

A New Approach for Smoothing Soil Grain Size Curve Determined by Hydrometer

Mohammed Q. H. AL-Jumaily, Thanoon H. AL-Dabbagh*

Geology Department, College of Science, University of Mosul, Mosul, Iraq Email: *thanoon53@yahoo.com

Received July 19, 2013; revised August 22, 2013; accepted September 23, 2013

Copyright © 2013 Mohammed Q. H. AL-Jumaily, Thanoon H. AL-Dabbagh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In hydrometer analysis for soil grain size distribution, usually, the grains passing sieve No. 200 (<0.074 mm) are used. However, the hydrometer results occasionally give diameters greater than 0.074 mm. This event causes a mismatch in the curve of grain size distribution obtained from sieving and hydrometer methods. Hence, a new approach is proposed for smoothing soil grain size curve determined by hydrometer using Excel-2007 with simple statistical methods. The treatments show that in case of large sizes, there are big differences between the values of soil grain diameters smoothed by Excel-2007 in comparison and the values measured by references. These differences generally decrease with decreasing soil grain size diameters. The statistical treatments also divulge whether the hydrometer results are accurate or not. Furthermore, a general equation has been derived to estimate values of K factor, which is used for calculating the grain diameters in hydrometer analysis. The equation can be applied for any specific gravity of soils and for wide range temperatures.

Keywords: Hydrometer; Soil Mechanics; Grain Size

1. Introduction

Most soil mechanics laboratories run soil grain size analysis as a routine test. The distribution of particle sizes, which is larger than 0.074 mm (retained on sieve No. 200), is determined by sieving method, while the distribution of particle sizes smaller than 0.074 mm is determined by a sedimentation process using hydrometer method.

Lambe [1] stated that the hydrometer method is based on Stokes' Equation for the velocity of a freely failing sphere; the definition of particle diameter of a sphere of the same density falls at the same velocity as the particle in equation. The first of the above assumptions can be practically satisfied by limiting the maximum concentration of soil in the suspension. No more than 50 gm of dry soil are used in 1000 cc of suspension; the effects of interference are negligible. It is knownthat most soil particles are comprised of flaky shapes, principally in case of fine soils. Also, the soil particles are not exactly equal in density. Moreover, there are many other factors affecting the accuracy of the hydrometer results discussed in details by [1]. Fredlund *et al.* [2] present two mathematical forms to represent grain size distribution curves for well-graded soils and gap-graded soil. Lu *et al.* [3] provides a rigorous analysis on the accuracy of Stokes' Equation for calculating particle-size distributions of non-spherical finegrained clay particles.

Keller and Gee [4] compare the hydrometer method (D422) for PSA (particle-size analysis) of the American Society of Testing Materials (ASTM) with the hydrometer method published by the Soil Science Society of America (SSSA).

Stefano *et al.* [5] compare laser diffraction method (LDM) with the sieve-hydrometer method (SHM). A simplified approach is presented and evaluated by Bedaiwy [6]. The approach simply is based on the determination of h_e directly on the geometric center (g.c.) of the hydrometer bulb rather than the center of buoyancy, and h_e is measured as the distance from the reading mark on the hydrometer stem to that geometric center.

The difficulty experienced by all soil mechanics laboratories is the large sizes of soil grains (greater than 0.074 mm) obtained from the hydrometer method, even though the soil grains pass sieve No. 200 (<0.074 mm).

^{*}Corresponding author.

This problem causes a mismatch in the curve obtained from sieving analysis and that obtained from hydrometer analysis results. Moreover, the problem causes a lack of accuracy in the hydrometer results. For all these reasons, the study attempts to solve this problem by smoothing soil grain size curves determined by hydrometer using Excel-2007 with simple statistical methods.

2. Treatments by Excel-2007

To clarify these treatments, the hydrometer data for Lambe [1], with hydrometer specific gravity range (0.995 - 1.05), have been used (**Figure 1**). Note that in **Figure 1(a)**: the yellow row (*i.e.* row number two) shows red colored numbers referring to step-number and the blue colored letters referring to column-number.

The treatment process steps are as follows:

Step 1: Enter the time in minutes (1B), hydrometer readings (1D), and diameters in mm (1J) (**Figure 1(a)**).

Step 2: Around the values of time, hydrometer reading, and diameter to logarithmic (Log10) values (2C), (2E), and (2K) respectively (**Figure 1(a)**). Draw scatter plots between log hydrometer reading and log diameter on the (Y-axis) with log time on the (X-axis) as shown in **Figure 1(b**). This figure shows that the fluctuation in log hydrometer reading curve is different from the log diameter curve. This means that the log diameter curve is not affected by the same influences that affect the log hydrometer reading curve.

Step 3: Draw a straight line curve between log hydrometer reading on the (Y-axis) and log time on the (X-axis) (**Figure 1(c**)). To determine the slope and intercept for this straight line use the equation shown in **Figure 1(c**) to predict the calculated values for the log hydrometer reading (3F) (**Figure 1(a**)).

Step 4: Calculate the difference (Error) between log hydrometer reading, and predicted log hydrometer reading by subtracting the second values from the first (4G) (**Figure 1(a)**).

Step 5: Add the error values to log diameter values (5H) (Figure 1(a)).

Step 6: Change the values that have been obtained in Step 5 from logarithmic numbers to ordinary numbers as predicted diameter values (6I) (**Figure 1(a)**). Next draw scatter plots between log hydrometer reading and log predicted diameter on the (Y-axis) with log time on the (X-axis), as shown in **Figure 1(d**). This figure shows the same fluctuation in both log hydrometer reading and log predicted diameter. This indicates that log predicted diameter curve are affected by the same influences which affects the log hydrometer reading curve. To demonstrate the importance of these processes on the Lamb 1951 results, the predicted results one compared with the Lamb results, as shown in **Table 1** and **Figures 1(e)** and (f). These two figures show that the hydrometer curve in Figure 1(e) does not run smoothly and continuously with the sieve curve in comparison with the predicted result curve of Figure 1(f).

To clarify these treatments, other data were used for hydrometer ASTM 152-H, shown in **Figure 2(a)** of Krishna [7]. The results are represented in **Figures 2(b)**, (c), and (d). The predicted Krishna [7] results are shown in **Table 2** and **Figures 2(e)** and (f). These two figures show that in case of the smallest sizes the differences between the two curves are less than the differences in **Figures 1(e)** and (f). However, **Figure 2(f)** shows that the smooth curved is relatively better than the curve in **Figure 2(e)**.

Other hydrometer results, ASTM 152-H, for Das [8] are treated here. The results are shown in **Figures 3(a)** to (f). It is clear from **Figure 3(e)** that there is a good matching between the results before and after treatments.

The hydrometer data, 151H, for CEEN 162 [9] are shown in **Figure 4**. It appears that there is an excellent matching between the CEEN 162 results before and after treatments due to the high accuracy results. Therefore there is no need to draw the related figures for this almost perfect data.

Finally, the hydrometer results data, ASTM 152-H, for David [10] are represented in **Figure 5**. The figure shows that there is a bad correlation between log hydrometer reading and log time due to errors in hydrometer readings as shown clearly in column (1D).

The above treatment results clearly show whether the hydrometer readings are accurate or not.

Table 1	. Lambe,	1953,	results	before	and	after	treatments
[1].							

Diameter (mm) Lambe, 1951	*Diameter (mm) After treatments	Percent finer by weight % Lambe1951	Method
2.38000	2.38000	100.0	
0.84000	0.84000	79.2	
0.42000	0.42000	60.8	Sieve
0.14900	0.14900	22.7	
0.07400	0.07400	15.9	
0.08600	*0.07103	14.0	
0.06230	*0.06280	13.2	
0.04690	*0.05135	11.1	
0.03550	*0.04014	8.8	
0.03400	*0.03798	8.8	
0.02300	*0.02485	6.1	Hydrometer
0.01690	*0.01762	4.6	
0.01230	*0.00991	3.3	
0.00880	*0.00847	2.6	
0.00710	*0.00701	2.3	
0.00530	*0.00495	1.8	
0.00174	*0.00190	1.0	
0.00148	*0.00146	0.9	

- • • • • • • • • • • • • • • • • • • •	(™ -) ∓ Insert Pa	ige Layout	Formulas	Grai Data Revi	n Size Analysis ne ew View	w.xlsx - Micros Developer	oft Excel				- • ×
Ar		11 · A A		%			•		anser		7 A
· · ·	IU-					% , .0	.00 Solutional Formatting	Format Cell as Table - Styles	Delet		Sort & Find & Filter * Select *
Clipboard 🕞 M10	Font	fx	Gi A	Alignment	Gr.	Number	6	Styles	Cells		Editing
A A	В	C	D	E	F	G	Н	T	J	К	L
1 2	1B	2C	1D	2E	3F	4G	5H	61	1J	2K	
3 4	Time(min.) 0.25	log time -0.60206	R=1000(r-1) 26.7	log R 1.426511	Pred.Log R 1.50959	Error -0.0831	Error+Log D -1.14858303	Pred D 0.07103	D (mm) 0.08600	log D -1.0655	
5	0.5	-0.30103	25.1	1.399674	1.39620	0.0035	-1.20204005	0.06280	0.06230	-1.20551	
6 7	1 2	0 0.30103	21.0 16.7	1.322219 1.222716	1.28281 1.16942	0.0394 0.0533	-1.28941876 -1.39647515	0.05135 0.04014	0.04690 0.03550	-1.32883 -1.44977	
8 9	2 5	0.30103 0.69897	16.5 11.3	1.217484 1.053078	1.16942 1.01953	0.0481 0.0336	-1.42045712 -1.60471905	0.03798	0.03400	-1.46852 -1.63827	
1	10 20	1 1.30103	8.4 5.0	0.924279 0.69897	0.90613	0.0181	-1.75396842 -2.00386838	0.01762 0.00991	0.01690 0.01230	-1.77211 -1.91009	
2	40	1.60206	4.6	0.662758	0.67935	-0.0166	-2.07211207	0.00847	0.00880	-2.05552	
3	62 115	1.792392 2.060698	4.0 3.0	0.60206 0.477121	0.60766 0.50659	-0.0056 -0.0295	-2.15434075 -2.30519735	0.00701 0.00495	0.00710 0.00530	-2.14874 -2.27572	
6	1089 1524	3.037028 3.182985	1.5	0.176091 0.079181	0.13883 0.08386	0.0373	-2.7221934 -2.83441234	0.00190 0.00146	0.00174 0.00148	-2.75945 -2.82974	
7 • • • Shee			- /								
eady	et1 / Sheet2 /	Sheet3 🦯 🤊	d /				1 4			100% 😑	Show deskto
🔊 🌔) 🧿		0 🧕	1 🦪		X				- 🕅 🖪 🤇	ص 10:02 (« ۲۰۱۳/۰۲/۰٦ («
					(a)					
0.5 - -0.5 - -1.5 - -2.5 - -3.5 - -1.5 - -1.5 - -1.5 - -1.5 - -1.5 - -1.5 - -1.5 - -2.5 - -3.5 - -1.5 - -1.5 - -2.5 - -3.5 - -1.5 - -1.5 - -2.5 - -3.5 - -1.5 - -2.5 - -3.5 - -1.5 - -2.5 - -3.5 - -1.5 - -2.5 - -2.5 - -3.5 - -1.5 - -2.5 - -3.5 - -1.5 - -2.5 - -3.5 - -1.5 - -1.5 - -2.5 - -3.5 - -1.5 - -1.51	0 0	0.5 1	 	Log Log Log Log R Error+L		Percentage by weight % 0 00 09 00 00 00 0	Sieve Hydro	0.5 1 Log Tin (c) method meter met	1.5 ne (mir		3 3.5
			(d)					(e)			
			Bercentage by weight %			0.1 meter in r	nm.	10			

Figure 1. hydrometer results data for Lambe [1]. (a): The smoothing treatments processes by Excel-2007. (b): Scatter plots between log hydrometer reading and log diameter with log time before treatments. (c): Straight line equation between log hydrometer reading and log time. (d): Scatter plots between log hydrometer reading and log predicted diameter with log time after treatments. (e): Grain size distribution curve before treatments. (f): Grain size distribution curve after treatments.

Figure 2. Hydrometer results data for Krishna [7]. (a): The smoothing treatments processes by Excel-2007. (b): Scatter plots between log Hydrometer reading and log diameter with log time before treatments. (c): Straight line equation between log hydrometer reading and log time. (d): Scatter plots between log Hydrometer reading and log predicted diameter with log time after treatments. (e): Grain size distribution curve before treatments. (f): Grain size distribution curve after treatments.

19- ((<u>₩</u> -) ∓			Grain S	Size Analysis new.3	dsx - Microsoft	Excel					3
Home	Insert Page	e Layout F	ormulas Da	ata Review	v View D	eveloper					0 - 0	1
Arial	- 11	· A A	= = =	≫·- ►¶ -	General	-			🖁 🕶 Insert -	Σ - Α		
							Conditional F	ormat Cell	Delete *	Sort	& Find &	
В	<i>I</i> <u>U</u> · <u>U</u> ·			C. C	Letter Contraction	/o ,	Formatting * as	Table * Styles *	Format	2* Filte	r* Select*	
	Font	ra	Ali	gnment	R NU	umber 🕫	Sty	les	Cells	Edi	ting	
5	→ (2	$f_{\rm x}$										
	В	С	D	E	F	G	Н		J	K	L	
	18	2C	1D	2E	3F	4G	5H	61	1J	2K		
	Time(min.)	log time	ReL	log ReL	Pred.Log ReL		Error+Log D	Pred D	D (mm)	log D		
	0.25	-0.60206	52.0	1.716003	1.73334	-0.0173	-1.18482889	0.06534	0.06800	-1.16749		
	0.5	-0.30103	49.0 48.0	1.690196 1.681241	1.71449 1.69564	-0.0243	-1.33409599 -1.47032587	0.04633	0.04900	-1.3098 -1.45593		
	2	0.30103	48.0	1.672098	1.67678	-0.0144	-1.60674429	0.03380	0.03500	-1.60206		
	4	0.60206	46.0	1.662758	1.65793	0.0047	-1.73989882	0.02473	0.02300	-1.74473		
	8	0.90309	45.0	1.653213	1.63908	0.0040	-1.87192029	0.01343	0.01300	-1.88606		
	15	1.176091	44.0	1.643453	1.62198	0.0215	-2.02428336	0.00946	0.00900	-2.04576		
	30	1.477121	43.0	1.633468	1.60313	0.0303	-2.12455905	0.00751	0.00700	-2.1549		
	60	1.778151	41.0	1.612784	1.58427	0.0285	-2.27251869	0.00534	0.00500	-2.30103		
	120	2.079181	39.0	1.591065	1.56542	0.0256	-2.4302869	0.00371	0.00350	-2.45593		
	240	2.380211	35.0	1.544068	1.54657	-0.0025	-2.6045585	0.00249	0.00250	-2.60206		
	480	2.681241	33.0	1.518514	1.52771	-0.0092	-2.75392711	0.00176	0.00180	-2.74473		
	1440 2880	3.158362 3.459392	30.0 28.0	1.477121 1.447158	1.49783 1.47898	-0.0207	-2.97931832 -3.12873124	0.00105	0.00110	-2.95861 -3.09691		
	2000	3.439392	20.0	1.44/130	1.4/090	-0.0316	-3.128/3124	0.000/4	0.00080	-3.09091		
heet	1 Sheet2 Sheet2	Sheet3 🖯 🖓	/)	
					Calculator					0% (=)	12:30 p	-(
	0			्	(a)					; 1 ()	7-17/-7/1	
	****		*	Log Rcl Log D	1 Bon 1 1	1.5 - .45 - 1.4			. 0.936482	26152	•	
	0	1 Log Tin	2 ne (min)	3	4	-1 -0.8	5 0 0.5	1 1.5 Log Tim	2 2. e (min)	53	3.5 4	
			(b)					(c)				
•				Log Rcl	v weight %		Before treatme	nents ints	**************************************	•		
			+	Error+Log	 D A meight 	50 40 30 20	*					

Figure 3. Hydrometer results data for Das [8]. (a): The smoothing treatments processes by Exce-2007. (b): Scatter plots between log Hydrometer reading and log diameter with log time before treatments. (c): Straight line equation between log hydrometer reading and log time. (d): Scatter plots between log Hydrometer reading and log predicted diameter with log time after treatments. (e): hydrometer grain size distribution curve before and after treatments.

3. K Factor

Paste

18 II II II Ready

2

0 -1 -2 -3 -4

The value of K is a very important factor in hydrometer analyzing method to calculate soil grain diameters. The old conventional method uses confidential tables to find K factor by means of temperature and specific gravity of soil. In this study, the following general equation has been derived numerically upon K tables to determine the values of K as:

$$\mathbf{K} = \frac{1.12258}{\mathbf{T} + 62.27068} * \sqrt{\frac{1.65}{\mathbf{G} - 1}}$$

1289

Home	(Page 1) = Insert Pa	ige Layout	Formulas	Data Revi	Lab2 new.xlsx - ew View	Developer	CI				
Paste B		11 · A A		- ≫- H 1 (2 (2	Gener	al % , *	Conditional	Format Cell	insert -	- 💽 - 🖉	T A
ipboard 🖗	Font			Alignment		Number	Formatting *	as Table * Styles * Styles	Format Cells		Iter * Select *
M8	- (a	fx	-1	Angrimerit	~1	Humber		styles	Lens		uning
A	B	C	D	E	F	G	Н	1	1	К	
~	0	0	0	-		0			0	- IX	L.
	18	2C	1D	2E	3F	4G	5H	61	1J	2K	
	Time(min.)	log time	Ra	log Ra	Pred.Log Ra	Error	Error+Log D	Pred D	D (mm)	log D	
	1.5	0.176091	1.0	0.016197	0.01601	0.0002	-1.56844888	0.02701	0.02700	-1.56864	
	2	0.30103	1.0	0.015779	0.01551	0.0003	-1.61951772	0.02401	0.02400	-1.61979	
	2.5	0.39794	1.0	0.01536	0.01512	0.0002	-1.65733568			-1.65758	
	3.5	0.544068	1.0	0.014521	0.01453	0.0000	-1.7212565	0.01900	0.01900	-1.72125	
	6	0.778151	1.0	0.013259	0.01359	-0.0003	-1.79621092			-1.79588	
	10	1	1.0	0.011993	0.01270	-0.0007	-1.88676122			-1.88606	
)	20	1.30103	1.0	0.011147	0.01149	-0.0003	-2.0460976			-2.04576	
	30	1.477121	1.0	0.010724	0.01078	-0.0001	-2.09696568			-2.09691	
2	40	1.60206	1.0	0.0103	0.01028	0.0000	-2.15487926		0.00700	-2.1549	
3	50	1.69897	1.0	0.0103	0.00989	0.0004	-2.22143644			-2.22185	
-	60	1.778151	1.0	0.009876	0.00957	0.0003	-2.30072368	0.00500	0.00500	-2.30103	
5											
A Dec Shee	t1 / Sheet2 /	Sheet3 ?	2/							100% 😑	
						-					

Figure 4. Shows the smoothing treatments for CEEN 162 [9] hydrometer analysis data by Excel-2007.

Home	Insert Pa	ige Layout	Formulas	Data Revie	ew Vie	ew	Developer							() - C
Ar	ial 🔹 1	11 - A A) = = ;	- 14 -	12	Genera	d (*	< E			-Insert		
aste B	IU-H	- & - A		- 注注	- 12		% , .0	.00	Conditional	Format	Cell	Delet	5	ort & Find &
- 💜 🗀			6		5			15	Formatting *		Styles *	Form	And a second sec	ilter - Select -
pboard 🖗	Font			Alignment	00	1	lumber	- 194.) 		Styles		Cells		Editing
F22	- (0	fx												
A	В	С	D	E	F		G		Н	I.		J	K	L
-														
	1B	2C	1D	2E	3F		4G		5H	61	_	1 J	2K	
	Time(min.)	log time	ReL	log ReL	1.0	⁶ 1.						D (mm)	log D	
	0.25	-0.60206	32.0	1.50515	1.4	4 - ^	▲ y=		5628x+1.22	4214	_	0.08730	-1.05899	
	0.5	-0.30103	25.0	1.39794	1.3	, `		R	= 0.724018			0.06470	-1.1891	
	1	0	19.0	1.278754							_	0.04760	-1.32239	
	2	0.30103	13.0	1.113943	Rcl		-	^	1444		-	0.03490	-1.45717	
	4	0.60206	10.5	1.021189	8 ^{0.1}						_	0.02500	-1.60206	
	8	0.90309	10.0	1	- 0.0	5 -						0.01780	-1.74958	
	15	1.176091	8.5	0.929419	0.4	4 -						0.01310	-1.88273	
	30 60	1.477121 1.778151	7.5 8.0	0.875061 0.90309	0.3	2 -						0.00930	-2.03152 -2.18046	
	120	2.079181	7.5	0.90309	C	, ่—						0.00460	-2.18040	
	240	2.380211	7.5	0.875061		-1	0	1	2	3		0.00460	-2.33724	
	1440	3.158362	7.5	0.875061				og 7	ime (min.)			0.00130	-2.88606	
	2880	3.459392	7.5	0.875061				.og i	nne (ann.)		_	0.00090	-3.04576	
													2.2.12.10	
h N Char	tt Chasta	Chast? 0	1			_		1			-			
	sti / Sneetz /	51166(3 / 6				_						m m m	100%	-
4 → → Shee	et1 / Sheet2 /	Sheet3 . 2	1/					1	(-		100% (-)	J

Figure 5. Shows the hydrometer results data for David [10] by Excel-2007 with a bad correlation.

where,

T = Temperature in Celsius and

G = Specific gravity of soil solids.

The equation can be applied for any specific gravity of soil within known ranges and for a temperature range from 10 to 40 Celsius.

4. Results and Conclusions

The statistical treatment results using Excel-2007 show

that there are big differences between the values of soil grain diameters determined by this method and those measured by references. These differences may be due to the lack of the time accuracy, especially at the beginning of the test. In addition, the three assumptions for Stokes' equation do not match exactly with soil properties. The Excel-2007 results give a smoother and more matching grain size distribution curve.

In case of decreasing soil grain size particles, these

Diameter (mm) Krishna 2007	*Diameter (mm) After treatments	Percent finer by weight % Krishna 2007	Method
4.750	4.750	90.5	
2.000	2.000	83.5	
0.840	0.840	75.5	
0.425	0.425	67.8	Sieve
0.250	0.25	63.4	
0.106	0.106	46.1	
0.075	0.075	44.1	
0.03029	*0.02925	37.8	
0.02844	*0.02739	33.3	
0.02054	*0.02103	31.6	
0.01490	*0.01575	28.6	TT 1 (
0.01094	*0.01116	24.1	Hydrometer
0.00771	*0.00776	20.8	
0.00411	*0.00405	14.9	
0.00130	*0.00128	8.4	

 Table 2. Krishna, 2007, results before and after treatments

 [7].

differences decrease strongly because of the high correlation between log time and log hydrometer reading.

The treatments will reveal whether the hydrometer results are accurate or not.

A general equation has been derived to obtain values of K, which is a very important factor for determining soil grain diameters in hydrometer analysis. This equation may be applied for any specific gravity of soil and for a wide temperature range.

REFERENCES

 L. T. William, "Soil Testing for Engineers," Chapter IV, John Wiley & Sons, Inc., New York, London, Sydney, 1951, pp. 29-42.

- [2] M. D. Fredlund, D. G. Fredlund and G. W. Wilson, "An Equation to Reptesent Grain-Size Distribution," *Canadian Geotechnical Journal*, Vol. 37, No. 4, 2000, pp. 817-827. http://dx.doi.org/10.1139/t00-015
- [3] N. Lu, G. H. Ristow and W. J. Likos, "The Accuracy of Hydrometer Analysis for Fine-Grained Clay Particles," *ASTM Geotechnical Journal*, Vol. 23, No. 4, 2000, pp. 487-495.
- [4] J. M. Keller and G. W. Gee, "Comparison of American Society of Testing Materials and Soil Science Society of America Hydrometer Methods for Particle-Size Analysis," *Soil Science Society of America Journal*, Vol. 70, No. 4, 2006, pp. 1094-1100. http://dx.doi.org/10.2136/sssaj2005.0303N
- [5] C. Di Stefano, V. Ferro and S. Mirabile, "Comparison between Grain-Size Analyses Using Laser Diffraction and Sedimentation Methods," *Biosystems Engineering*, Vol. 106, No. 2, 2010, pp. 205-215. <u>http://dx.doi.org/10.1016/j.biosystemseng.2010.03.013</u>
- [6] M. N. A. Bedaiwy, "A Simplified Approach for Determining the Hydrometer's Dynamic Settling Depth in Particle-Size Analysis," *Catena*, Vol. 97, 2012, pp. 95-103. <u>http://dx.doi.org/10.1016/j.catena.2012.05.010</u>
- [7] R. Krishna, "Engineering Properties of Soils Based on Laboratory Testing," UIC 44 Experiment 6 Grain Size Analysis (Sieve and Hydrometer), University of Nebraska, Lincoln, 2007, pp. 44-59.
- [8] B. M. Das, "Soil Mechanics Laboratory Manual," 6th Edition, Oxford, New York, 2002, p. 277.
- [9] CEEN 162, "Geotechnical Engineering—Laboratory Session No. 2. Grain Size Determination (Hydrometer Method)," Atterberg Limits, Sand Equivalent Test, p. 24.
- [10] B. David, 2003. "Physical and Plasticity Characteristics Experiments #1-5," CE 3143, pp. 13-17.