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ABSTRACT 

The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compres- 
sion, computer algebra and speech encoding can be formulated as a low rank approximation problem with Sylvester 
matrix. This paper demonstrates a method based on structured total least norm (STLN) algorithm for matrices with 
Sylvester structure. We demonstrate the algorithm to compute an approximate GCD. Both the theoretical analysis and 
the computational results show that the method is feasible. 
 
Keywords: Sylvester Matrix; Approximate Greatest Common Divisor; Low Rank Approximation; Structured Total 

Least Norm; Numerical Method 

1. Introduction 

Let  deg

In this paper, we consider the following problem. Let 
 1 ,f x   2 ,f x   ,      \ 0tf x C x , namely f x  be the degree of  f x  and  C x  

be the set of univariate polynomials. 
2

A  stands for 
the spectral norm of the matrix A .  and nC m nC   are 
the vector spaces of complex  vectors and n m n  
matrices, respectively. Transpose matrices and vectors 
are denoted by TA  and .  denotes the 
greatest common divisor for the polynomials 

Tu  , gGCD f
f  and 

g . We use  to stand for the rank of matrix Arank
A . 

 1 1 ,n n
1n n

1 0f x a x a x a x a      

  1
( 1) 1 0 , 2, ,p p

i ip i p i i .f x b x b x b x b i t
        

Problem 1.1. Set  be a positive integer with k
 min ,k n p . We wish to compute  1 ,f x   2 ,f x  

 ,       ,\ 0C xtf x   such that  

     1deg , deg , 2 ,if x n f x p i t       

 

             1 1 2 2deg , , , ,t tGCD f x f x f x f x f x f x k        

 
and 

     2 2

1 22 2 t

2

2
f x f x f x       

is minimized. 
The problem of computing approximate GCD of 

several polynomials is widely applied in speech encoding 
and filter design [1], computer algebra [2] and signal pro- 
cessing [3] and has been studied in [4-7] in recent years. 

Several methods to the problem have been presented. 
The generally-used computational method is based on the 
truncated singular decomposition(TSVD) [8] which may 
not be appropriate when a matrix has a special structure 
since they do not preserve the special structure (for 
example, Sylvester matrix). Another common method ba- 
sed on QR decomposition [9,10] may suffer from loss of 
accuracy when it is applied to ill-conditioned problems 
and the algorithm derived in [11] can produce a more ac- 
curate result for ill-conditioned problems. Cadzow algo- 
rithm [12] is also a popular method to solve this problem 
which has been rediscovered in the literature [13]. 
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Somehow it only finds a structured low rank matrix that 
is nearby a given target matrix but certainly is not the 
closet even in the local sense. Another method is based 
on alternating projection algorithm [14]. Although the 
algorithm can be applied to any low rank and any linear 
structure, the speed may be very slow. Some other me- 
thods have been proposed such as the ERES method [15], 
STLS method [16] and the matrix pencil method [17]. 
An approach to be described is called Structured Total 
Least Norm (STLN) which has been described for Han- 
kel structure low rank approximation [18,19] and Sylves- 
ter structure low rank approximation with two polyno- 
mials [20]. STLN is a problem formulation for obtaining 
an approximate solution  
 A E X B H    to an overdetermined linear system 
AX B  preserving the given structure in A  or 
 A B . 

In this paper, we apply the algorithm to compute the 
structured preserving rank reduction of Sylvester matrix. 
We introduce some notations and discuss the relationship 

between the GCD problems and low rank approximation 
of Sylvester matrices in Section 2. Based on STLN me- 
thod, we describe the algorithm to solve Problem 1.1 in 
Section 3. In Section 4, we use some examples to illus- 
trate the method is feasible. 

2. Main Results 

First of all, we shall prove that Problem 1.1 always has a 
solution. 

Theorem 2.1. Suppose that 1,f  2 ,f   t, f , 
 1deg ,f   2deg ,f   , deg t f  and  are defined 

as those in Problem 1.1. There exist 
k

1f̂ ,  îf C x  
with  1

ˆdeg f n ,  i
ˆdeg f p  and  

  f̂ 1 2 t
ˆ ˆ, , ,f f deg GCD k  such that for all  1f , 

 if C x  w i t h   1deg f n ,   deg if p  a n d  

  1 2deg , , , ,tGCD f f f k  . 2 i t 
We have 

 

2 2 2 2 2

1 1 2 2 1 1 2 22 22 2 2

ˆ ˆ ˆ .t t t t

2

2
f f f f f f f f f f f f               

 
Proof. Let  h C x  be monic with  deg h k  and 

set  i  with u C x deg   degiu if k 
h
. For the real 

and imaginary parts of the coefficients of  and of  
. We are considered with the continuous ob- 

jective function  

,iu
 i t 1

  2 2

1 2 1 1 2 22 2

2

2

, , , ,

.

t

t t

F h u u u u h f u h f

u h f

   

  




 

We will prove that the function has a value on a closed 
and bounded set of its real argument vector which is 
smaller than elsewhere. Consider 1

n
nf a x  and 

p
i ipf b x  with a GCD of degree  for k 2 i t  . 

Clearly, any  and  with h iu

  2 2 2

1 2 1 1 2 22 2 2
, , , , >t t tF h u u u f f f f f f        

can be discarded. So from above,we know that the 
coefficients of 1  2    can be bounded 
and so can the coefficients of  1  2   t  by 
any polynomials factor coefficient bound. Thus the  

,u h ,u h ,
h

tu h
, ,u ,u , u

function’s domain  1 2, , , , tF h u u u

0

 is restricted to a 
sufficiently large ball. It remains to exclude  

1 2 tu u u     as the minimal solution. We have  

  22 2

1 22 2 2

2 2

1 1 2 22 2

,0,0, ,0 t

t t

F h f f f
2

2
f f f f f f

   

      

 


. 

In conclusion, the theorem is true. 
Now we begin to solve Problem 1.1, we first define a 
 p n p   matrix associated with  1f x  as follows 

1 2 1 0

1 1 0
1

1 1

0 0

0
,

0

0 0

n n n

n n

n n

a a a a a

a a a a
S

a a a a

 



 0

 
 
 
 
 
 

 
  

    
  

 

and an  n n p   matrix associated with   ,if x  
2,3, ,i t   as 

 

   
 

 

1 0

1 0

1 0

1 2 0

0 1 0

,

0

0 0 1

ip i i i i

ip i i i

i

ip i i i

b b p b p b b

b b p b b

S

b b p b b

  
  
 
 
 
  

 
  

     
     

  

0

0





 

 
An extended Sylvester matrix or a generalized resultant is then defined by  
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T

1

12 .p n t n p

t

S

S
S C

S

   

 
 
  
 
 
 


 

Deleting the last 1k   rows of  and the last S 1k   
columns of coefficients of  1 2, , , tf f  f  separately is 

, We get the -th Sylvester matrix  S k
    n p tk t1 1tn p kS Ck
         

 

   

   

2

1 2 1 1

2

0 1 10 02 1 1

0 20

0

.

n p tp

n p t p

n p
k

n tp t

t

a b b

a b b

a b
S

a a b b b b

a b

  

  

0

tp

p

b

b

 
 
 
 
 
 
 
 
 
 


   

      


      


 

 

It is well-known that   1deg tGCD f f k  if and 

only if  has rank deficiency at least 1. We 

have  

 1kS f f t

  

 

1

2 2

1 1 2 22 2deg

2 2

1 1 2 22 2dimNullspace 1

min

.min

t

k

t t
GCD f f k

t t
S

f f f f f f
2

2

2

2
f f f f f f





     

     




 
 

(2.1) 

where kS  is the -th Sylvester matrix generated by k

1,f  2 ,f   , tf . 
From above, we know that (2.1) can be transformed to 

the low rank approximation of a Sylvester matrix. 
If we use STLN [16] to solve the following over- 

determined system  

,k kA X b  

for  k k kS b A , where k  is the first column of k  
and k

b S
A  are the remainder columns of k , then we get a 

minimal perturbation 
S

 k kh E  of Sylvester structure sa- 
tisfying  

.k k k kb h A E    

So the solution with Sylvester structure is 
 k k k k kS h b E A    and  dimNullspace > 1kS . 

We will give the following example and theorem to 
explain why we choose the first column to form the over- 
determined system. 

Example 2.1. Suppose three polynomials are given  

  2
1 1,f x x    

  2
2 2,f x x x    

  2
3 2 3f x x x   .  

The matrix  is the Sylvester matrix generated by  S

 1 ,f x   2f x  and  3f x  

1 0 1 0 1 0

0 1 1 1 2 1

1 0 2 1 3 2

0 1 0 2 0 3

S

 
 
 
   
 

   

 

The matrix  is partitioned as 1 1   or S ˆ ˆS b A 


1 1S A b    , where 1  is the first column of , 
whereas 

b̂ S

1b  is the last column of . S
The overdetermined system  

1 1
ˆÂ X b  

has a solution  T
1 1 1 1 1X    , while the sys- 

tem  

1 1A X b  

has no solution. 
Theorem 2.2. Suppose that 1,f  2 ,f   t, f , 
 1deg ,f   2deg ,f   , deg t f  and  are defined 

as those in Problem 1.1 and  is the -th Sylvester 
matrix of 1

k
kkS

,f  2 ,f   , t f . Then the following 
statements are equivalent. 

1)  dimNullspace 1kS  ; 
2) k kA X b  has a solution, where kb  is the first 

column of  and kS kA  are the remainder columns of 
. kS

Proof.   Suppose kkA X b  has a nonzero 
solution, then   . Rangek 

b
kb A Since kb s the first co- 

lumn of kS , viously, the dimension of the rank de- 
ficiency of 

 i
o

 kS  least 1. k k

 Suppose the rank deficiency of 
b A  is at

  k k kS b A  is 
at least 1 and   1 2, , ,D x GCD f f  tf ,  

 *
1 1 ,f f D x    *

2 2 ,f f D x   ,  *
t tf f D x

1, , ,1p kx x   
. 

Multiplying the vector    to 
the matrix , then we obtain  

n pV x k  n

kS
 

1
1 1 1 2 2, , , , , , , , , , .p k p k n k n k

k t tVS x f x f f x f f x f f                  (2.2) 
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Next we will prove that k kA X b  has a solution. If 

we multiply the vector  to two sides of the equation V

k kA X b , it turns out to be  

1
1 1 2 2

1

, , , , , , , , ,

.

p k n k n k
t t

p k

x f f x f f x f f

x f

   



 


    X
 (2.3) 

The solution X  of equation (2.3) is equal to the co- 
efficients of polynomials     such that  1,u 2 ,u , tu

1 1 1 2 2 .p k
t tx f u f u f u f      

We can get  and   deg D x k  *
1deg ,f n k   

 *deg i ,f p 
dimNullspace S

k  2 i t 
  1k 

  from  
. Dividing p kx   by *

2 t
*f f 

m
, 

we obtain a quotient  and a remainder  satisfy q

 * *
2 .p k

tx q f f m      

where      deg deg ,q D x  k  deg 1m p k   . 
Now we can get that  

* *
1 2 1, , , tu p u mf u mf   1 .  

are solutions of Equation (2.3), since  

    1deg deg ,u D x  k  

     
    

*
1

*
1

deg deg deg

deg deg ,

iu q f

D x k f n k

 

    
 

and 

 * *
1 1 2 2 2 .p k

t t tu f u f u f fq f f fp fx           

Next, we will illustrate for any given Sylvester matrix,  

as long as all the elements are allowed to be perturbed, 
we can always find -Sylvester structure matrices k
 k kh E  satisfy k k , where k  
is the first column of  and 

Rangeb h A E
k

k k 
kS

b
A  are the remainder 

column of .  k

Theorem 2.3. Given the positive integer , there 
exists a Sylvester matrix  with rank 
deficiency k. 

S
, ,n p t

 n   1n p p tS C    

Proof. We can always find polynomials  
 1 2, , , tf f f C x  with  1deg f n , 

 deg ,2if p i t    and   1 2, , , tf f f kdeg GCD 
1 2, , , t

. 
Hence  is the Sylvester matrix of S f f f  and 
its rank deficiency is k.  

Corollary 2.1. Given the positive integer , and 
-th Sylvester matrix 

, ,n p t
k  k k kS A b


, where  

   tk t1 1n p k p t nA Ck
     

k

 
kb C, , it is always 

possible to find a -th Sylvester structure perturbation 

 1 1n p k   

 k kh E  such that .  kRangek kb h  kA E

3. STLN for Overdetermined System with 
Sylvester Structure 

In this section, we will use STLN method to solve the 
overdetermined system  

,k kA X b  

According to theorem 2.3 and corollary 2.1, we can 
always find Sylvester structure  k kh E  with  

 Rangek k k kh b A E   . Next we will use STLN me- 
thod to find the minimum solution. 

First, we define the Sylvester structure preserving 
perturbation  of   ][ kk Eh kS

 

 

 

 

 

   

 

1 2 2

2 3 2 1

1 2 2

1 2 2 3 1 2

1 2 1

n n t p t

n n t p t

n n t p t
k k

n n p n n t p t n t p t

n n p n t p t

z z z

z z z

z z z
h E

z z z z z z

z z z

   

    

   

          

     

 
 
 
 
   
 
 
 
  



   

      



      


1

 

 
can be represented by a vector  

  
T

1 2 1
, , ,

n t p t
Z z z z   

    . 

We can define a matrix  such that .  kP k kh P Z

    1 11 0
,

0 0
n p k n t p tn

k

I
P C        

  
 

 

where 1nI   is a  identity matrix.   1n n   1
We will solve the equality-constrained least squares 

problem  

2

2
,

,subject  to 0.min
Z X

Z r    (3.1) 

where the structured residual  is  r

   , .k k k kr r Z X b h A E X      

By using the penalty method, the formulation (3.1) can 
be transformed into  

  2

,
2

,
, 1min

Z X

wr Z X
w

Z
  ,        (3.2) 
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where is a large penalty value. 
Let 

w  
Z  and X  stand for a small change in Z  

X , res

,Z

and p  be the correspondi
rder approximat  

ectively and 

 i

k

change in E . Then the first o
E ng 

e tok

 Z X X   s  

 
r

 k kr Z Z X X b P Z Z       

   
 

 

,

.

k k k

k k k k k

k k k

A E E X X

b P Z A E X P Z

A E X E X

    

     

   

 

Introducing a matrix of Sylvester structure  and  



(3.2) can be approximated by  

kY

  
T

1 2 1 1, , , p t n tk tX x x x     
   

   
 , 1

min 0X Z n t p t
2

k k k kw Y P w A E Z wr

I    
 
   X Z

       
      

 (3.3) 

where  satisfies that  

               (3.4) 

e following, we presen btain the 
matrix . Suppose 

    1 1n p k n t p t
kY C       

.Y Z E X     k k

In th t a method to o

kY 1,f  2 ,f  ,  ,tf  ,E  Z  and 
X  are d fined as abo

1

to th

e ve. Multiplying the vector  
1 ,n p k n p kV x x x        

e two sides of equation (3.4), it becomes  

, , , ,

.k kVY Z VE X  

Let 
0

X̂
X

 
 , we obtain   
 

  1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ,k X V h u g u g u   ˆk kVE E X g t t  (3.5) 

where 1ĝ  
ed

is the polynomial with degree  which is 
generat  by the subvector of 

n
Z :  

 1 2 1 ,nz z z   

2ĝ  is the polynomial wit degh ree  which is 
rated by the subvector of 

p
gene Z :  

2 3 2 ,n n n pz z z       

  
ˆtg  

by the 
is the polynomial with degree  wh h is generated 

subvector of 
p ic

Z :  

l w egree  which is ge- 
ed by the subvector of 

     2 2 1 1 ,n t p t n t p t n t p tz z z         
 
   

û  is the polynomia ith d1

nerat
1p k 

X :  

de   which is 

generated by the subvector of 

10 ,p kx x   

2û  is the polynomial with gree

 

n k

X : 

1 2 2p k p k n p kx x x      1 ,    

  
ˆtu  

rate
is the polynomial with de  wh h is gene- 
d by the subvector of 

gree n k ic
X :  

         2 1 1 2 1 1 1 ,p t n t k t p t n t k t p t n tk tx x x               
 
   

Here we will present simp



a le example to illustrate 
how to find 

Exampl 1. Suppose , 
kY . 

e 3. 1k   1 2 7, , ,X x x x   
and   3 2

1 3 2 1 0 ,f x a x a x a x a     

  2
2 22f x b x  21 ,x b  b 20

  2
3 3 31 .f x b x x b  2 b 

32

31

30

1

0 0

b

b

30

22 3

3 21 22 32 2

2 20 21 22 31 32 1 1

1 20 2 30 31 0

0 2 30

0 0 0 0 0

0 0

, ,

0 0

0 0 0 0

b b a

a b b b a

A a b b b b b b a

a b b b b a

a b b

   
   
   
    
   
   
     

 

then  

6

7

.

2 5

1 3 2 6 5

1 1 4 3 2 7 6 5

3 7

1 4

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0 0

x x

x x x x x

Y x x x x x x

1 4

0

0

x

x x x x x

x x x

 
 
 
 
 
 
  

 

4. Approximate GCD Algorithm and 
Experiments 

 Problem The following algorithm is designed to solve
1.1. 

Algorithm 4.1. 
Input-A Sylvester matrix S generated by 1,f  2 ,f  
,  tf , respectively, an in  and a toleranteger k ce 

tol . 
Output-Polynomials 1,f  2 ,f  ,  tf  and the - 

ea distance 

Eu

clid n 
2 2 2

1 1 2 2 t t2 2 2
f f f f f f       is 

to
-th Sylvester matrix as the ab
rst column of and the 
  as 

 a minimum. 
1) Form the k ove 

section, set the f re- 
mainder column

kS  
 as bi

s of
kS k

k kS A . Let 0, 0k kE h  . 
2) Calculate X  from 

2
min k kA X b  and 

k kr b A X  . Compute kP  and kY  as th  above sec- 
tion. 

e

3) Repeat 

(1) 
   

 ,X Z    1
2

.min 0
k

n t p t

w

I X Z  

        
 

k k kw Y P A E Z wr       
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, ,X X X Z Z Z       (2) Let 
(3) Form the matrix  and  fromkE kh  Z , and 

from 
kY  

X . Let ,k k kA A E
A 

   
,h  r bk kb b  k k k X  until 

2
X tol   and 

2
Z tol  
4) tput t


Ou he polynomials 1,f  2 ,f  ,  tf  con- 
structed from  .k kA  

nce 
b

Given a tolera  , we can use the Al m 4.1 to 
co f 

gorith
mpute an approximate GCD o 1 2, , , tf f

p  using Algorith
f

ith m 4.1  
 . The me- 

thod begin w  min ,k n

to compute the minimum perturbation 
2

2i ii
N f f   

with dimNullspace <

 

. If   1S  N  , then we can com- 
 . Otherwise,pute the approximate GCD form matrix  

we reduce k  by one and repeat the Alg
kS

orithm 4.1. 
mple 4.1. We wish t d the mExa o fin inimal polynomial 

perturbations f  and g  of 
2 6 5,f x x     

2 6.3g x x   5.72,  

satisfy that the polynomials f f   and g g 
ount. 

 have 
a common root. We take two 

Case 1: The leading coefficients can e perturbed. Let 
iteratio get the

cases into acc
 b

1k   and 310tol  , after 3 ns, we  poly- 
nomials f  and g  

20.9850 6.0029 4.9994,f x x    

21.0 5g  1 0 6.2971 5.7206,x x   

with a minimum distance  
2 2

22
0.0004663.N f f g g      

nts can be perturbed. Let 
 and after 3 iterations, we have the po- 
ials 

Case 2: The leading coefficie
1k 

lynom

310tol  , 
f  and g : 

2 6.0750 4.9853,f x x    

2 6.222 5.7353,g  x x   

with a minimum distance  
2 2

22
0.01213604583.N f f g g      

 and  

,

after 8 iterations, we have the polynomia

Example 4.2. Let 1k  , 310tol 
3 2

1 1.98 5 5 2.96,f x x x     

2
2 1.9 1,f    9 1.01 3.0x 

2
3 2 4.99 2.99f x x    

ls 

3 2
1 1.9800 5.0000 5.0000 2.9600,f x x x     

2
2 1.9963 1.0100 3.009f x x  

2
3 2.0071 4.9900 2.9902,f x x    

with a minimum distance  
2 2 2 5

1 1 2 2 3 32 2 2
9.0763 10 ,N f f f f f f          

 

and the CPU time  

 0.974920t s  

Example 4.3. Let 1.k  , 310tol   and 
4 3 2

1 1.85 2 2.69 1.42 ,f x x x x     

3 22.9 1.18x x   2 1.47 4 2.36,f x 

3 2
3 0.52 4.01 5.94 ,f x x    x

after 11 iterations, we have the polynomial

3 2
4 0.52 0.13 1.05 2.58.f x x x     

s 
4 3 2

1 1.85 2 2.69 1.42 ,f x x x x     

9,  

3 2
2 1.47 2.94 1.18 2.36f x x x    ,  

3 2
3 0.5242 4.01 5.9405 ,f x x   x  

3 2
4 0.52 0.134 1.05 2.58.f x x x      

with a minimum distance  
2 2 2 2

1 1 2 2 3 3 4 42 2 2 2

53.4387 10 , 

N f f f f f f f f       
 

and the CPU time  

 

 0.642582 .t s  

Example 4.4. Let 2k  , 310tol   and 
4 3 2

1 0.144 0.761 1.316 0.74 ,f x x x    x   

  

after 1 iteration, we have the polynomials 

3
2 0.393 12 2.56f x x 22.2 4.132x 

3 2
3 0.182 0.358 0.752 1.48,f x x x      

3 2
4 0.173 0.544 0.01 0.592.f x x x     

4 3 2
1 0.144 0.761 1.316 0.74 ,f x x x    x

  

with a minimum distance  

  

3 2
2 0.393 2.212 4.132f x x x    2.56,

3 2
3 0.182 0.3548 0.752 1.48,f x x x      

3 2
4 0.173 0.4701 0.01 0.6257f x x x    .  

2 2 2 2

1 1 2 2 3 3 4 4f2 2 2 2
N f f f f f f f       

 

and the CPU time 

0.0066,

Open Access                                                                                         ALAMT 



X. F. DUAN  ET  AL. 

Open Access                                                                                         ALAMT 

45

Example 4.5. Let ,  and 

after 1 iteration, we have the polynomials 
4

 0.001335 .t s  In Table 1, we present the performance of Algorithm 
4.1 and compare the accuracy of the new fast algorithm 
with the algorithms in [9,21]. Denote  be the total 
degree of polynomials 

n

1f  and  be the total degree of 
polynomials 

p
, 2if i t  . It (Chu) stands for the 

number of iterations by the method in [14] whereas it 
(STLN) denotes the number of iterations by Algorithm 
4.1. Denoted by error(Zeng) and error (STLN) are the  
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f f  computed by the method in  

5 4 3 2
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[21] and Algorithm 4.1, respectively. The last two co- 
lumns denote the CPU time in seconds costed by AFMP 
algorithm and our algorithm, respectively. 

5 4 3 2
5 1.31 5.76 8.49 5.47 0.48 5.16.f x x x x x       

As shown in the above table, we show that our method 
based on STLN algorithm converges quickly to the mini- 
mal approximate solutions, needing no more than 2 itera- 
tions whereas the method in [14] requires more iteration 
steps. We also note that our algorithm still converges 
very quickly when the degrees of polynomials become 
large while the algorithm in [14] needs more iteration 
steps. Besides, our algorithm needs less CPU time than 
the AFMP algorithm. So the convergence speed of our 
method is faster. From the errors, we demonstrate that 
our method has smaller magnitudes compared with the 
method in [21]. So our algorithm can generate much 
more accurate solutions. 
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and the CPU time  

Examples 4.1, 4.2, 4.3, 4.4 and 4.5 show that Al- 
le to solve Problem 1.1. 

In this paper, we present that approximation GCD of se- 
veral polynomials can be solved by a practical and re- 
liable way based on STLN method and transformed to 
the approximation of Sylvester structure problem. For the 
matrices related to the minimization problems are all 
structured matrix with low displacement rank, applying 
the algorithm to solve these minimization problems 
would be possible. The complexity of the algorithm is 
reduced with respect to the degrees of the given polyno- 
mials. Although the problem of structured low rank ap- 

2

4 4 2

5

 0.0923583 .t s  

gorithm 4.1 is feasib
 

Table 1. Algorithm performance on benchmarks. 

error (Zeng) error (STLN) time (s) (AFMP) time (s) (STLN)Ex n, p k it (Chu) it (STLN) 

1 2, 2 1 5 2 1.89e-4 2.87e-5 7.76 2.5 

2 3, 3 2 19.51 7.81 

3  1  

1  1  1  

1  

2  

8 2 1.36e-3 1.05e-4 

3 5, 4 3 11 2 1e-3 1.56e-6 6.81 2.44 

4 6, 6 4 23 2 1.46e-3 1.96e-10 1.829 2.08

5 8, 7 5 33 2 6.53e-4 1.98e-16 50.222 16.95 

6 0, 10 6 43 2 .61e-3 1.51e-12 57.09 61.40 

7 4, 13 7 58 2 1.23e-3 2.61e-4 273.7 122.31 

8 8, 28 10 634 2 2.6e-3 3.54e-4 559.3 210.65 
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