prac- 

tically more useful models, simulated methods, or predic-
tors [47,48], we shall make efforts in our future work to pro- 
vide a web-server for the method presented in this paper. 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



J. F. Li et al. / J. Biomedical Science and Engineering 6 (2013) 1161-1170 1168 

Table 4. Comparison between PFP-RFSM and PFP-FunDSeqE 
on Matthews’s correlation coefficients (MCC). 

Folds PFP-RFSM PFP-FunDSeqE

Globin-like 0.98 0.81 

Cytochrome c 0.92 0.89 

DNA-binding 3-helical bundle 0.95 0.58 

4-helical up-and-down bundle 0.66 0.87 

4-helical cytokines 0.66 0.54 

EF-hand 0.74 0.47 

Immunoglobulin-like 0.77 0.75 

Cupredoxins 0.72 0.82 

Viral coat and capsid proteins 0.57 0.81 

ConA-like lectin/glucanases 0.96 0.66 

SH3-like barrel 0.67 0.52 

OB-fold 0.66 0.52 

Beta-trefoil 0.54 1.00 

Trypsin-like serine proteases 1.00 0.67 

Lipocalins 1.00 0.88 

(TIM)-barrel 1.00 0.66 

FAD(also NAD)-binding motif 0.67 0.65 

Flavodoxin-like 0.91 0.63 

NAD(P)-binding Rossmann-fold 0.66 0.74 

P-loop 0.83 0.60 

Thioredoxin-like 0.50 0.82 

Ribonuclease H-like motif 0.61 0.69 

Hydrolases 0.43 0.84 

Periplasmic binding protein-like 0.92 0.70 

b-grasp 0.50 0.32 

Ferredoxin-like 0.70 0.45 

Small inhibitors, toxins, lectins 0.59 0.98 

Average 0.75 0.70 
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