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ABSTRACT 

This paper represents model of oscillating universe theory. We try to realize model of both electromagnetic waves and 
spectrum of elementary particles from the unified point of view. Consideration of problems of the gravitational optics 
and dark matter is developing from the solid crystal model for the vacuum. The vacuum is represented as a three-di- 
mensional crystal lattice matter with a very small lattice period, much less than 10−26 cm. The oscillators are located at 
the nodes of an infinite lattice. It is shown that an infinite set of equations to describe the coupled oscillations of moving 
oscillators converges to a system of twelve equations. We have obtained the combined equations for a multicomponent 
order parameter in the form of the electric and magnetic vacuum polarization, which defines the spectrum and symme-
try of normal oscillations in the form of elementary particles. Two order parameters—a polar vector and an axial vector— 
had to be introduced as electrical and magnetic polarization, correspondingly, in order to describe dynamic properties of 
vacuum. Vacuum susceptibility has been determined to be equal to the fine structure constant . Unified interaction 
constant g for all particles equal to the double charge of Dirac monopole has been found (g = e/, where e—electron 
charge). The fundamental vacuum constants are: g, , parameters of length ,e n   and parameters of time ,e n   for 

electron and nucleon oscillations, correspondingly. Energy of elementary particles has been expressed in terms of the 
fundamental vacuum parameters, light velocity being equal to e e n nc      . The term mass of particle has been 

shown to have no independent meaning. Particle energy does have physical sense as wave packet energy related to 
vacuum excitation. Exact equation for particle movement in the gravitational field has been derived, the equation being 
applied to any relatively compact object: planet, satellite, electron, proton, photon and neutrino. The situation has been 
examined according to the cosmological principle when galaxies are distributed around an infinite space. In this case 
the recession of galaxies is impossible, so the red shift of far galaxies’ radiation has to be interpreted as the blue time 
shift of atomic spectra; it follows that zero-energy, and consequently electron mass are being increased at the time. 
Since physical vacuum has existed eternally, vacuum parameters can be either constant, or oscillating with time. It is the 
time oscillation of the parameters that leads to the growth of electron mass within the last 15 billion years and that is 
displayed in the red shift; the proton mass being decreased that is displayed in planet radiation. 
 
Keywords: Gravitational Optics; Crystal Model of Vacuum; Electromagnetism and Particles Physics; Universe 

Evolution Modeling; Unified Field Theory 

1. Introduction 

During recent years the science about cosmology has 
been in rather difficult situation. On one hand, observa- 
tions of star dynamics in galaxies and of galaxies in clas- 
ters show substantial deviation of rotation velocities from 
Kepler’s law; this proves the existence of additional mat- 
ter (dark matter) which participates in gravitational in- 
teraction [1-3]. On the other hand, more careful examina- 
tions of the red shift in the nearer space at the distances of  

105 - 107 light years as well as observation of supernova 
outburst [4,5] show that velocity of the Universe expan- 
sion increases with time, and this in turn requires intro- 
duction of additional dark energy with anti-gravitational 
properties. Thus, a contradiction arises. Practically, in 
one and the same point it is necessary to introduce both 
dark matter creating additional gravitational field and 
dark energy having anti-gravitation. Since there is no 
doubt about the facts above, their interpretation must be  
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revised. 
At the present time there are two mutually exclusive 

points of view. First, despite very distinctive spatial non- 
homogeneity of matter, observations show that at the dis- 
tances of about 109 light years (cell of homogeneity) mat- 
ter is distributed in the space quite homogeneously. Be- 
sides, the cosmological principle suggests that these ho- 
mogeneous cells should cover the entire infinite space. 
Second, the red shift discovered by Hubble, which he in- 
terpreted as Doppler’s principle related to the galaxies 
expansion, made Friedman’s model of expanding Uni- 
verse quite necessary. From Hubble’s empirical law that 
determines dependence of velocity of galaxies on the dis- 
tance , we can suppose existence of a singularity 
at a certain time. Since velocity of expansion of the gal- 
axies cannot exceed the light velocity , it follows from 
the relation 0 , that there is quite a definite 
size of the Universe growing with time 0 , here 

0  is the singularity offset counted from the present 
moment; Hubble’s constant equal to 

v Hr

c
c HR HcT 

R cT
T

01H T  decrea- 
ses with time; however, observations show, that the value 
H, on the contrary, increases with time. 

If we interpret the existence of a singularity as a Big 
Bang, we have to bear in mind that the explosion is a 
phase transition from a metastable state into another 
more stable state accompanied with release of energy. 
Before the phase transition, this energy is homogene- 
ously distributed around the space. They sometimes say: 
explosion power is equivalent to e.g. one kilogram of 
trotyl; it is obvious that two kilograms of trotyl give off 
right twice as much energy as one kilogram does. Be- 
sides, the phase transition does not begin with the singu- 
larity but with the nucleation of a new phase whose size 
exceeds the critical radius. In this case energy is released 
in accordance with broadening the new phase at the ex- 
pense of the phase edge motion. Since the average en- 
ergy density of the entire matter in vacuum is approxi- 
mately 0.008 erg/m3, this very energy should be released 
at the phase transition of each cubic meter of vacuum. It 
is difficult to imagine, however, that electrons and pro- 
tons could be created out of this homogeneously distrib- 
uted in space energy, and, besides, in exactly equal quan- 
tities. An explosion of a hydrogen bomb in vacuum can 
serve as a model of a hot Universe. The hydrogen bomb 
is a local object in a metastable state. There is a mixture 
of light and heavy nuclei under the temperature of sev- 
eral million degrees at the moment of detonation. Ac- 
cording to D’Alambert equation, the electromagnetic 
pulse and the neutrino pulse will start to disperse with the 
light velocity. Following electromagnetic pulse relativis- 
tic electrons will fly and then light, and heavy nuclei. In a 
second, the electromagnetic pulse will reach the Moon 
area and nothing will stay at the point of explosion. Thus, 
the examined case is also far from the Friedman’s model 

of expanding Universe. 
In order to somehow reconcile the model of the infi- 

nite matter distribution in space with that of the expan- 
ding Universe, Milne offered the following reasoning [6]. 
If we mentally specify a sphere of a definite size in a 
matter homogeneously distributed around an infinite 
space, then external layers of the sphere due to their 
spherical symmetry have no influence on the sphere dy- 
namics. Therefore, we can ignore the external layers and 
consider the Universe as a sphere of a definite size that 
precisely coincides with the Friedman’s model. However, 
this statement is a mistake. The thing is that with matter 
being homogeneously distributed about the entire infinite 
space, the gravitational potential follows the condition of 
the translational invariance: . We may 
consider this constant to be equal to zero, therefore, a 
gravitational potential only arises at deviation of a matter 
distribution from an average value. For that reason the 
equation for the potential can be written as follows:  

  constU r

    04πU     r r .           (1) 

Here 0  is an average density of matter. From Equation 
(1) we can see that it is not necessary to search for dark 
energy as the density is both the gravitating and the 
anti-gravitating matter in the form of  and   r 0 .  

On the other hand, if we mentally specify a sphere of 
radius R with the density of matter 0  and ignore the 
external matter, we come to another equation for the po- 
tential: 

  0 , ;
4π

0, .

r R
U

r R





   

r  

This equation has the following solutions: 

 

2
2

0 2

3
0

2π 1 ,
3

4π
, .

3

r
R r

R
U r

R
r R

r





  
;R    

   

 

       (2) 

Similar expressions can be used for determining gra- 
vitational potentials of planets, stars and galaxies in a 
form of the sum of the potentials of stars with their spe- 
cific location. However, for the scales comparable with 
the size of homogeneity cell and bigger, we come to an 
obviously non-physical result: the potential in any arbi- 
trary point depends on the radius of a sphere which we 
mentally specify out of the entire infinite space. Thus, 
any result depending on the mentally specified radius of 
the sphere, including the radius of the visible part of the 
Universe, is physically incorrect.  

For instance, we can determine the circular orbital ve- 
locity v1 for the Universe of radius R on the sphere sur- 
face from the equality of centripetal and centrifugal for- 
ces: 
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 2 0

0
1

4π
,

3

4π

3
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r

v R R
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







 



 




 

If v1 is equal to the light velocity с, we obtain the fol- 
lowing expression for the critical matter density in the 
Universe: 

2 2

2

3 3
.

4π4πc

c H

R



   

This corresponds to the condition gR r  when gr  
is a gravitational radius. Therefore, with the definite 
choice for R we may come to the conclusion that the 
Universe is a black hole, while, as it follows from the 
cosmological principle at the scales comparable with the 
radius of the visible part of the Universe, the gravita- 
tional potential has no specific features and its average 
value is zero. 

The same situation takes place when we consider the 
influence of a pressure on the dynamics of the expanding 
Universe. For instance, if we take a big vessel with a gas, 
mentally specify a sphere of radius R in it, and ignore the 
gas surrounding the sphere, we can state that the gas will 
broaden and get cool at the expense of the internal pres- 
sure. This may remind the model of the expanding Uni- 
verse. Remember, however, that the specified sphere is 
surrounded with the same gas at the same pressure; that 
is why there will be neither broadening nor cooling. Thus, 
for the infinite Universe both an average gravitational 
potential and an average pressure are constant; besides, 
since the expanding dynamics is influenced by the equal 
to zero gradients of these variables, there cannot be nei- 
ther expanding nor compression. An infinite system can 
only stratify according to the energy density and we real- 
ly observe this stratification on giant scales from the 
value less than 10−9 erg/cm3 for an inter-galaxy space to 
the value over 1039 erg/cm3 for nuclear energy. 

Nevertheless, within the frames of the cosmological 
principle there is a problem, the so called photometric 
paradox. The thing is that at present time when stars and 
galaxies radiate light in the entire infinite space, we can 
introduce an average luminosity L of a unit volume, pro- 
vided that the densities of a luminous flux intensity at the 
distance r from a single volume is equal to 24πj L r . 
The integral over the sphere of radius R gives the total 
flux intensity equal to J RL ; it follows that with R 
approaching infinity the flux intensity must approach 
infinity as well. Practically, however, we see rather a low 
sky luminosity. This is the photometric paradox.  

In fact, by calculating the intensity, we must take into 
consideration the retardation effects. The flux that comes 
to a certain point  at a certain time  0r    0t   ra- 

diates at different moments depending on the distance:  

 
0

d
r

dJ j t c L t t
c 

     
  r       (3) 

Expression (3) shows that the flux coming from the 
deep Universe will be finite if  at longer t de- 
creases faster than 

 L t
1 .t  

Besides, we can divide the entire flux observed at any 
point of the infinite space into two parts: the flux visJ  of 
a visible part of space 0R cT , Т0 ~ 15 × 109 years and 
the relict flux relJ  radiating from the spots with : r R

 
0

1

d
TN

vis rel n
n

J J J J L t


 

      t  

Here summing was carried out over a countable number 
of galaxies in the visible part of the Universe. Thus, from 
the expressions given above it follows that the Universe 
must be non-stationary, not due to an expansion of gal- 
axies’, but at the expense of a variation of physical vac- 
uum parameters. Since the relict radiation corresponds to 
the temperature 3K, the Universe had such a temperature 
long ago. The one but not the only feature of a non-sta- 
tionarity is the red shift of atomic spectra that we can 
interpret as the blue temporal shift of both characteristic 
Bohr energy and all atomic energy levels correspond- 
ingly, at the expense of variation of physical vacuum 
parameters. Observations show that the characteristic 
Bohr frequency depends on time and increases with time. 
By introducing a frequency of an arbitrary atomic level, 
we obtain the following expression for the Hubble’s con- 
stant:  

 
   d

d 0

t
H t

t t



 

   
            (4) 

Both  t  and  H t  are monotonously increasing 
functions. The latest observations of the flashes of far 
supernova [4,5] show temporal growth of H. It is sense- 
less to explain this situation using space-time properties. 

Speaking about space-time properties is quite the same 
as judging about wine quality by the curvature of a bottle 
surface. Dilettantes are often attracted by the appearance 
of the vessel, while connoisseurs pay attention to its con- 
tents, conservation conditions, and temporal changes. We 
should regard space like a vessel with the only feature: 
its volume is infinite [7]. Its internal properties are to be 
discussed. 

2. Hidden Parameters of Vacuum 

We should proceed from the experimental fact that the 
energy and the pulse of any elementary particle are: 

;k k  p k                (5) 

Here k —frequency for electron, proton, photon and 
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neutrino, correspondingly, we expressed as follows:  

2 2 2 2 2 2
0 0; ;ek e pk p kc k c k ck         , ; (6) 

2 2 2 2
2 2
, ,2 2 2 2

0e n e n e n x y zP
x y z t

  
     

, , , ,            
 (8) 

By setting up the following solutions:  The unified formula for the energy of any elementary 
particle points to the existence of the universal interac- 
tion for fields related to each particle. Besides, the two 
oscillation branches with the energy gap observed in the 
excitation spectrum prove an existence of a certain set of 
discrete oscillators whose interaction causes normal os- 
cillations with frequencies k . In fact, we can represent 
vacuum as a crystal object of a cubic or hexagonal sym- 
metry with a very small lattice period, much less than 
10−26 cm. We can estimate the upper limit of a lattice 
period by the maximum particle energy in cosmic rays 
equal to 1021 eV that corresponds to the wave vector of 
1026 cm−1. The vacuum ground state is the equilibrium 
position of all oscillators; these are the points of equilib- 
rium forming crystal lattice related to the absolute coor- 
dinate system. Under the deviation of an oscillator from 
the equilibrium position, a dipole moment arises. For the 
scales exceeding the lattice period we can introduce a 
macroscopic order parameter as an electric polarization 
of vacuum: 

, , , , expx y z x y z P a i  kr t ,          (9) 

we obtain the spectrum for normal oscillations:  

2 2 2
, ; , ;0

,0 ,0

;

; ;

e n k e n

e n
e n

e n e

c k

c

 

.
n

   
  

  

   


   (10) 

Therefore, we can represent physical vacuum as some 
coherent state with the natural frequency standards in the 
form of homogeneous polarization oscillations about an 
absolute coordinate system 

   , ; , , , ; , , , ;0, expe n x y z e n x y z e nP t a i tr  

with the absolute time, homogeneous around the entire 
space   abst tr . 

The situation, however, becomes more complicated, 
since the electrical vacuum polarization generates the 
following electric charge: 

4π .ediv  P               (11)   4π
.i

iV
 P r d  

Here e  is the electric charge density, while the po- 
larization is determined by both electron and nucleon 
modes e n P P P

, ,ez nxP P

. This results in an additional long- 
range Coulomb interaction between the normal oscilla- 
tions   ,ex eyP P , ,ny nzP P

Suppose, there are two branches of normal oscillations 
of field P that we can call electron and nucleon modes. 
The Hamiltonian for electron and nucleon modes written 
in the unified form, is: 

   1
d d

2
e eU

  



r r

r r
r r

         (12)   22 2 2 2
, ,

1
d

8π e n e nH       P P P r     (7) 

For simplicity, we consider normal oscillations inside 
the electronic modes. We dimensionlize coordinates and 
time. We express new variables like this: ;et t   

er r  ; velocity being in terms of e ec   . It 
makes sense to specify a dimensional value for the elec- 
tric polarization in the terms of the electron charge: 

For electronic and nucleonic parts, we introduced the 
parameters of time e , n  and length e , n  that 
characterize the kinetic and gradient energy of the fields. 
Besides, we introduced a dimensionless parameter of an 
elastic coefficient  corresponding to the reciprocal sus- 
ceptibility common to both modes. These are the latent 
parameters of vacuum and the available experimental 
data are sufficient to determine them. 2

,
e

e


P P  

By using the minimal action principle for the Lagrange 
function equal to the difference of the kinetic energy— 
the first member of expression (7), and the potential en- 
ergy—the second and the third members of (7), we ob- 
tain the equation of motion for six independent normal 
oscillations : , , , , ,ex ey ez nx ny nzP P P P P P

after that the electron field action reduces to form (see 
(13) below): 
Here i and j run over x, y, z and we carried out summa- 
tion over repeated indices. By varying action S over the 
values , ,i i i jP P P x  , we come to the following system 

 

   
2

,,

1
d d d

8π 4π
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i ji i
i i i i

j j

P tP t
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S t PP PP

c x x


 
           
  

  

rr
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r r

                     (13)
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of the integral-differential equations:  

     2

2 3

1
, d

4π
ji i

i
j

Px x
P t

xt


  
0        


r

r r
r r

(14) 

Consider the solutions in the form of plane waves: 

       (15) 

For plane waves, Equation (14) reduce to the form

  , expi iP t P i r kr t  

:  

 2 2
2i jk

0i jk k
k P P            (16) 

By making the determinant of the Equati
to zero, we obtain the oscillation spectrum (see 



on (16) equal 
(17) below):  

Equation (17) transforms to  

  22 2 2 21 0k k              (18) 

Thus, from (18) we obtain the normal spectrum of the 
oscillations; from Equation (16), we obtain the form of 
the oscillations: 

2

2 ;

z x x z z y y z

k

x

k

k P

   
     (19) 

1 ; ,

, ;

0.

k y x x y

x y y z z

k k P k P

k P k P k P k P

k P k P

     

 

  

Expression (19) allow the definition of the general 
properties of the normal oscillations for vacuum fields 
linked by the long-range Coulomb interactio
placian operator in Equations (14) requires that the po- 
larization components be eigenfunctions of this operator: 

For lateral (transverse!) oscillations, the depolarizing 
field equals to zero. As a result, the frequencies for longi- 
tudinal and lateral oscillation

The problem, however, is th  
differential equations we may take into consideration 
both eigenfunctions and eigenvalues, while the amplitude 
of

integrals 
of

ollowing reasons. We know from the 
th

n. The La- 

2
i iP P                   (20) 

The result of the Coulomb interaction is that the oscil- 
lations of the polarization are divided into two classes: 
longitudinal 1P  with 1 0rot P  and lateral 2P  with 

2 0div P , according to the Helmholtz theorem 

1  P ; 2  rotP A , here   and A  are scalar and 
de- vector potentials. 

po
Longitudina

s are different. 
at for linear homogeneous

 the eigenfunctions remains arbitrary. Suppose, an ei- 
genfunction specifies the configuration of the excitation; 
though the excitation energy and pulse are the 

 motion, and yet they can have arbitrary meanings. Ne- 
vertheless, in practice we can see that energy of any ex- 
citation has quite a definite meaning both for light quan- 
tum and for any elementary particle. Therefore, within 
the framework of homogeneous equations it is impossi- 
ble to realize the origin and the physical meaning of the 
Planck constant. 

For linear systems, the amplitude of oscillations turns 
out to be quite definite under the external force; then we 
can express the solution by means of the Green function, 
which meets the homogeneous equation and has quite 
definite amplitude. Non-homogeneous equations are ne- 
cessary for the f

eory of many-body systems that, if a system consists of 
discrete particles, the correlation effects substantially de- 
crease the ground state, and local states such as polarons 
can occur. Therefore, we pass to consideration of the 
ground state taking into account correlation effects. 

From an endless number of particles forming a crystal- 
line vacuum state we examine one particle as a point unit 
source  eQ  r , which generates longitudinal electric 
field defined by equations: 

 0 0 0 3
4π ; 0; .div rot  

r
E r E E  

r

Thereafter, we can write the interaction energy of the 
point so vacuum fields as follows:  urce with 

0 0 .
4π

g
U   E P              (21) 

Here g is the constant of interaction between the point 
un

l oscillations provide a 
larizing electric field 1 E P , which meets the fol- 

lowing condition: 

4π .ediv E  

it field and vacuum fields; it is convenient to express 
this constant in a normalized form: 1g g e . By varying 
the Lagrange function over , we non-homo-  

 
 P  obtain a 

2
2 2

2 2

x yx
k kk
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

 
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2
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x z

y z
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2
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

 


 

x   
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 
   

 

                   (17)
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geneous equation for polarization: 

 
2

1 02
, ;g t

t

 

     
P E r         (22) 

Divergence of the left and the right parts of the Equa- 
tion (22) results in the expression for the induced charge 
density, related to the electrical polarization for the case 
when a source is moving with velocity v : 

 2
,e t

t
 
 

      
r  

2

1 .g t r v     (23) 

It is obvious from (23) that the induced 
is the Green function for a point source that fulfills the 
ho

tion
di es results in 

the Fourier-harmonics for the induced charge 
vacuum:  

charge density 

mogeneous equation over the entire space except one 
point; but due to this point, the function acquires quite 
definite values over the entire space.  

At first, we consider a particular solu  of Equation 
(23). Fourier-transformation over coor nat

density in 

 
1

22ek

g

k



 

  kv
            (24) 

Here the corresponding coordinate dependence of the 
induced charge density for the case, when velocity lies in 
z-axis, is: 

 

 
   

 
1

,

exp
3 2 2 2 2

d d d
12π

x y z

x y z

x y z

k k k
k k k v    

Here, it is convenient to proceed to the new integration 

t

i k x k y k z vtg

 

  
 

r

 

variables  

2; ; 1 ,x x y y z zk k k k k k v       

in addition, to a new coordinate system: 

2
; ;

1

z vt
x x y y z

v

    


 .

After that, the induced charge density expressed in di- 
mensional units transforms to the equation:  

      22

1 1
, , exp

4π1 ee

g r
t r r

rv
,

  


 
          

r




(25) 

From (25) we can see that the characteristic dimension 
of the polarization charge is a definite val ual to the 
correlation radius or the Compton length of electron: 

ue eq

, 0с e e ecr     . The polarization charge moving 
relative to the absolute coordinate system, in accordance 
with the Lorentz transformation, is deformed in such a 
way that its dimensions decrease along the direction of 

motion 

2
, ,; 1ex ey c e ez c er r r r r v     .

Total polarization charge as an
space is proportional to the co
the vacuum susceptibility 

 integral over the entire 
nstant of interaction g and 

1  :  

 , d
g

q t


   r r            (26) 

The total polarization charge does not depend on the 
particle velocity that we can interpret as the law of con- 
servation of charge.  

We can find a scalar potential for the motionless 
ce from

sour- 
 the expression: 

     
 2 2 2

exp4π
exp 4π

1
1 exp

k

e

i
r i g

k k k

g r

r r






  


  
    

within an accuracy of a charge sign:  

   

 
k k

kr
kr

  (27) 

The polarization for the electron is similar to that of 
the proton 

 , 3
; , ; ,

1 1 exp .e n
c e n c e nr rr

g r r    
               

P r    (28) 

They only differ in the 

r

characteristic wavelength 
and . The main feature of the solution for the pola

is an absence of divergenc
that leads to the finite value of the particle energy. 

odes having the sam rm: 

,c er  
ri- ,c nr

zation (28) e at a point r = 0 

Therefore, we can see that the vacuum polarization re- 
sults in decrease of the source energy by 0U , both elec- 
tronic and nucleonic m e fo

 
2

0 , ,e n e n
; ,

0
c e n

g
U g   r

r
           (29) 

Non-homogeneous Equation (23) defines two parame- 
ters: the polarization charge q and the radius of a
localization 

In order ine vacuum parameters, we require 
that the polarization charge, both for proton and electron, 
be

a source 
out of a potential energy well, which the source creates 
for itself: 

 charge 

; ,c e nr . 
 to determ

 equal to the electron charge, whereas the particle en- 
ergy must be equal to the ionization energy of 

2 2

0, 0,
, ,

; .e n
c e c n

;
g

q e

g g

r r



 
 

  
       (30) 

 

By adding the definition of the fine structure constant 
2e c    to the latter equations, we obta the equality 

1
1 137g      . It follows that the vacuum pol

in 
ariza- 
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1   equals to the fine structure constant  , 
a point source 

bility 
wher  constant of the interaction of 

 fields equals to the Dirac monopole cha  
eas the

with vacuum rge
g e   [8]. 

We can define the correlation radius and the funda- 
mental frequ  foency r electronic and nucleonic no
m

rmal 
ode as follows: 

, ,0

, ,0

1
, ;

1
, .

c e e e

e

c n n n

r

r

  

n

 

  
 

As a result, the rest energy in form (30) reduces  
quite tran arent form:  

 

 
 

 to a
sp

,0 0 ,0 0
, ,

;e e n n
c e c n

eg eg

r r
              (  

constant 

31)

It follows that the point source with the interaction 
polarizes vacuum and induces charges with di- 

mensio ,c e  for electronic and ,c nr  nucleonic modes. 
The electric field energy for both proton and electron is 
equal to 

g 
n r

2
,c ee r  and to 2

,c ne r , correspondingly, and it 
turns out to be 137 times less than the energy related to 
the electrical polarization. We should notice that the so- 
lution for the polarization (28) is formed by three modes 
of normal vacuum oscillations , ,x y zP P P , each creating a 
charge equal to 3e : 

1 1 1
d d d .

 ex- 
nera

for 

4π 4π 4π 3
yx z

PP P e

x y z

 
  

    r r r  

Now we consider the structure of the fields in the
cited state. The excited state corresponds to the ge - 
tio

 under the initial conditions 
polarization: 

n of a source at a certain time. Suppose, a point source 
is generated at time t = 0

   
0 0

,
, 0;t t

t
t

t 


 


P r

P r  0.

pa
In this case, the general solution of Equation (22) con- 

sists of a rticular solution (28) and two fundamental 
solutions of the homogeneous wave equation:  

       
 

   

   

0
0

0

, exp

exp

t i t

i t





 

 

P r P r P r

P r
     (32) 

By taking into account initial conditions, we can re- 
duce the solution (32), both for electron and nucleon, to 
the form:  



   , ;0e n 2
, 3

, 2 1 1 exp sine n

r r
t e t

r rr


    
           

r
P r

The characteristic feature of the solution above is that 

e frequency 

; , ; ,c e n c e n    
(33) 

the electrical polarization for both electron and proton, 
covers the entire infinite space and oscillates synchro- 
nously with th , ;0e n . 

er, cThe solution (33), howev ontains a substantial dis- 
advantage: such wave packet cannot move in pace, it is 
a typical standing wave. Impossibility of motion is 
ca

 s

used by the fact that the phase velocity of different har- 
monics f kv k  changes from infinity to the light 
velocity c, whereas the group velocity gv k k    
changes from zero to c. 

In a general case, the solution for the polariz
wave packet moving with velocity should have a so- 
liton form

ation for a 
v  

:  

     , t t f t P r P r v           (34) 

A similar property is natural for the solution of a one- 
dimensional D’Alambert equation that fulfills the condi- 
tion of deviation from a state of equilibrium for a flexible 
infinite string    ,u x t u x ct 

anging the form
. A possibility of mo- 

tion without ch  is directly connected
lin

 to a 
ear excitation spectrum in k-space k ck  . For two- 

and three-dimensional cases, the solution of the D’Alam- 
bert equation substantially differs from the one-dimen- 
sional one. An excitation generated in some point starts 
sp

ensional D
however, are

 Nevertheless, a single quantum, 
w

stant star can cover million years without 
spreading dispersion. After colliding wi
on the Earth, the light quantum transfe
st

ws that it is impo

reading (propagating) at velocity c in the form of con- 
centrated circles for two-dimensional case, and in the 
form of concentrated spheres for the three-dimensional 
case. The propagation of radio waves strictly follows the 
three-dim ’Alambert equation, which proceeds 
from the Maxwell equations. Radio waves,  
a multiquantum process.

hile having wave properties, yet behaves like a particle. 
The thing is that a light quantum radiated by an excited 
atom at a di

th a similar atom 
rs into a similar 

ate of excitation. Therefore, there must be a solution of 
a soliton type for a light quantum in the form (34), which 
gives the origin of ray optics.  

Analysis sho ssible to obtain such a 
spectrum in a three-dimensional isotropic space for one 
order parameter. Following strictly the terminology, we 
should consider electromagnetic oscillations as coupled 
oscillations of a two-component order parameter in the 
form of an electric and magnetic polarization of vacuum. 

Suppose a magnetic polarization with the same Ham- 
iltonian, as that for the electric polarization (7) is possi- 
ble to appear in vacuum:  

  22 2 2 2
, ,

1
d

8π e n e nH       M M M r   (35) 

We define a magnetic order parameter, as well as an 
electric polarization, through the sum of the elementary 
magnetic moments: 
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4π
.iV

 M   

Practice shows that electric and magnetic dipole mo- 
ments create, correspondingly, electric and magnetic 
fields, similar in configuration:  

   


 
    

5 3

5 3

;

3
.

 
  

  
 

  

E r
r r r r

r r r r
H r

r r r r

 
    (36) 

It follows that for a similar distribution of the electric 

3  r r d r r d

an

,

d magnetic polarization, electric and magnetic fields 
will be similar as well. We can reduce expressions (36) 
to the form:  

     
     

0

0

; ;

;

d d r

r 





      

      

E r r d r r

H r r r
 

r
  (37) 

Here 0  is the potential Coulomb function for a unit 
source 0 1   r r . Under an arbitrary distribution of 
the electric and magnetic polarization, scalar potentials 
(37) acquire the form:  

   

   

   

   

0 d
4π

1
d d ;

4π

P r

ediv 

      

 

0

1

1
d

4π

1
d d ,

4π

M r

div 



   






P r r r r

P r r
r r

r r 

      


   

  





 

r r

M r r r r

rM r
r r

r r r r

   (38) 

It follows that the sources of the electric field are the 
electric charges defined by the relation 4π ediv  P , 
whereas the sources of the magnetic field are the mag- 
netic charges defined by the relation 4πdiv  M . As 
a result, the electric and magnetic fields m
tions: 

eet the condi- 

4π ; 4π .ediv div   E H  

Energy of the electric and magnetic fields turns up to 
be 137 n that of the electric and magnetic 
polarization, correspondingly. The configurations of the 
electric and magnetic fie

times less tha

lds are similar under the similar 
distribution of the electric and magnetic polarization. For 
example, if we create a homogeneous electric polariza- 
tion  in a full-sphere, then it causes generation of the 

depolarizing electric field inside the sphere 

P

3 E P ; 
for a sphere is therefore, the depolarization coefficient 

equal to 1 3 . The situation is the same with a spherical 
magnet: 3. H M  

he long-r
Generation of the magnetic field 

also leads to t ange Coulomb interaction 
the normal oscillations: 

We can define the 

between 
., , , , ,ex ey ez nx ny nzM M M M M M  

electric current with the expression: 

.e rot P M  

 here: 

4πj

The continuity equation follows from

0.e
ediv

t


 


j  

Now we show in what way the inte n the 
electric and magnetic polarization provides the solution 
of the soliton type. We add the interaction energy of cur-
rents t

raction betwee

o the Hamiltonians (7) and (35) in the form:   

 d
4π
e eU rot rot    P M M P r         (39) 

From there we obtain the combined equations for a 
plane polarized electromagnetic wave:  

 

   

   

2

2

2

2

, 2 , 0;

2 , , 0.

x y

x y

P t M t
t zt

P t M t
t z t





   
        

   
         

r r

r r

  (40) 

By sett lutions in the form:  ing up the so

    , exp ;x xP t P i t

    , exp ,y yM t M i t r kr

 r kr
41       ( ) 

we can obtain the system of equation  s: 

 2 2 2 0;x z yk P k M     

 2 22 0z x yk P k M   .    
        (42) 

The compatibility condition for the Equations (42) 
leads to the equation: 

2 2

2 2

2
0,

2
z

z

k k

k k

  
  

  


  
 

This gives the spectrum of normal oscillations: 

2 2 22 ,z x y zk k k k        

After that, the solutions for the electric and magnetic 
polarization transmitting with the light velocity reduce to 
the soliton form: 

 

        
        

2 2 2

2 2 2

, exp exp 2

, exp

;x x y z x y z

y x y z

P t a i k x k y k z t i k k k t

M exp 2 .x y zt a i k x k y k z t

         

    

r

r
 

i k k k t    
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We proceed from the supposition that the electron ra- 

diates a light quantum; then from a wide ra
ble solutions we should choose a solution compatible 

 the light quan- 
ating along z-axis has a  vector kz, we 

can specify a Fourier-harmonic kz from the scalar 
tial (27) which defines the field of the el
cylindrical coordinate system, the Fourier-harmonic for 
th

nge of possi- 

with the own field of the electron. Since
tum propag wave

poten- 
ectron. In the 

e scalar potential becomes: 

 

    2
0 0

exp d

2 .

zk z

z z

ik z z

q K rk K r k



  




  


 

ere H 0K  is the Macdonald function. We express the 
electric polarization along the x-axis as .xP x    
Thus, for a plane-polarized wave compatible with the 
field of the electron and fulfilling the system of Equa- 
tions (40), we obtain the solution for the electric polari- 
zation:  

    
    

2 2
1 1

2

2 2

cos exp 2

x z z z z

z

P q k K rk k K r k

i k z t k t

 

 

   

      


  (43) 

z 

This solution is a quasi-one-dimensional infinite 
monochromatic wave propagating at the light velocity 
along the z-axis and interacting with the similar magnetic 
polarization yM . In the transversal direction, the mono- 
chromatic wave (43) is localized with the dimension 
equal to the wavelength, since the Macdonald function at 
big values of argument approximately equals: 

   1

π
exp .

2
K x x

x
   

This precisely corresponds to the experiment, as it is 
impossible to localize a light ray more than the light 
wavelength. 

Therefore, from the values, which we consider 
damental , we go over to the set of values, 
w

as fun- 
, , , ,e pe c m m

hich characterize properties of physical vacuum 
, , , , ,e p e pg      under the additional condition: 

e e p p c     . In connection with this, we must 
change the concepts of mass and matter. 

Wave equations can only be applied to the material 
medium having definite dynamic properties, so the idea 
of physical vacuum means that the entire infinite space is 
filled with a definite matter. The particles that we ob- 
serve—electrons, protons, photons—these are excitations 
of vacuum in the form of wave packets, which are ei- 
ge

nd oscillation amplitude; specifically for the  

electric polarization, we define the amplitude by the elec- 
tric charge. For a multi-component order parameter, the 
form or symmetry of oscillations is important. In this 
co t have 
independent meaning. Researchers introduc d the values 
of mass and charge, as well as Planck cons nt for parti- 
cl

harge quantization and existence of 
Planck constant are the consequences of correlation ef- 
fects related to discreteness of physical vacuum. Now it 
makes sense to study the concept of mass for a wave 
packet. 

From practice we know that, if we describe the particle 
oscillation spectrum with the expression: 

nfunctions of the united system of twelve equations. 
From the point of view of wave mechanics, we can char- 
acterize a wave packet with energy, momentum, angular 
momentum a

nnection, the concept of a particle mass does no
e
ta

es, in different periods of time and so far, they have 
considered these values as independent ones. As we 
showed above, c

2 2 2
0k c k   then the particle velocity is equal to 

the group velocity:  

  

2
k c


k

2 2 2
0

g
c

 
 

v
k k

        (44) v

If we express the wave vector k  from (44) through 
the group velocity, we obtain the value of frequency in 
the form:  

2 2 2 0
0 2

2
1

k c k
v

c


   



          (45) 

Multiplying terms of (45) by  , we come to the rela- 
tivistic expression for the particle energy:  

 
2 2

0 0 0
0 022 2

2 2

2 2
1 1

E E v mv
E v E E

cv v

c c


     

 


(46) 

The expression for the particle mass 2
0m E c  fol- 

lows from the latter Equation (46), the concept of mass 
being not necessary if we specify velocity in terms of 
light velocity. 

The examples given below illustrate how to express 
some known values in terms of vacuum parameters: 

De Broglie wavelength: 

, ,

1 1
; .e n 

e nm v p k k m v k
     
      



Here we have to consider k, the particle wave vector, as a 
quantum number

Compton wave
 independent of vacuum parameters. 
length: 

, ,
,0 0,

, ,
,0 0,

K n n
n nm c

;K e c e e
e e

c n

c
r

m c

c
r

 


 

   

   








 

Open Access                                                                                            IJAA 



E. V. CHENSKY 447

Classical radius of electron: 
2

3 2
0, ,2

0,

.e c e
e

e
r r

m c
      e

Bohr radius:  
2

,

2
0,

c e e
B

e

a
m e

r 
 

  


            (47) 

Bohr energy:  
4

0, 2 2 2
0,2

,

e
B e

c e

m e eg
E m c

r
   


         (48) 

nergy, By making Bohr energy equal to photon e

, ,B B BE ck     

we obtain - quantum wavelength, which corresponds 
to Bohr energy 

3
,1

.c e e
rc

,
,

B
Bk m


4 2 3 2

0,ee


 

We can express Rydberg constant through v cuum 
parameters: 

   


 

a

4 3 2
0, 2

0.3

1
.

2 22
e

e
e

m e
R

 


  


 

It follows from the above expressions that fine struc- 
ture constant characterizes not only the fine structure of 
the hydrogen atomic spectrum but the entire lengths hi- 
erarchy of the quantum mechanics as well. It is easy to 
see that characteristic lengths form a geometrical pro- 
gression: 

B

All the lengths contain neither Planck onstant, nor 
mass, nor charge of electron. In this connection, it makes 
se hrödinger equation through the 
natural parameters of physical vacuum. 

The Hamiltonian for the Schrödin
hydrogen atom looks like this: 

2 3
0, , , .e c e Br r a        

 c

nse to express the Sc

ger equation for a 

2 2
2

,02 e

e
H

m
   


 

r

In this expression, we take the fundamental constants 
s of 

en atom (47, 48), as indepen ent; however, as 
we demonstrated above, none of these constants ought to 

 f
 the Hamiltonian of the electron in the 

nuclear field of a hydrogen atom in a different form:  

,0, ,em e , which specify the characteristic parameter
a hydrog d

be taken as a undamental one. 
We can write

2
2 2 2
0,e

e
H c k

r

The Planck constant expressed through the electron 

charge reduc

              (49) 

es (49) to the form  

2 2 2 2
0, ,2 2

,2
,0,

1 1e c
c e

c ee

e rc k e eg
H r

c r r

 
 

 
      

 

ek
r

(50) 

Here, it is convenient to use the dimensionless length 

,c er r r , the dimensionless wave vector ,c er k k  
and the dimensionless time 0,et t . We express the 
energy in terms of the electron rest energy ,c eeg r :  

2 21
1 1

2
H k k

r r

 
               (51) 

The particle velocity is equal to the group velocity of 
the wave packet 21k k     v k k k  and we 
express it in terms of light velocity. Approximate expres- 
sions correspond to the case of a low velocity 1k   . 
We can regard the value 2k  in the approxim - 
si

e equation for the eigen- 
function and the eigenvalue:  

ate expres
on (51) as the eigenvalue of the Laplacian operator; 

then we may reduce (51) to th

21
;

2 r


H H                (52) 

From (52) it follows that the Schrödinger equation 
only contains one dimensionless small parameter   of 
a physical vacuum susceptibility. The fundamental func- 
tion   of a free electron in Cartesian coordinates is 
equal to  exp ikr ; we express the eigenvalue by the 
equality: 2 2.k   

Now we find out the Bohr quantization conditions for 
a hydrogen atom. The circular motion 
an atomic nucleus is defined by the equality of centrifu- 
ga

of electron around 

l and centripetal forces:  

2
2

r
r

  .                (53) 

Bohr assumed a quantization of adiabatic invariants: 

i ip dq nh  

For the circular motion, the latter relation reduces to 
the form: 

pr n   

Externally, it looks as if a quantum of
th

on

 action existed, 
at provides quantization of a pulse moment. However, 

by taking into consideration the pulse p k  , we come 
to the cyclic boundary conditions for a wave vector: 

.kr n  

It follows that Planck c stant has nothing to do with 
forming the wave function. Since k v r   , we can 
add to Equation (53): 

2r n   

From where we can obtain the energy, radius and velo- 
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city at the stationary Bohr orbits: 
2 2

2
; ; .

2n n nr v
nn

n 

 the law




     

That accurately corresponds to the relations (47, 48).  
Compton scattering, which we regard as one of the 

evidences proving existence of quantum of action, pro- 
ceeds from s of conservation of energy and mo- 
mentum fo  ar electron nd - quantum:  

2
,02

,0 2
;e

e

m c
m c

v
2

0,

2

1

e

c
m

v
2

1
c

.

 

 

    


 
v

k k 
       (54) 

It follows from (54), that we can specify the wave 
ve





ctor of a scattered light by the relation:  

 
,0em c

,

1 1 os

k
k

k



 c 

 
 
           (55) 

Here   is the angle between vectors v  and k ; be-
sides, there is a length parameter , ,0K e e c   where 
we take the values ,0, ,em c  as the fundamental o

m
nes. 

Howe , by taking
tions (



ideration the fact, that rela-ver  into cons
5) and (6) define the spectrum of a particle, we can 

reduce combined Equations (54) to the form: 

2 2 2
,0e ck ,0 ;

,

e c k ck 

 

   

 k k k
 

r by the electron mass, 
but by the space and frequency resonance for the wave 
packets; scattering being submitted to the same formula 
(55) with the Compton length 

 

It follows that the scattering characteristic is defined 
neither by the Planck constant no

, ,0 ,K e e c e ec r      equal to the correlation ra-
di

con r that, scientists 
had only to examine the properties of electron responsi- 
ble for light radiation and absorption in a quantum way. 
Albert Einstein, however, considered something different. 
Since we can observe light quanta, then light is quantized 
due to existence of quantum of action; 
“Why?” being quite inappropriate here since physical 
mechanism for quantization of action just does not exist. 
We can only say that these are the properties of space- 
tim

ta, a planetary 

model of electron is suggested by itself. T
energy equals to: 

us. 
Once in his days Planck supposed that radiation and 

absorption of light should proceed by quanta. Later this 
brilliant supposition was firmed. Afte

the question 

e. We just substitute one senseless statement by an- 
other one. Nevertheless, proceeded from the fact that 
electron radiates and absorbs light per quan

he electron rest 

0, 0, ,e e c eeg r . We can write    
- quantum energy in a similar way: egk     . 

, then, by representing 
r 

conditions 

Since the photon spin equals to 
e

li
t


it in th  form of the orbital moment s pr k    , 
we come to quite transparent cyc for the 
radius of photon orbi 1 . After that, the photon 
energy reduces to the form: 

c 
 k r  

eg r   . We can obtain 
such an energy as follows: use the solution for the elec- 
tron polarization in the form (28), set it up into Hamilto- 

 infinity to the ra- nian (7) and integrate 
 

over space from
dius r . Therefore, th  fi  

n is the same
tak

 that all particles can be 
considered as excitations o

lutions of the unified system of equations for cou- 
pl

e nature 
. By radi

of
atin

el
g pho

ds for photon and
ton, an electron 

 
electro

es off some part of its polarization coat, the intrinsic 
energy of the electron being reduced. 

3. Gravitational Optics 

In the previous part we showed
f physical vacuum; they are 

the so
ed oscillations of the multicomponent order parameter 

 ,P M . That is why we can be sure to a certain degree 
that all particles similarly contribute to the gravitational 
interaction, particle energy being the interaction parame- 
ter. Now we write down the standardized form of the 
Hamiltonian for a particle in the gravitational field 
caused by a massive body of mass 1m   

  1mm
H

r


 p              (56) 

We express the particle mass through energy 
  2m c p ; after that the Hamiltonian (56) reduces to 

the form:  

  1
2

1 ; .g
g

r m
H r

r c




 
   

 
p          (57) 

re He gr  is the gravitational radius w - 
vitational potential of a massive body. For an arbitrary 
potential, the Hamiltonian has the form

hich scales gra
 

: 

    1 .H p  r  

In general case, particle en fined by the fol- 
lowing expression:  

 

ergy is de

2 2 2
0 c  p p              (58) 

In addition, particle velocity equals to  

 



p

v
p

                 (59) 

From the coordinate system  , , ,x y z t
uation (58)—t

 we proceed to 
o a new mo- a new time t ct  and, in Eq

mentum c p p ; then the particle velocity does not 
depend on the chosen scales of length and time, but be- 
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comes a dimensionless value expressed in terms of light 
velocity:  

 
2 2
0






 

 

p p
v

p p
          (60) 

The second equation that defines the particle motion in 
the gravitational field looks like this:  

 H    p p            (61) 

By taking into account equation 
(6

(60), we can rewrite 
1) as follows:  

    
dt

For low velocities we can substitute v

 d
p p  v r          (62) 

alue  p  by 
an approximate expression 0 ; after tha
reduces to that of Ne

t Equation (62) 
wton’s mechanics: 

 . r r  

Based upon this equation, Albert Einstein affirmed 
that the inertial mass and the gravitati ui- 
valent. This statement, however, is incorrect. An accurate 
eq

          (63) 

It follows, that particle inertia depe
of e intrinsic (in- 
ternal) energetic properties of a particle are lost in the 
equation of motion (63). This 
the obtained equation to any relatively compact object. It 
ca ectron, a p

all the
g in min

ng mass are eq

uation of motion (62) is transformed to: 

       r r v v r  

nds on the direction 
 motion. It is interesting to note that th

means that we can apply 

n be a planet, a satellite, an el roton, a photon, 
a neutrino—  same.  

Bearin d (60), we reduce (61) as follows: 

 2 2
,

p
 


pp

v r


 
0

From the latter equation we obtain the integral of mo- 
tion in two different forms:  

   exp const;p  

   

Now we examine the motion in the 
w

re, we can re-write Equation (63) 
for the plane 

21 exp 2 const.v  
         (64) 

Coulomb potential 
ith the Hamiltonian (57). In a centrally symmetrical 

field motion develops in a plane crossing the centre of a 
massive body; therefo

 ,x y :  

  

  

3

3

;g

g

 2 2
2

1 ;

2 .

g

g

r
r r r

r
r

The second equation in (66) can be
after that we obtain the integral of motion corresponding 
to

r r r
r



  

   

 

 

   
           (66) 

 integrated easily; 

 the momentum conservation law:  

2 exp const.grr
r


 

 
 

            (67) 

At the beginning, we consider a circular motion: 
0r r   . Then, the first equation of (66) leads to  

1 2
2

2 3 2
; ,g gr r

r               (
r r

68) 

This exactly coincides with the results of Kepler’s pro- 
blem, the first space velocity on the orbit of radius r be- 
ing equal to  

1
grv r
r

                 (69) 

Consequently, the first space velocity attains to the 
light velocity at .gr r  

Further, we consider an arbitrary motion relative to a 
heavy centre. Let us assume that at time t = 0, a particle 
has coordinates  0 , 0r r   , complete velocity 0v  
and azimuth velocity 0 0 0v r   . From the integrals of 
motion (64, 67 llow) it fo s:  

 2 2 2 2 2
0

0r r 
 (70) 

2 2
0 0

1 1 1 exp 2 ;

exp .

g g

g g

r r
v r r v

r r
r r



 

  
          

 
  



 

From the system of equations (70) we obtain the equa- 
tion that combines 

0r r 

  and r : 

0

2

2 2
0 0

0 0

d
d

v r

r r

 
     

   (71) 

exp 2 1g gr
r v v

r r r                

Now proceed to a new variable 0r r   and new 
parameters of the problem: 

 0 0; 1gr r v .   

the starti

         (72) 

We examine the situation when the radial velocity at 
ng point is zero. It follows that 0 0v v ; after 

this, Equation (71) acquires the form  

.

r
x x x xx yy

r
 

r

In the polar coordinate system Equations (65) becomes  

y y y xx yy
r

   

   

   

   
         (65) 

   2 1
exp 2 1 1 1 1

1 d
d

  


      


  




 
        

 

(73) 

    
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Here, the parameter   
rbit.
e grav

 Mer

defines a deviation from the 
circular motion in an o  We a
to the Solar system. Th itational radius of the Sun 
eq

ius of cury orbit is 0.5 × 108 km, the 
ra

pply the Equation (73) 

uals to 1.5 km. The radius of the terrestrial orbit is 1.5 
× 108 km, the rad

dius of the solar sphere is 6. 96 × 105 km. The parameter 
  in (73) is equal to 810E

  for the Earth planet; to 
83 10M

   for ; and to 2.1 10Sthe Mercury 6   
for the Sun surface. It follo that the circular orbital 
velocity of the Earth is 

ws 
4 . In dimen- 

Earth equals to 
10E E 

s the circul  of the 
v

sional term ar velocity
4 30 kmc 

orbit accordin
10 sec  Th ove

g to ( the value 
e Mercury m

re 
s in an elliptic 

173), whe   . Second 
order expansion in series of the exponent (73) leads to 
the equation  

     2
1

d 1
,

1 2 2

  
1 2 1 2       




 
  

     

It enables to obtain the orbit path  

(74) 

1 2

1
1 2 cos

2

1

 
 


 



 

      (75) 

We can find the complete revolution of
th

  
 

    

 the path from 
e condition:  

1 2
2π

1

 


 



 

Consequently, the angle gain over one revolution of
the path is  

 

2π 1
1




    
. 

The century displace ent of the Mercury perigee 
means that while the Earth makes 100 revolutions around 
the Sun, the Mercury makes the number of revolutions 
equal to 

m

 3 2
100 M E  . From here we obtain  

3 2
2π

100 21
1

M M 


 
 

    
        (76) 

0.2M

M E

The value    is the eccentricity - 
cury elliptic orbit.  

From (75) we can obtain the en an elliptic 
orbit transforms into a parabolic path:  

1 2 0.

 of the Mer

condition wh

     

It follows that the second space velocity is a little less 
than that of Kepler’s problem and is equal to  

     2
2 0 1 11 2 1 2 1v v v v           (77

Further, we consider the motion of a photon or a neu- 

trino in a gravitational field. In this case, for the equ
of sume

) 

ation 
 motion (71), it is necessary to as  0 0 1.v v   

Then, Equation (71) leads to 

1 2

d

1
exp 2 1 1

 

  
  

In order to ca


  

   

        (78) 

lculate the complete angle of displace- 
ment   

ove t
for a light beam passing a gravitating mass, 

we m o a new variable 1   and, as a result, we 
obtain:  

  
1 2d

2
0 exp 2 1


  


 

          (79) 

Integral (79) is divergent at 1  . It proceeds from 
the fact that at the gravitational radius a photon has a 
stationary orbit. For 1  . 

π 2arcsin ,              (79a) 

it follows ion of a light beam mov that the deviat ing, for 
example, along the Sun surface is . The only sta- 
tionary orbit for a photon is

0.86
 gr r  that corresponds to 

the parameter 1.   Th ation from unit 
m n either 

photon getting off a sta- 
tio

n determine 
from the integrals of motion (68). Under the given input 
conditions of the coordinate and ve ocity directed along 
th

 from the  
 

e slightest devi
akes a photo leave for infinity, or fall down to 

the centre. Figure 1 illustrates a 
nary orbit. 
Now we study a radial motion which we ca

l
e radius, and by using the integrals of motion (68), we 

obtain the energy of a photon moving away

-1 1

y

x

3

1

2

 

Figure 1. The paths of a photon at differe
tions. Curve 1 exhibits the photon leaving for infinity at the 
input condition

nt initial condi- 

 0.9999  . Curve 2 shows the photon fall- 

ing down to the centre at 1.01   Arrow 3 displays the 
photon radially leaving for infinity from under the gravita- 
tional radius. 
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centre: 

  0

1
exp 1p p p 


  

     
  

       (80) 

It follows that the photon crosses freely the gravita- 
tional radius and at the infinity the photon energy equals 
to:  

 0 0
0

exp exp gp p p
r

    
 

        (81) 

The radial velocity of the photon remains constant: 

r 

2 2
2 2 2

2
; ; 1.y x yx

x y x y

p p pp
v v v v v


       

p p p

The velocity of particles with non-zero mass is defined 
by the equation:  

   2 2
0

0

1 exp 2 1 exp 2gr r
v v

r r

   
     

   
 g      (82) 

From (82) we can define the second space velocity:  

 2 2
0 2 1 exp 2v v     ,           (83) 

it follows from (83) that at the initial velocity 
any particle crosses freely the gravitational radius and 
leaves for infinity. Note that the first spac
equals to 

0 2v v , 

e velocity 1v  
.  A circular orbit is steady under

dition that From the equation  
 the con- 

2 1.v v  

 1 exp 2     

we define the boundary of stability for circular orbits 
0.796812c   . Circular orbits are only stable to 

small disturbances under the condition c  . This 
situation is described by the equation of motion (73) 
where we can consider the value of   as a disturbance 

ular of a circ orbit. It follows from h (73) t at for c   
any small value 0   

 simi
makes a particle leave 
lar to that s n

disturbance 

for
 

 infin- 
ity along the path
(curve 1). Under the 

how
0

on Figure 1 
  , a particle falls 

do

on of motion (66), we can measure time in terms of 
any periodical process that occurs in the Solar system; 
for example, in terms of revolution of the
the Sun. Further, since we can calculate the periods of 
re  
Solar system runs similarly. Moreover, we extend the 
time over the entire visible part of the Universe; an  
are quite right when we measure time in billions of years, 
w

ly and straight until no force is 
applied. Following Galilee, we can say that under the 

same initial conditions in the gravitational field all par- 
ticles move along the same paths. For examp
same initial conditions an ultra relativistic proton moves 
in
statement that time runs differently in
have any physical meaning, since eve

ous sec concept that it 
is the total particle energy which plays the key 

wn to the centre and as well leaves for infinity along 
the curve similar to 2, 3 on Figure 1. 

Since all bodies in the Solar system obey the same 
equati

 Earth around 

volution for any bodies beforehand, time in the entire

d we

hereas we measure distance in billions of light years.  
Therefore, following Newton, we can repeat that a 

particle moves uniform

le, under the 

 the same path as a photon does. However, Einstein’s 
 each lift does not 
ry electron covers 

the entire infinite space (33) and simultaneously interacts 
with all particles in the Universe.  

4. Problem of the Dark Matter 

In the previ tion we introduced the 
   p  

part in the gravitational interaction, but not the rest mass, 
as it is usually considered. This fact substantially changes 
the estimations of the matter quantity participating in the 
gravitational interaction. For example, the protons whose 
energy achieves 1021 eV in cosmic rays create a gravita- 
tional potential 1012 times higher than that for protons on 
the Earth whose energy is 109 eV. The situation is similar 
for neutrino. The mean energy of neutrino emitted by 
neutron beta decay is about 106 eV; whereas zero energy 
of neutrino, which we usually take into account for 
gravitational interaction, is estimated by value of 10 eV. 
Consequently, neutrino contributes into the gravitational 
interaction 105 times more. Photons having zero mass are 
not considered as carriers of the gravitational interaction 
at all. Deviation from the straight motion for a photon is 
caused by the Einstein deflection effect. This point of 
view contradicts elementary physics. The thing is that, if 
two bodies exist at positions 1r  and 2r , and interact 
according to the law  1 2U r r , then their momenta 1p  
and 2p  follow the equations  

   1 1 2 2 1 2; .r rU U     p r r p r r     (84
1 2

Since 

) 

   
1 21 2 1 2r rU U    r r r r ,        (85) 

then, as a consequence of (84 – 85), follows the law of 
total momentum conservation:  

 1 2 1 2

d
0; const.

dt
   p p p p       (86) 

Thus, the distortion of the trajectory for a photon 
passing e.g. the Sun shows (demonstrates) the variation 
of its momentum; it follows from the law of the total 

ntum of the Sun 
ake an obvious 

momentum conservation that the mome
changes by the same amount. We can m
conclusion: if a photon is attracted to a massive body, 
then the massive body is attracted to the photon to the 
same extent. Therefore, photons, like any other particles, 
participate in the gravitational interaction, interaction 
intensity being proportional to the proper intrinsic energy 
of the particle: p   .  

The azimuth velocity of stars in galaxies is about 100 - 
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200 km/sec. That is why, the dark matter elements be- 
longing to a certain galaxy at first sight may seem to 
have the same velocities. Hence, all relativistic particles, 
such as photons, neutrino, and cosmic rays, are beyond 
our consideration; as a result, practically none of the ob- 
served particles can create an additional gravitational 
field. In this connection an idea arises that there are 
heavy cold particles contributing only to the gravitational 
interaction; they are called dark matter.  

However, a possible alternative point of view exists. 
First, we examine a simple example. A charged ion of a 
hydrogen atom creates a Coulomb potential where local- 
ized states for an electron are formed. Filling up one of 
the localized states makes the hydrogen atom electrically 
neutral, as the nuclear ompletely screened by  
elect . On the other hand, if 
metal where there is a sea of free

 field is c  an
ron we insert a proton into a 

 electrons, the localized
state does not occur, but this time the nuclear
sc free electrons. The trajectory of each elec- 
tron is distorted near the nucleus so much, 
sult, electron density increases exactly to t

Any heavy body attracts all free particles 
space by the gravitational interaction in a Coul
as

stem inst

 
 field is 

reened by 
that, as a re- 

he same extent 
and it screens the nuclear field completely. A positive 
charge interacts with all free electrons of metal in a Cou- 
lomb way and attracts them.  

of a cosmic 
omb way 

 well. Nevertheless, there is a significant difference 
between these two processes. Free electrons of metal are 
attracted to a positive charge, begin repulsive from each 
other, as a consequence, the electrical field of the posi- 
tive charge is screened by electrons. The situation is 
quite opposite with the gravitational interaction. A mas- 
sive body attracts particles from the surrounding space. 
Due to this attraction the total gravitational potential in- 
creases, thereby increasing the particle attraction even 
more. A positive feedback or antiscreening arises that 
can lead to the sy ability. As an illustration, we 
examine the both situations: screening of an electrical 
field by free electrons in metal and antiscreening of a 
gravitational field by free particles (any) in cosmic space. 

An external charge with harmonics  ext k  placed 
into a metal creates a real charge  i k  defined as a 
sum of external and induced charges: 

     i ext resk k k             (87) 

We can express the induced charge through the polari- 
zability of electrons in metal      res ik k k    . 

Here   2 2
TFk k k  ; TFk  is a characteristic wave 

vector calculated using a Thomas-Fermi approximation 
[9]. As a result, we obtain  

   
   

2

2 2

2

;
1

4
,

π

ext
i ext

TF

F
TF

k k
k k

k k k

k
k

a


 


 

 



      (88) 

Here 

B

Fk  is a Fermi momentum in metal. It follows 
from (88) that a Coulomb potential of a point charge q , 
for example, is transformed into a screened potential: 

 ; exp .ext i TF

q q
k r

r r
      

Now we consider a situation rather close to the gravi- 
tational interaction. Suppose, the entire space is filled up 
with neutral particles that have some homogeneous den- 
sity 0  and interact according to the law of gravitation. 
If any density fluctuation  ext k  occurs in the space, 
then, owing to the gravitational interaction, all other par- 
ticles begin to adjust to this density; there-after we can 
re-write the real density in the form:  

           i ext res ext ik k k k k k          (89) 

On the analogy of a free electrons susceptibility, we 
imagine a gravitational susceptibility  k  like this: 

2 2
0k k  . Here 0k  depends on the value of 0  and 

on the distribution function of the particle velocity. Af- 
terwards, the real density acquires the form:  

   
2

2 2
0

i ext

k
k k

k k

tions
 particles, which comp

of an average density, are pulled out of 
sp

vistic particles remain free 
and continue to participate 

s having finite motion as 

 


 

This causes gravitational instability of the system rela- 
tive to the long-wave density fluctua . As fluctua- 
tions develop, slow ose a small part 

the surrounding 
ace and transformed into clusters of matter in form of 

stars and galaxies. Fast relati
in creating an additional 

gravitational field. We denote clusters of a cool matter in 
form of stars and galaxie

 cold k
cosm
homoge
tion 

. The remainder relativistic particles in form of 
ic rays, photons and neutrino create additional non- 

neous matter density due to the trajectory distor- 
     rel ik k  
polarizability of the re

rel

vitational 
k . Here is the gra- 

al d

  rel k  
lativistic particles. Thus, 

the tot ensity is equal to 

   
 

.
1

cold
i

k
k

k








 

rel

Being on Earth, we have no possibility to scan the dis- 
tribution of a total energy over the entire space. However, 
judging from the fact that the azimuth velocity of stars 
moving away from the centre of galaxy remains nearly 
constant, the total gravitational potential must have the 
form: 

  ln ,i
c

r
r

R


 
   

 
 

Here   is a dimensionless parameter, —a gra-
vitational size of a space belonging to a ce n g

 cR
rtai

 
alaxy. 
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Provided that the centrifugal and centripetal forces are 
equal 

 2 i r
r

r r




 


  

we come to the expression for the circular velocity: 

.v r    

At the star velocity being approximately equal to 200 
km/sec we obtain the value 78 10   . From the ex- 
pression for the potential and with the aid of the Poisson 
equation we obtain the space distribution density of mat- 
ter: 

 

 

2 2

2

2

4π
;

.
4π

i i

i

r
r c

c
r

r

  




  


 

The space integral of density provides a value of mass 
inside a sphere of radius R : 

2 2

.i

c R v R
M


 

   

For our Galaxy having the size of about 
light years and velocity of

45 10R    
 200 km secv   we obtain 

4510 .iM gr  
44

Mass of cool matter is estimated by value 
4 10 .coldM gr  , therefore, mass of a relativistic mat- 

ter is comparable with that of the cool one rel coldM M . 
Thus, as a result of the trajectory distortion for relativis- 
tic particles, an additional nonhomogeneous distribution 
of relativistic matter occurs and, consequently, an addi- 
tional gravitational potential as well. That is why, there is 
no need to search for a mystical dark matter; relativistic 
energy is quite sufficient to create an additional gravita- 
tional field. Moreover, emission of radiation by stars and 
galaxies as well as supernova outburst lead to the con- 

tional field. Since azimuth and radial motion fol- 
lows from the general equation of motion, for example in 
form (63), the radial motion is submitted to the same ad- 
ditional gravitational attraction; for this reason, there is 

us, if 
red shift is related to recession of galaxies, then a contra- 
diction arises, because galaxies have to scatter with ac- 
ce

 dependence of physical vacuum parameters. Since 
atomic levels are proportional to Bohr energy, and Bohr 
energy, in turn, is proportional to the rest energy of elec- 
tron 

stant growth of relativistic energy in space. So, observa- 
tions of the azimuth stellar motion both in galaxies and 
galaxies in clusters point to the existence of an additional 
gravita

no dark energy to create antigravitation [10,11]. Th

leration but, judging from the azimuth motion, this is 
impossible. 

It is more natural to consider atomic spectra of far 
stellar radiation to be time dependent as a consequence of 
time

 2
0B e    we can affirm that the electron mass 

increases with time; this means that vacuum parameters 
for the electron oscillation branch  and  e t  e t  

defined decrease with time. The Hubble constant can be 
from the following expression:  

   
 

 
 

0

0

0d d

d
e e

e

m t t
H t

t m t




   
       

 
 
0

0

0

d
.

d 0
e

e

t

t

t t





 

    

 

moment it equ

on the Earth, is still be- 
ing observed on Jupiter satellites. It is known t
Jupiter emits twice as mu
the Sun. We can express the Jupiter  em
the Hubble constant. From the law servatio
energy it follows:  

d t

ch energy as it receives fro
 energy

of con

e 
   (90) 

hat the 
m 

n of 

The red shift indicates that the Hubble constant is a 
monotonically growing time function and at the present 

als to 2.5·10−18 sec−1. 
Nowadays the Universe is in a metastable state, energy 

emission transitions occurring in two opposite directions. 
On one hand, nucleosynthesis of light nuclei—takes 
place, which is the source of stellar energy. On the other 
hand, nuclear disintegration of heavy nuclei (natural ra- 
dioactivity)—occurs, as well with energy emission. From 
today’s point of view, nuclear fusion looks quite natural 
as there is a binding energy between nuclei; moreover, 
the binding energy on one nucleus increases with the 
growth of atomic number up to iron. Creation of heavier 
elements turns out to be less gainful; in this connection it 
is a surprise that heavy elements, up to uranium, exist on 
Earth. Nuclei of uranium are in metastable state. If we 
launched a piece of uranium towards the Sun, the ura- 
nium nuclei, under neutron bombardment, would de- 
compose into lighter fragments. This means that uranium 
cannot occur on Sun. Deposits of uranium on Earth, how- 
ever, prove that the Earth is an earlier formation than the 
Sun. Chemical composition of the Earth principally dif- 
fers from that of the Sun. Sun consists of 75% hydrogen, 
24% helium and a negligibly small amount of heavier 
elements, whereas Earth consists of 32% iron, 30% oxy- 
gen and a noticeable amount of heavier elements up to 
uranium. Heavy elements existing on Earth, as well as 
the red shift, point out to nonstationarity of physical 
vacuum parameters. Heavy elements could only occur on 
Earth when they were energetically gainful; variations of 
physical vacuum parameters led to the transition of 
heavy nuclei into a metastable state. A further evidence 
of nonstationarity of physical vacuum parameters is that 
not only stars, but also planets emit energy; moreover, 
volcanic activity, similar to that 

ission via 

 2d
0.

d J JM c L
t

             (91) 

Here 2
JM c —is Jupiter energy of 51 erg1.8 10 , and 
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JL  is the integral emission flux of 256.5 10 erg sec . 
By dividing both parts of (91) into Jupiter energy, and 
considering that the Jupiter only consists of hydrogen, we 
can reduce (91) to form  

0 0

0 0

d d d d
0.e n

J
e n

t t
l

 
 


 


        (92) 

Here Jl  is specific luminosity of the Jupiter which is 
equal to 3.6 × 10−26 sec−1. Taking into consideration the 
definition of the Hubble constant (90), we can re-write 
Equation (92) as follows:  

 0 0

0 0

d d
,n e

J
n n

t
H t l

 
 

           (93) 

All values at the right part of (93) are known, there- 
fore, 

0 0d d
.

d d
n e

t t

 
   

It can be seen from this expression, that the eigen fre- 
quencies of electron and proton vary practically with the 
same rate, with their values approaching each other. Let 
us present, for the illustration, a table of a specific lu- 
minosity of a number of objects (Table 1). 

Table 1 shows that the specific luminosity of the Sun 
is maximum, which is natural due to thermonuclear fu- 
sion. The specific luminosity of Jupiter and Saturn are 
the same, due to their similar composition of light atoms 
of hydrogen and helium. The specific luminosity of the 
Earth is much less than that of Jupiter. This can be attrib- 
uted to the fact that the Earth is composed of heavier 
elements, and its nuclear energy is determined not only 
by the energy of the protons, but the binding energy be- 
tween protons and neutrons. 

So, the red shift shows that the rest energy of the elec- 
tron is growing with time, whereas emission of radiation 
by planets indicates that the rest energy of the proton is 
decreasing. The total change of the energy for the elec- 

 and proton is so great, that it lead
 emission of radiation.  

ce phy  eternally, th
an only be of tw

Table 1. A specific luminosity of a number of objects. 

 

tron
and

lue

s to planet heating 

Sin sical vacuum has existed e va- 
s, which characterize the vacuum, c o 

types: either time independent constants, or oscillating 
functions. The fundamental values are general for both 

 

2 ErgE Mc  L  Erg/sec l L E  1/sec 

Sun 541.8 10  333.86 10  212.14 10  

Earth 485.4 10  203.58 10  296.6 10  

Jupiter 511.8 10  256.48 10  263.6 10  

Saturn 505.13 10  251.85 10  263.6 10  

electron and nuclear modes , , e eg c  n n    seem 
r, we have to 

 
to be thought as constant values; howeve
consider as time dependent the values, which are charac- 
teristic either for an electron mode only by ,e e  , or for 
a nuclear one—by ,n n 

ncies a
. At the present mo electron 

and nuclear freque re moving towards other. 
Finally, we pay attention to one more mechanism of a 

gravitational i
be

eas, the elec- 
tri

ment 
each 

nstability. Not coincidentally, there has 
en some cause for concern so far, that microscopic 

black holes are possible to occur under the experimental 
research with Large Hadron Collider in CERN. The thing 
is that the gravitational attraction between particles 
grows with increasing particle energy, wher

cal repulsion remains constant due to the law of con- 
servation of charge. In this connection we examine two 
protons which are speeded up to the certain energy in an 
accelerator. We write down the Hamiltonian for two 
protons, taking into account an electrical and gravita- 
tional interaction: 

2
1 2

1 2
1 2 1 2

.
m me

H


    
 r r r r

 

Since masses of the particles are proportional to their 
energy 2 2

1 1 2 2, ,m c m c   , then, under the follow- 
ing condition 

21 2
4

e
c

 
  

the gravitational attraction turns out to exceed the elec- 
trical repulsion. Consequently, the gravitational collapse 
may occur when the particle energy amounts to 

2
2710 eVc

ec 


   . 

M 21 
eV. The value of energy expected at the accelerator in 
CERN is that is eleven orders less e 
critical value. why the mi oscopic black les 
are im  to appear in the accelerator. From the ex- 
pre for the critical energy, w  define the spe- 
cific wa  vector and the correspon g de Broglie wave 
length: 

aximum particle energy in cosmic rays reaches 10

157 10 eV  
That is 

 than th
cr ho

possible
ssion e can  

ve din

2

1 2c c
c

c ec
c k


 



It follows: 




 

32
3

1.88 10 cmc

e

c c

 
 

   
  

2

Planck introduced the specific length by reason of di- 
mension: 

3
.Plr

c





 

It is easy to see that the specific length   can be ex- c
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pressed via Planck length as follows: 

Pl
c

r


  

Thus, the considerations above allow attaching a physi- 
cal sense to the Planck length, which defines the most 
probable value for the lattice constant of physical vacuum; 
here ck  specifies the edge of the Brillouin zone in — k
space, and c —the width of the allowed energy region. 

5. Conclusion 

ptics and dark ma
or the vacuum. The vacuum is represented 

as a three-dimensional crystal lattice matter with a very 
small lattice period, much less than 10−26 cm. The oscilla- 

rges to a 
system of twelve equations. We have obtained the com- 
bined equations for a multicomponent order parameter in 
the form of the electric and magnetic vacuum polariza- 
tio

acuu

 waves and the spectrum of elementary particles 
as well. Namely we come to a unified field theory. We 
have obtained the combined equations for a multicom-
ponent order parameter in the form of the electric and 
m um polarization, which defines the spec-
trum and symmetry of normal oscillations in the form of 
elementary particles. We have restored the fundamental 
parameters of physical vacuum, such as: susceptibility 
fo

f fine structure), parameters of length and time 
for the electron and nuclear branches of the oscillations, 
correspondingly. We have shown he charge quanti-
zation is directly connected to discreteness of vacuum 
co co

opole. Elementary 
particles are excitations of vacuum in a form of wave 
packets of a soliton type. We e obtained an exact 
equation of motion for a particle in a gravitational field. 
En

 
he e 

infinite space according to the cosmological principle. In 
this case recession of galaxies is impossible; therefore,  

itted by far galaxies must be 

In presented paper we try to consider problems of the 
gravitational o tter developing from the 
crystal model f

tors are located at the nodes of an infinite lattice. It is 
shown that an infinite set of equations to describe the 
coupled oscillations of moving oscillators conve

n, which defines the spectrum and symmetry of nor- 
mal oscillations in the form of elementary particles. Thus, 
our model for v m is represented as a material me- 
dium in which dynamical properties of the crystal specify 
the spectrum of elementary particles. As we can see from 
the consideration presented above, the new theory allows 
describing with a single point of view both the electro-
magnetic

 

agnetic vacu

r the electric and magnetic polarization (equal to the 
constant o

 that t

nsisting of particles with the interaction nstant equal 
to the double charge of a Dirac mon

hav

ergy defines both gravitational interaction and particle 
inertia, inertia being of an anisotropic value; that is why 
the statement, that the inertial and gravitational masses 
are equivalent, is not correct. We have examined the 
situation w n galaxies are distributed over the entir

the red shift of radiation em
interpreted as the blue time shift of atomic spectra. As a 
consequence, it follows that both rest energy and mass of 
electron are increasing now. Since physical vacuum ex-
ists eternally, vacuum parameters can be either constant 
or oscillating with time. These are time oscillations of 

   ,e nt t   and    ,e nt t   which have caused elec-
tron mass growth within recent 15 billion years, inducing 
red shift; on the contrary, pro- ton mass decreases, re-
sponsible for emission of radiation by planets. 
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Appendix 

 [7
al field theory to de- 

 light. So

ich determine the speed. For instance, the 
 

velocity of the wave front itted forward, is equal 

n

tions.
nece

A1. Determination of the Order Parameters and 
its Conjugate Forces 

In the study presented in the paper above and in
attempt is made to create a non-loc

], an 

scribe elementary particles, which should be taken as the 
elementary excitations of a particular environment, 
which is the physical vacuum. Since the discovery of the 

sibilitypos  of creation of particles and anti-particles in 
the vacuum, it became apparent that the vacuum is not 
empty space, but the environment with specific dynamic 
properties. It follows from this that there must be an ab- 
solute coordinate system tied to the medium (which is 
the model of vacuum as the three-dimensional rigid cry- 
stal lattice structure) in which the photons as excitations 
of the medium, propagate with the speed of  
Einstein’s postulate that there is no absolute coordinate 
system is flawed. Therefore, the second postulate of Ein- 
stein’s that the “speed of light is independent of the sour- 
ce,” is wrong. This situation occurs precisely when the 

l is the excitation of the medium, the dynamic pro- 

zation: 

4π .div  P                  (1) 

Here,  , tP r  the electric polarization of the vacuum, 
and the quantity  , t r  determines the density of the 
electric charge and is a quite standard definition. Expres- 
sion (1) is not an equation, but the condition for the onset 
of the charge density. In the expression (1) a vector 
 , tP r  is an order parameter, which consists of three 

arbitrary functions: 

      , , ,x x y y z zt P t P t P  P r e r e r e , t .     (2) 

e parameter 

r

The density of the electric charge,  , t r  in turn, 
generates a force, conjugate to th order 
 , tP r , which is called the electric field E . It is possi- 

ble to recover the electric field distribution for an arbi- 
trary distribution of the electric charge density. From the 
Coulomb interaction between point charges: 

1 2e e
U

r
                   (3) 

we get: signa
perties of wh

   
 speed of sound radiated by the flying aircraft, is not de-

pendent on the aircraft speed v . Notice that the relative 
 em

d
;

,

  
 



 


r r

r
r r

E

              (4) 

from which follows the interaction energy: c v , and for the wave radiated back, the relative veloc- 
ity is c v . Mathematical equations have the property 
that if two physical processes are subject to the same 
equation, the solutions of this equation after renormalize- 
tion of parameters apply to both the first and to the sec- 
ond physical processes. The main feature of any oscilla- 
tory process is the existence of equilibrium points, devia- 
tion from which induces an oscillatory process. Actually, 
these points of balance represent the absolute coordinate 
system in which the excitations, such as photons, travel 
at the speed of light. Therefore, the following postulate 
of Einstein “the speed of light in any inertial frame is the 
same”, contradicts the previous postulate. It should be 
noted that the Lorentz transformations have appeared 
before the theory of relativity, and they have brought out 
to explain the negative result of the Michelson experi- 
ments for the coordinate system associated with the 
Earth, which moves relative to the absolute coordinate 
system tied to the physical vacuum. In the present work 
it is shown that the electron cloud of the charge moving 
relative to the absolute coordi ate system is indeed de- 
formed in strict accordance with the Lorentz transforma- 

  
The ssity to introduce the well-defined order pa- 

rameters for the vacuum environment follows from the 
terminology that we use. For example, in an electrically 
insulating medium, which is the physical vacuum, the 
electric charge can only be the result of vacuum polari- 

    21 1
d d ,

2 8π
U    r r r E r        (5) 

In addition, from the relationships (4) we have an 
equality: 

4πdiv E ,                 (6) 

which is included in the Maxwell equations. However, 
this is nothing more than a definition for the average 
density of a set of point charges. From (6) it does not 
follow neither the character of the Coulomb interaction, 
nor the interaction energy. Actually we use expressions 
(3

. For example, in the theory of elasticity the 
strain tensor is the order param

returning the system to the equilib- 

) - (5), from which, after summing over all the charges 
we obtain both the electric field configuration and the 
interaction energy.  

In the study of any dynamical system, is necessary 
first of all to determine the order parameter and its con- 
jugate force

eter and its conjugate 
force is called the stress tensor. In equilibrium, the strain 
tensor is related to the stress tensor, as a result of the 
total energy can be expressed either through the strain 
tensor, or through the stress tensor with help of the coef- 
ficient of elasticity. In dynamic processes, the equation 
of motion can be written only for the strain tensor (the 
order parameter), and the stress tensor is decomposed 
into its own force, 
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rium, and the external force, being determin
exter  for t

ls reaction. 
Therefore, it is first necessary t
rameters associated with these 

 here. If the electric field is generated by the 
harge, then the electric charge in an electrically 

neutral environment can only be generated by the electric 

ed by the 
nal conditions. The equation of motion he stress 

tensor cannot be written. 
In electrodynamics, the electric and magnetic fields 

determine the force field, so this field Maxwell called the 
stress tensor. By introducing the force field, the force 
itself cannot exist on its own, because the force has to be 
applied to something, as the action equa

o determine the order pa- 
forces. There is not arbi- 

trariness
electric c

polarization. In (“The Classical Theory of Fields” by L. 
D. Landau and E. M. Lifshitz, A Course of Theoretical 
Physics, Pergamon Press, Vol. 2, 1971) it is stated that 

onsistent. 
For example, the theory of relativity requires that the 
charge of the electron was a point-like, bu
charge has an infinite energy. Obviously, it is necessary 
to

charge cannot be point-like. The equation of 
motion for the force field canno
duce an additional force, then e

charge—is a localized formation. 
Th

that classical electrodynamics is internally inc

t the point 

 reject the requirements of the theory of relativity, 
since the 

t written, as if we intro- 
ffects of self-interaction 

would lead to the internal contradictions. Thus, the equa- 
tions of motion for the electromagnetic wave can be ex- 
pressed only by the order parameters in the form of the 
electric and magnetic polarization, but not by the both 
force fields, electric and magnetic fields. 

On the other hand, quantum mechanics implies that 
the free electron—is the plane wave, which is also false, 
since the electron 

erefore, from the viewpoint of wave mechanics ele- 
mentary particles have to be considered as stable wave 
packets with a well-defined spatial distribution. 

The first attempt to associate the field character to the 
electron energy is related with the introduction of the 
classical radius of the electron charge in the form: 

2
2

0
e

e
mc

r
                 (7) 

Further studies, however, have shown that the differ- 
ent length is associated with electron, which Compton 
obtained from the scattering of photons by the free elec- 
trons: 

0em c

Here 0, ,em c  are considered as fundamental and in- 
dependent variables. However, this is not the case. Nei- 
ther of these units is neither basic nor independent. The 
fact that from quantum mechanical expression for the 
electron energy 

2
0 0 0e e em c

cer 


                (8) 

                   (9) 

is seen that the Compton length can be expressed in 
terms of the characteristics of the vacuum environment 

0 0

,ce
e e

c
r

m c 
 


              (10) 

The parameters of the vacuum c  and 0e , in turn, 
are expressed in terms of the fundamental parameters of 
vacuum: 

0; ; .e
e ce e

e e

c r
   
 

          (11) 

The physical meaning of the Planck constant remained 
unclear despite the fact that this term Planck introduced 
more than a hundred years ago. However, from the point 
of view of the existence of the vacuum medium (which is 
based on the rigid three-dimensional crystal model), the 
physical meaning is easily recovered, if in the expression 
(9) for the electron energy the Planck constant is ex- 
pressed in terms of the electron charge e  and the fine 
structure constant   

2 2
2 0

0 0 0
e

e e e
ce

e e
m c

c r


 

 
    ,       (12) 

in addition, exactly the same relationship holds for the 
proton: 

2 2
02

0 0 0
p

p p p

e e
m c

c r


 

 
    .       (

cp

13) 

These last expressions for the en
and proton acquire a quite transparent physical meaning. 
Th

 get that energy consists of two parts: 

ergy of the electron 

e fact that the electric charge is related not only the 
energy of the electric field, but also the energy of the 
electric polarization, which induces the charge. As a re- 
sult, we

2 21
d

1
d

8π 8π
U


  E r P r .       (14) 

The first term determines the energy of the electric 
field, and the second term—the energy of the vacuum 
polarization, and the quantity   characterizes the di- 
electric susceptibility of the vacuum.  

For certain classes of solutions, Equation (14) can be 
written as: 

2 2e e
U

r r
  ,                 (15) 

where characterizes a localizat
The last expression shows that under the condition 

r  ion of the charge e . 

1   the energy associated with the polarization be- 
comes greater than the energy of the electric field. Com- 
paring the second term in (15) with (12) and (13) for the 
energy of the electron and the proton, respectively, we 
see that these expressions are consistent, if we assume 
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that the polarizability of the vacuum is the fi
constant: 

ne structure 
1 137   . 

e energy of thThus, th e electric field is 137 times less 
th

e ia and Wave Properties of 
Electrons 

an the energy associated with the polarization of the 
vacuum. 

Dirac has raised the question of the need to understand 
the physical meaning of the fine structure constant. In 
this paper we show that the fine structure constant is a 
fundamental characteristic and determines the suscepti- 
bility of the vacuum. 

A2. About the In rt

It looks like there is a myth about the equivalence of in- 
ertial and gravitational masses. Since misunderstandings 

ss, it makes sense to consider the inertia and the 
wave properties of electrons on the example of the hy- 
drogen atom. Consider the Hamiltonian o
an arbitrary potential as 

with the problem of equivalence of inertial and gravita- 
tional ma

f a particle in 

   H p U  r              (16) 

from the conservation energy law we have:  

 d
0

d

pH U

t

 
  

 
p r

p r

Since 

  .        (17) 

 
,

p
 

p

then Equation (17) can be rewritten as follows: 

v r               (18) 

  0,U v p               (19) 

which yields the Hamilton motion equation: 

 
;

p
U


 


v p

p
 

a

.        (20) 

The (20) is valid for any particle and any extern
l potential. In the particular case of an electron in t
he nuclear field, the Hamiltonian has the form: 

2
2 4 2 2
0,e

e
H m c c p

r
   .         (21) 

Here one can get rid of the notion of the mass of the 
electron and go to the expression, reflecting the wave 
properties of the electron  

2
2 2 2
0,e

e
H c k

r
   .           (22) 

Since we are interested in the frequency spectrum of 
th

2) by , then select the frequency 

e hydrogen atom, then, in accordance with the theory 
of self-similarity, we must select the characteristic fre- 
quency of the problem, and then all the other compo- 

nents can be represented in a dimensionless form. Let us 
divide both sides of (2 

, and then the Hami kes the form: ltonian ta0,e
2

2
0, 2

1e
0,0, ee

H c c k
r 

     
  

Here we took into account that 

.       (23) 

2e c . From (23) it 
is clear that it is convenient to proceed to dimensionless 
coordinate and time:  

, 0, ,; ; ,c e e c er t t r    r r k k  

after which the Hamiltonian takes the form, which is 
displayed in the peer-reviewed paper: 

2
0, 1e

H
k

r

     
,        

 
  (24) 

which implies that the entire frequency s
hydrogen atom is determined solely by its principal elec- 
tro quency 

pectrum of the 

nic fre 0,e  and the fine structure constant  , 
and  —is the in fundamental quantity that deter- 
mines the susceptibility of vacuum

on here, he Planck’s constant. The velo
 term

ma

 nor t
. There is no mass of 

the electr city 
s of becomes also dimensionless and is expressed in

the speed of light. This is because the Planck constant 
and e mass of the electron and  th the proton are deter- 
mined by the electron charge e , which actually deter- 
mines the amplitude fluctuations of the order parameter 
in the form of electric polarization of the vacuum, and 
for a system of harmonic oscillators frequency oscilla- 
tions does not depend on the amplitude of oscillations, 
which is reflected in the expression (24). The velocity 
becomes also dimensionless and is expressed in terms of 
the speed of light and can be expressed in terms of the 
group velocity of the wave packet: 

2
.

d 1c t k

d k  v r k

iltonian (24) are as follows 
(the primes in (24, 25) can now be om

    
  

v
k

       (25) 

The equations of motion (20) for the electron in the 
nuclear field with the Ham

itted): 

2
; .

1 rk

 k
   

 
v k           (26) 

From the first equation, the wave vector k  can be 
expressed in terms of the group velocity of the wave 
packet— v : 

21 v




v
k ,             (27) 

after which the second Equation (26) transforms into a 
form which can be expressed in two different ways  


2d 1t rv

    
 

v
,     

        (28) 
d
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and 

 21
d

k
t r

d     
 

,          (29) v

which are reflecting the inertia and the wave properties 
of the electron.  

From Equation (28) it follows   

 
 3 22 21 1v v r

    
v v vv 

e ve


,       (30) 

  

so it can be seen that the acceleration in the direction 
perpendicular to th locity  0vv  is proportional to 

e square f th  o 21 v . In this case, the particle inertia is 
proportional to the energy. 

However, in the direction along velocity  v v  , the 
acceleration is proportional to the factor  3 221 v , 
which implies that the inertia is growing faster in the 
direction of motion than in the perpendicular direction.  

The inertia of the particles is the easiest checked on 
the accelerator. In the ring accelerator, the centripetal 
force required to keep the particles on a specific trajec-  

tory, increases proportional to the factor 21 1 v , 

therefore, in this case inertia is proportional to the energy.
In a linear accelerator, the equation of motion for a parti-
cle is as follows: 

 

 

 

3 221
U

x v
x


   .   


         (31) 

Thus, the inertia of the particles (inertial mass) is the 
magnitude of the anisotropic, while the gravitational 
m

 in 
time takes the form: 

ass (energy divided by 2c ) is a scalar quantity. 
The wave properties of electrons can be easier analy- 

zed using Equation (29), which after differentiation

 2

21 rk
1 k

     
v kk

v


 .        (32) 
 

After taking into account the relations 

2

2 2k
        (33) 

1
1 ; ;

1 1
k

v



  
 

 

k
v

r
  

 
k

we arrive at the equation:  

21 v
r r

  
 .      (34) 

          
     

v v v

 polar coordinates In  ,r  , the Equation (34) reduces 
to: 

 2 2 2 2 2
2

1 1 ;r r r r r
r

                (35) 


2 22 1r r r r
 2r
r

            .        (36) 

Equation (35) is also displays anisotropy of
properties of the electron. When consider
along the radius 

 the inertial 
ing a motion 

 0  , Equation (35) reduces to the 
form: 

 3 2 221

r

rr


 






,              (37) 

while for the circular motion  0r r    the n 
(35) looks as follows: 

 Equatio

2r
22 21 rr

 




 
.             (38) 

Multiplying both sides of (38) by r  and taking into 
account that r v  , we obtain the following eq   uation:

2

21

v

rv









.              (39) 

v  through k  Expressing with help of (33), we ob- 
tain: 

2

21

k

rk









.             (40) 

The Bohr quantization condition should be added to 
Equation (40), which he wrote down in the form of quan- 
tization of adiabatic invariants:  

     

For the circular motion, the relation (40) is trans- 
fo

i ip dq nh .          (41) 

rmed to the form: 

2π ;rp nh rp n     .        (42) 

The relations (42) can be interpreted as
of the orbital angular momentum 

 a quantization 
 s rp : 

zs rp n   .                (43) 

At first glance it is a real feeling that there is a quan- 
tum of action , which leads to the quanti
orbital angu omentum. However, if we recall that 
th  in tu


lar m

zation of the 

e momentum itself is rn equal to k , then we 
come to the st ard cyclic condition th s for any 
wave process: 

          

which means that in a stationary orbit one must fit an 
integer number of wavelengths 

and at hold

rk n  ,       (44) 

2πr n 
Pl

. Therefore 
anck’s constant has nothing to do with formation of 

stationary orbits in the hydrogen atom. Solving Equa- 
tions (32) and (36) we obtain: 

22

, 2
; 1

1

n n

n
k r

n
n

n


 



    
    

 

      (45) 
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As a result, the frequency spectrum
atom that follows from the Ham
form: 

 of the hydrogen 
iltonian (16) takes the 

2

0, 1n
 e n

   
 

.            (46) 

Wherein the spectrum depends 
electron frequency and the fine structure constant—sus- 
ce

only on the intrinsic 

ptibility of vacuum,  . The term “the fine structure 
constant” is not appropriate, since both intrinsic electron 
frequency, and the enti ectrum of the hydrogen atom 
depend on the quantity 

re sp
 . 
on t

It is 
quencies do not depen he Pl

important that the fre- 
anck constant, nor on d 

0,e, ,e m c . The first qu  about the influence of rela- estion
tivistic effects  the spectrum of the hydrogen atom is on
considered by Somm  (A. Sommerfeld, Atomic erfeld
spectra and spectral lines, 1931). He obtained a more 
general formula, cons  elli
there he used five (!) d t quantities 

id
i

ering
fferen

ptic trajectories, but 

0,, , , ,em e c  . 
As a result, for frequency spectrum of hydrogen he re- 
ceived:  

2
2R  

4
0,

2
1 ; e

n

m e
R

n



   

  32



      (47) 

Here R is the Rydberg constant, the expression of 
which had received by Bohr. However, if we recall the 
relation 

2
2

0, 0, ; ,e em c
c

  


        (48) 

then from (47) we arrive at the expres

e

sion: 
4

0,
0,2 3 2

e
e

2 m eR 
 

 


.          (49) 

Such a monstrous conglomeration of symbols in the 
expression (49) shows an absolute lack of u erstanding 
of the nature of the wave processes that occur in the hy- 
drogen atom, a

nd

nd more over the wave processes within 
the electron itself.  

Now, coming back to the energy En n  from tor 
the discrete frequencies (46), we then arrive at the ex- 
pression:  

2

,

1n n
c e

eg
E

r

       .           (50) 
n 

Here reflects the amplitude of the osc
the electron fields, and —is the spatial co

e  illations of 
nfiguration ,c er

of the electron charge, а 137g e e  —the constant 
interactio between po rticles of the crystal (physi- n int pa
ca

red as the fundamental basis of quantum mecha- 
nics: 

l) vacuum. 
Heisenberg’s uncertainty principle relationships are 

conside

,

.

t h

p x h

  
  

   

Here

             (51) 

, however, the Planck constant is quite superfluous 
quantity. If we recall that    , and p k  then 
we go back to the usual relationships of wave mechanics: 

2π,

2π.x

t

k x

  
  

              (52) 

And these relations for hoton and electron have com- 
pletely different physical meanings.  

der a simple example. If we connect the antenna 
to the generator of electrical oscillations with frequency 
ω for a time interval T, then this will result in the radia- 
tion of a wave packet of  length L = сТ. Now, in order 
to study the frequency spectrum of the wave packet, by 
using a narrowband receiver, we see that th s 
will be distributed in a certain range 

p

Consi

e frequencie
   , with the 

value   determined by the relationship: 2πT   . 
Accordingly, since ck  , the unc
v etermin  the relatio
whic ies that ion of a st
matic wav

e unc n (4
to ph During ic transition

ground, t e a photon as

then at the pas age of 
ing, br e lines. Al
pa

ertainty of t
nship 

rictly

3). The sam
 from

 
use t
ex

 through a diffraction grat- 
l o

he wave 

e applies 

he radia- 
cited state, 

ector is d
h impl

o th
otons. 

state to the 

we see 

ed by
 the creat

ertainty relatio
 atom

o creat

photons
ning of th

2πk L   , 
 monochro- 

e requires infinite time. Of course, the total 
energy and total momentum of the wave packet, as inte- 
grals of motion are well defined, and cannot have any 
relation t

 the excited 
a wave packet 

with a length L  it takes some time. Beca
tion time is limited by the lifetime of the 

s
oade f the diffraction 

ttern is determined by three parameters: the period of 
the grating a , wavelength of the quantum  , and the 
length of the wave packet of photon L cT . In this case, 
the Planck constant has nothing to do to the diffraction 
pattern. Moreover, the energy is a constant of motion and 
it cannot be uncertain, in principle. Consi he — 
ray quantum structure as a thin filament of length L , it 
becomes clear the quantization condition for the angular 
momentum 

dering t

k . At  —ray quan
elect t hould be
length s each s nt wave
phase evi —

tum
 e
 

 capturi
qual to t

ng by an 
he wave- ron—t

o t
with

he
hat 
 th

 orbi

e pr

 length s
ubseque

ous one
cycle would be in 

2π 2πr k    , which 
implies t e condition: 1r k   , and thus the value of the h
orbital angular momentu s r p r k       . Thus it m 
becomes clear condition of of the angular quantization 
momentum. 

Let us now consider how the uncertainty relations are 
m

n for the electron wave function is as follows:  

anifest for the electron. If an electron is placed in a 
one-dimensional potential well with the size L , then the 
solutio

π
sin e ni txn n

n
A

L
   


Here, the wave vector and frequency of 




.          (54) 

nk  n  acquire 
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the well-defined values: 

2 2 2
0,

π
;n n e n

n
k c k

L
     .     (55) 

The solution (54) is realized for 
exam

any wave process. For 
ple, if a guitar string is fixed at points at a distance 

L , then it results in a wave vector quantization accord- 
ing to (55), with frequencies 1n nc k   , where 1c  the 
signal propagation velocity along the string, depending 
on the tension of the string. Any player knows that the 
frequency of the string vibrations depends on the tension 
of a string and distance between the fixing points of the 
string. The same situation arises in the piezoelectric 
resonator having a thickness L , its vibrat ons may be 
given i e form (54) with the frequencies 

i
n th nn sc k   , 

where sc —the sound vel ity in the piezoelectric. Thus, 
the restriction of the signal in time leads to th  
uncertainties and restriction of vibrations in space leads 
to the quantization of the wave vector and the vibrations 
with the well-defined frequencies. Therefore piezoelec- 
tric resonators are used, for example, to stabilize the op- 
eration of an electronic clock.  

A characteristic feature of linear vibration systems is 
that the frequency does not depend on the amplitude, 
therefore the s ular equation determining the spectrum 
of normal oscillations, does not contain the amplitude at 
all. 

If the Laplace operator is present in the equation of 
motion (or a system of equations), then the solution can 
be conveniently represented in terms of the eigenfunc- 
tions of the Laplace operator 

2

oc

ec

e frequency

     

with the eigenvalues 2 . We obtain a well-defined fre- 
quency to each eigenfunction, as a result, we have the 
spectrum of normal vibrations    . In the Cartesian 
coordinate s em, the eigenfunctions can be plane 
waves  exp ikr  with eigenvalues  

 2 2 2 2

yst

x y zk k k     . In the cylindrical coordinate sys- 
tem, eigenfunctions can be Bessel he sph- 
erical coordinate syste e employed spherical cyl- 
inder functions. The amplit  mode is 
arbitrary and depends on external conditions. For exam- 
ple, the guita

 functions, in t
m can b

ude of each normal

rist finger deflects a string to some distance 
from the equilibrium position. The initial deflection can 
be expanded in the eigenfunctions (54): 

  π
, 0 sinn

n

n

x t A x      .         (5
L 

6) 

Once the string was released, every normal mode be- 
gins its own motion 

  1

π π
, sin cosn

n

n n
x t A x c

L L
      

  
 .t





      (57) 

And the energy of each normal vibration
tional to 

 is propor- 
2
nA , where nA  depends only on

co
 the initial 

nditions.  
If the electron is considered as an elementary excita- 

tion of the vacuum, the dynamic properties of the ele- 
mentary particles must be determined directly by the 
dynamic properties of vacuum. Let us make rough esti- 
mates. Let the vacuum has a dielectric susceptibility 
equal  , then the energy associated with the creation of 
the electric polarization is: 

 21
d

8π
P


  r r .             (58) 

On the example of a one-dimensional string, we can 
see that the arbitrary force excites the entire spectrum of 
normal vibrations in the form (57). However, really only 
three normal modes in the form of spherical functions are 
associated with the electron:  

2

2

2

sin sin
;

cos
,

y

z

P q
r

P q
r

sin cos
;xP q

r

 

 







             (59) 



and are eigenfunctions of the Laplace operator 

0iP                    (60) 

with the eigenvalues equal to zero. 
Such fields can be excited only in the event that the 

external force itself satisfies the Laplace equation. In fact, 
ho 

tru u

g interac

we need to find out w plays the role of “guitarist” that 
plays on the vacuum fields. At this point we are led to 
the introduction of the crystal s ct re of the vacuum 
with particles having an intrinsic field and the corre- 
spondin tion energy:  

     0 03

1
; d .

4π
g U

r
   

r
E r P r E r r   (61) 

However, the self-energy of the field for the solutions 
in the form (59) is infinite, and therein lies the problem of 
divergence for point charges. The introduction of the gra- 
dient energy with the parameter length e  and the ki- 
netic energy of the field with the parameter of time e  

 leads to a blurring of the polarization charge to the size
equal to the correlation radius 0ecce er    . As a 
result, the polarization energy becomes fi te and equalni  to 

2q
cer

 ,                (62) 

the polarization charge is then determined by the relation 
q g . Assuming q e , we get g e  , with the 
energy of the electron 

Open Access                                                                                            IJAA 



E. V. CHENSKY 462 

2 2 2e e g
0 0e e

ce ec r

      ,     (63) 
  

which implies that the Planck constant is directly related 
to the charge of the electron and reflects the polarization 
and dynamic properties of the vacuum fields, however, is 
by no means a universal fundamental constant. Vacuum 
fundam ntal constants are , ,, , ,e n e ng



e    . Charge, mass, 
energy and momentum of electron and proton, and the 
Planck constant are indeed expressed i

 vacuum
e an arb

n terms of the 
fundamental parameters of
low from this that if we tak itrary scalar field (for 
ex

y amplitude, and the quan- 
tum of light can have arbitrary momentum and the cor- 
responding energy 

, but it does not fol- 

ample, photon field) in the form  exp ikr , then the 
momentum can be quantized p k  and then proceed 
to the quantum field theory. There is no physical mean- 
ing to this. 

In a vacuum, as a linear system, the electromagnetic 
oscillations can occur with an

;A A   p k
n of light by an 

, but in the emis- 
sion and absorptio
conservation of energy and momentu

electron the laws of 
m must be fulfilled: 

2 2 2 2 2 2
0, 0, ,

.

e ec k Ack c k Ack

A A

 

   k k k k 

       

 

 
 (64) 

In addition, the spatial and f
tions must be fulfilled: 

requency resonance condi- 

2 2 2 2 2 2
0, 0, ,

,

e ec k ck c k ck 

 

       

   k k k k
  (65) 

it follows then that A   .  
Thus, as conjectured by Planck, electron emits and 

absorbs light by quanta, but it does not follow from this 
that light is quantized, moreover, that any field is quan- 
tized, as stated by Einstein. But it is connected only spe- 
cific field of the electron energy distribution in spa

The introduction of vacuum parameters allows 
un

ce. 
us to 

derstand the physical mechanism of the appearance of 
the spin and magnetic moment of the electron. The fact is 
that the magnetic field configuration of the electron co- 
incides with the magnetic field of the ring current. The 
magnetic moment associated with the charge, rotating on 
a circular orbit of radius r  is equal to  

2

evr

c
  .   (66)                

Comparing an expression (66) with the magnetic mo- 
ment of the electron, that is equal to the Bohr magneton, 

02 2
ce

e
e

ere

m c
  


.             (67) 

We see that the magnetic moment of the electron 
charge is related to the rotation of the charge in a circular 

orbit with the speed of light with a size equal to the cor- 
relation radius . Consequently, the emergcer ence of the 
electron spin associated with the movement of fields in a 
circular orbit.  

Closer examination shows that the charge rotates in 
the orbit with a radius 2cer  which leads to the spin of 

2 . The magnetic moment in this case is two times 
greater than that given by the form 66). This means 
that the magnetic moment of the electron consists of two 
components: a magnetic moment associated with the 
motion of the charge and the magnetic moment associ- 
ated with the magnetization of vacuum. 

A3. The Formation of the Energy Spectrum of 
the Massive Body 

ula (

Consider the process of formation of the energy spec- 
trum of massive bodies, consisting of a certain set of 
quantum particles. Ignoring the interaction between par- 
ticles the energy of a can be represented as  massive body 
the sum of the energies of each of the particles: 

  2 2 2 .
N N N

c        k k     (68) 0
1 1 1

i i i i i
i i i  

Convenient to go to the four-dimensional coordinate 
system of the same dimension , , , ,x y z t  where t ct . 
In this case, the velocity of the particle d dtv r  is a 
dimensionless quantity and is expressed in units of the 
speed of light, then the energy of elementary particles 
can be written as:  

2 2
0i i   p ,i               (69) 

where 0 0i i   —zero-energy particles, i icp k — 
momentum of a particle, also has dimension of energy. 
The speed of the particle is determined by the expres- 
sion: 

 
2 2
0

di
i i i

 


v
p p

.           (70) 
d i i i
 p p

Of the last expression can be expressed momentum of 
a particle and energy as follows:  

0

2
;

1

i i
i

iv






v
p

       
0

1
i

i


 



       (71) 

2
.i

v

For massive body can be considered that the velocities 
of all particles are the same and then iv v . 

The total energy and total impulse can be written as: 

0
1 0

2 2
1

;
1 1

iN
i

i
i v v


  



  
 

        (72) 

N


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0
02 2

1 1

;
1 1

N N

i i
i i

vv
p p

v v




 

  
 

      (73) 

Using the defi

2 2
0   p ,                (75) 

Despite the fact that (72), (73), (75) have a relativistic 
nitions of zero energy and total momen- view, speed in them has a different physical meaning and 

tum of a massive body (72) and (73), we can write the 
expression: 

is defined as the velocity relative to the absolute coordi- 

2
2 2 20
0 21 v


   


p             (74) 

Whence it follows that the energy spectrum of a mas- 
sive body has the form: 

nate system tied to the medium—p
presented as the model of the three-dimensional rigid 

hysical vacuum which 

crystal lattice structure. 
 

 

 

 

 


