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ABSTRACT 

This paper presents theoretical investigation on 
explanation of the mass defect estimating a new 
value for the proton mass inside the nucleus in 
the presence of the gravitational potential, the 
work has been done by using a new theory 
called the generalized special relativity (GSR). 
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1. INTRODUCTION 

The simplest nucleus, that of hydrogen, is a single 
proton, an elementary particle of mass about 940 MeV, 
carrying positive charge exactly opposite to the electron’s 
charge, having a spin of one half and being a fermion (so 
no two protons can be in the same quantum state). 

The next simplest nucleus, called the deuteron, is a 
bound state of a proton and a neutron. The neutron, like 
the proton, is a spin one-half fermion, but it has no elec-
tric charge, and is slightly heavier (by 1.3 MeV) than the 
proton. The binding energy of the deuteron (analogous 
to the 13.6 MeV for the Hydrogen atom) is 2.2 MeV. A 
photon of this energy could “ionize” the deuteron into a 
separated proton and neutron. However, it is not neces-
sary to actually do this experiment to establish how 
tightly the deuteron is bound. One need only weigh the 
deuteron accurately. It has a mass of 1875.61 MeV. The 
proton has a mass of 938.27 MeV, the neutron 939.56 
MeV, so together (but some distance apart!) they have a 
mass of 1877.93 MeV, 2.2 MeV more than the deuteron. 
Thus, when a proton and a neutron come together to 
form a deuteron, they must unload 2.2 MeV of energy, 
which they do by emitting a photon (called a γ-ray at 
these energies [1]. 

Both protons and neutrons, being fermions, obey the 
exclusion principle, two protons with spin up cannot be 
in the same state, although two with opposite spin direc-
tions could, and a proton and a neutron can occupy the 
same spot at the same time [2]. 

Protons and neutrons are referred to as nucleons. The 
total number of nucleons in a nucleus is usually denoted 
by A, where A = Z + N, Z protons and N neutrons. The 
chemical properties of an atom are determined by the 
number of electrons, the same as the number of protons 
Z. This is called the atomic number. Nuclei can have the 
same atomic number, but different numbers of neutrons. 
These nuclei are called isotopes, the Greek for “same 
place”, since they are in the same place in the periodic 
table [3]. 

These nucleons attract each other with a short range 
but very strong force, called the nuclear force. The situa-
tion here is different from that for electrons in the atom, 
where the strong central force tends to dominate. In the 
nucleus the nucleons are attracted mainly by their im-
mediate neighbors. Nevertheless, it is a useful beginning 
to think of this attractive force as being a potential well, 
as seen by an individual nucleon, and think in terms of 
the nuclei as filling the lowest available quantum states 
in this well, just as we did for electrons in the atom. We 
find, for example, that the Helium nucleus, 2p + 2n, is 
tightly bound—the four nucleons can all occupy the 
lowest state in the well. However, some larger nuclei, 
like C, O, Fe are actually a little more tightly bound even 
than He (about 8.5 MeV per nucleon as opposed to about 
7.5 for He) because each nucleon is attracted to its close 
partners, and there are more close partners in these larger 
nuclei. It has also been argued that some of these higher 
nuclei strongly resemble bound states of α - particles. 
The total binding energy (usually expressed per nucleon)  
of any nucleus is easy to find—just as for the deuteron 
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above, the mass of the nucleus is found accurately, and 
subtracted from the sum of the masses of the separate 
nucleons [4]. 

2. GENERLIZED SPECIAL RELATIVITY 
(GSR) THEORY  

The Generalized Special Relativity theory is a new 
form of the special relativity theory that adopts the 
gravitational potential, and it gives the formula of rela-
tive mass to be as follows [5]: 

00 0

2

00 2

v

g m
m

g
c





              (1) 

where 00 2

2
1g

c


  , and   denotes the gravita-

tional potential, or the field in which the mass is meas-
ured. 

The derivation of the mass Eq.1 using the generalized 
special relativity (GSR) can be find as follows: 

In the special relativity (SR), the time, length, and 
mass can be obtained in any moving frame by either 
multiplying or dividing their values in the rest frame by 
a factor  . 

2

2

v
1

c
                  (2) 

To see how gravity affect these quantities it is a con-
venient to re-express   in terms of the proper time [2]. 

2 2c d g dx dx 
              (3) 

Which is a common language to both special relativity 
SR, and general relativity (GR). We know that in SR 
Eq.3 reduces to [4]. 

2 2 2 2 0, .i ic d c dt dx dx x c t           (4) 

2

2 2

1 v
1 . . 1

i id dx dx

dt dt dtc c

            (5) 

Thus we can easily generalize   to include the effect 
of gravitation by using Eq.3 and by adopting the weak 
field approximation where [4]. 
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When the effect of motion only is considered, the ex-

pression for time in SR take the form [2]. 
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where the subscript 0 stands for the quantity measured in 
the rest frame. While if gravity only affect time, its ex-
pression is given by [4]. 
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In view of Eqs.8-9 and 7 the expression 
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can be generalized to recognize the effect of motion as 
well as gravity on time, to get 
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The same result can be obtained for the volume where 
the effect of motion and gravity respectively reads [2]. 
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The generalization can be done by utilizing (7) to find 
that 
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To generalize the concept of mass to include the effect 
of gravitation we use the expression for the Hamiltonian 
in general relativity, i.e. [6]. 
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Using Eqs.14 and 15 yields 
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Which is the expression of mass in the presence of 
gravitational potential and it name the (GSR) theory. 

In view of Eq.1, and when we substitute the value of 

00g , then the relative mass according to (GSR) is find to 
be 
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When the field is weak in the sense that 
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And when the speed v is very low such that 
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Eq.8 reduces to 
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Using the identity  1 1 . 1nx n x for x     
one can also gets: 
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And, when the field is so strong such that 
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Then Eq.18 reduces to 
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3. RESULTS AND DISCUSSION 

The decrease in the nucleon mass inside the nucleus is 
assumed to result from the fact that part of these masses 
is consumed to bind nucleons together. The mechanism 
by which these masses are converted to binding energy 
is not clear. One tries here to explain the mass decrease 
in terms of (GSR). To do this one can use the expression 
of the mass in Eq.24 to get: 
where p  denotes the proton nuclear force, which can 
be calculated using the nuclear potential V = 2.818 × 
10-14 joules. 
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where the subscript p stands for the proton. Substitute of 

p in Eq.24 yields: 
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This nucleon (proton) mass value is smaller than the 
value of the free proton 

1.0078 .pm amu               (27) 

Also the binding energy (BE) per nucleon can be cal-
culated using the new value of the nucleon mass as fol-
low: 

1 2 1.0078 1.005 0.0022p p pm m m amu       (28) 

where mp1 stands for the proton mass, and mp2 for the 
proton mass value using the (GSR). 
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The Deuterium consists of one proton and one neutron. 
The mass of the Deuterium is: 

 2
1 2.0141D DM M H u           (30) 

Since the mass of the free neutron is: 

1.0087nm a mu               (31) 

Thus the mass of the proton inside the 2
1H  nucleus 

is: 

1.0054p D nm M m             (32) 

The proton mass defer it thus given by: 
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4. CONCLUSIONS 

The proton mass value found by Eq.27 using the 
(GSR) theory, is approximately the same to that calcu-
lated in Eq.33 as a difference between the deuteron mass 
MD (

2
1H ) and the neutron mass mp. The error percentage 

is found to be not more than 0.2%, which shows the ac-
curacy in the calculations of the (GSR) theory. Adopting 
of the gravitational potential in this work presents two 
important results, these are, a new value for the proton 
(nucleon) mass inside the nucleus and the decrease in the 
proton mass value explains the increase in the calculated 
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nucleus mass value (the mass defect). 
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