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ABSTRACT 

In this work, different samples of an industrial carbon black are used to study the hydrogen intake from an over pres-
surized atmosphere and its changes due to alteration of its level of crystallinity produced by γ-irradiation. The monitor-
ing of the hydrogen adsorption was made by means of thermogravimetric analysis and by measurements of some elec-
trical parameters as the Seebeck coefficient. X-ray diffraction shows that the irradiation diminishes the level of crystal-
line perfection. These results show interesting possibilities to use carbon black as cheap hydrogen absorbers. 
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1. Introduction 

As it is well known, hydrogen plays a double role in 
carbons when the carbons store hydrogen showing elec-
trical parameters figures that correspond to semiconduc-
tor materials [1]. As a result, to increase the hydrogen 
storage capability of carbons is a good path to obtain 
cheap semiconducting carbons. As the hydrogen intake 
starts in the surface of the solids, many works were ori-
ented to the improvement of the surface paying attention 
to the optimization of the hydrogen adsorption. Follow-
ing this direction, as it is commonly accepted, the amount 
of defects and the distribution and sizes of them were the 
main parameters to achieve a good hydrogen adsorption. 
The linear relationship between the hydrogen uptake and 
the specific surface area (SSA) is independent of the na-
ture of the carbon material [2]. In the development of 
carbonaceous absorbers for hydrogen storage there are 
many studies showing different techniques to activate the 
carbon’s surface, with chemicals [3] and with gas etching 
[4]. Most of the commercial active carbons available 
nowadays to store hydrogen correspond to this stage. 
After that, the possibility was explored to use physical 
treatments to produce the required defects. Radiation by 
γ-rays is a powerful tool to produce defects in the surface 
and inner defects in carbons [5].  

In carbon nanotubes, γ-irradiation had been more ef-
fective than chemical etching to activate carbon surfaces 
[6]. In the present work, we will study the capability of 
γ-rays to increase the semiconducting character of carbon 
black samples to increase the hydrogen absorption.  

2. Materials 

The material used in the present work was from Black 
Pearls 1400, manufactured by Cabot™. According to the 
manufacturer’s information, the specific surface of this 
material is 560 m2/g. We have selected carbon black 
specimens with the best performance. The surface energy 
of commercial carbons blacks is from 70 - 200 m2/g [7] 
and the figure of the surface area is a liable identifier of 
carbons with a good capacity for hydrogen adsorption [8]. 
The samples were subjected to two successive treatments: 
hydrogenation and irradiation. The hydrogenation was 
performed in a pressurize hydrogen atmosphere at 20 bar 
and room temperature for 180 minutes. In these condi-
tions, a hydrogen adsorption on the carbon black powder 
took place. The used hydrogen was Ultrapure Plus ×50S 
(99.9992%), supplied by Carburos Metalicos™. In the 
irradiation process, the sample was exposed to a 504-kGy 
irradiation with 60Co isotopes. The sample exposure to 
the radioisotopes was carried out by immersion in a wa-
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ter well where the radioisotopes were located. The loca-
tion was the Nayade facility, existing at the Centre of 
Energy, Environment and Technology Research (Centro 
de Investigaciones Energéticas, Medioambientales y 
Tecnólogicas, CIEMAT), in Madrid, Spain. 

For this study, four samples are prepared in order to 
study hydrogenation and irradiation effects in the sam-
ples as summarized in Table 1. 

3. Methods 

3.1. Thermogravimetrical Analysis 

The four samples analysed here were examined by Ther-
mal Gravimetry (TGA), using the equipment DTA/TGA 
SETARAM Setsys Evolution. The weight of the four 
samples was around 13 mg. 

The measurement supposed a heating from room tem-
perature to 1073 K in an argon atmosphere (20 ml/min). 
The heating rate for the four samples was: 

1) From room temperature up to 673 K: the heating 
rate was 5 K/min. 

2) From 673 K up to 873 K: the heating rate was 3 
K/min. 

3) From 873 K to 1073 K: the rate was 5 K/min. 
The TGA curves were recorded using the software 

CALISTO v1.0.95. 

3.2. X-Ray Diffraction 

Another technique of examination was X-Ray Diffrac-
tion (XRD), performed in a Siemens D5000 diffractome-
ter with Ni-filtered Cu Kα radiation. The X-ray tube was 
operated at 40 kV and 30 mA. The experimental diffrac-
tometers were collected with a step of 0.03˚ (2θ) and an 
averaging time of 0.6˚/min. The XRD patterns of the 
samples were identified with the Joint Committee on 
Powder Diffraction Standards (JCPDS) files. 

3.3. Electrical Parameters Measurements 

The samples were compacted in thin pellets and four 
contacts with silver paste were deposited on the surface 
for electric characterization. In order to measure the elec-
trical conductivity, the Van der Pauw method was used 
[9]. The electrical conductivity can be obtained solving  
 

Table 1. Treatments in the carbon black samples. 

Sample Treatment 

TN-sH without treatment 

TN-H Hydrogenation 

CN-sH Irradiation 

CN-H Irradiation and hydrogenation 

the Van der Pauw equation: 

1 2e ed R d R       1             (1) 

To calculate R1 and R2 four contacts, labelled A, B, C 
and D, were used. R1 is obtained as 1 BD ACR V I  and 

2 AB CDR V I , were V and I are the voltage and intensity 
across the sample, respectively. A Keithley 2400 mul-
timeter was used as a current source. 

The Seebeck coefficient is determined as the ratio be-
tween the electrical potential, , and the temperature 
difference, 

V
T , that is: 

V
S

T





                (2) 

For the temperature control, a “Lakeshore 340 Tem-
perature Controller” was used and for recording the po-
tential data a “Keithley 2750 Data Acquisition Switching 
System”. 

4. Results and Discussion 

Figure 1 shows the results of the TGA. The more rele-
vant feature in sample CN-H is that there is an increase 
in weight, more pronounced at temperatures about 500 - 
700 K. It is easy to explain it as a process of argon ab-
sorption [10,11] that takes place in the surface of the car-
bonaceous materials. In samples TN-H, CN-sH and TN- 
sH, Ar adsorption at the sample surface was not ob-
served.  

On the other hand, in Table 2, the weight loss, a pa-
rameter that supplies information about the hydrogen 
storage I shown. It is simple to see that the irradiated 
samples stores more hydrogen that the non-irradiated 
ones. A figure of hydrogen content larger than 10% w/w 
has interest looking at the possibility of use carbon 
blacks as cheap hydrogen adsorbers in other fields of the 
hydrogen economy as in the construction of portable can-
ister with stored hydrogen for the automotive industry. 

In Figure 2, referred to non-hydrogenated samples, it  
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Figure 1. Thermal gravimetric analysis of the samples. 
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Figure 2. XRD plot of non-hydrogenated samples. 
 
Table 2. Weight loss (in %) during the TGA showing the 
variations in the different temperature ranges. 

Δm1 (%) Δm2 (%) Δm3 (%) 
Sample 

(273 - 673 K) (673 - 873 K) (873 - 1073 K)
ΣΔm (%)

CN-H 1.596 −9.877 −10.444 −18.69

CN-sH −1.184 −2.826 −2.329 −13.0 

TN-H −7.167 −2.839 −2.219 −12.11

TN-sH −8.338 −2.723 −1.987 −13.0 

 
is possible to see that the effect of the irradiation is to 
diminish the crystalline perfection displayed as an im-
pairing of the slenderness of the diffraction peak; the 
irradiated carbon black becomes more similar to an 
amorphous sample. The fact that γ irradiation increases 
the hydrogen intake in carbon materials is in agreement 
with the knowledge that amorphous carbons are better 
absorbers than crystalline carbons [12]. 

Similar results are obtained in Figure 3 for the hydro-
genated samples. Actually, the diffraction is a powerful 
tool to distinguish between irradiated and non-irradiated 
materials, but not very reliable to evaluate the level of 
over hydrogenation. 

In the same way, if we proceed to evaluate the crystal-
line size Lc using the Scherrer’s formula [13], as shown 
in Table 3, the effect of the irradiation is to diminish Lc. 

Similar evolution of XRD is known in carbon nano-
tubes irradiated with γ-rays [14]. 

The electrical properties of the samples have been ob-
tained using the Van der Paw’s technique described 
above and the results are shown in Table 4, where it is 
possible to see that the absorption of hydrogen decreases 
the electrical conductivity, as, it is known for similar 
materials [15]. 

The influence of the irradiation process is effective 
regarding the change in Seebeck’s coefficient. In Table 4 
we can observe that the irradiation per se improves the  
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Figure 3. XRD plot of hydrogenated samples. 
 
Table 3. Determination of crystalline size using the Scherrer’s 
formula. 

Sample L [Å] 

CN-H 6.8 

CN-sH 7.3 

TN-H 7.1 

TN-sH 7.3 

 
Table 4. Results of the measurements of electric conductiv-
ity and Seebeck’s effect of the carbon black samples. 

Sample σ (S/cm) S (μV/K) 

TN-sH 2.00 0.87 ± 0.01 

TN-H 1.49 4.2 ± 0.2 

CN-sH 1.41 2.63 ± 0.05 

CN-H 1.09 3.25 ± 0.05 

 
Seebeck’s coefficient, but it is also remarkable that the 
intake of hydrogen increases that coefficient. 

5. Conclusion 

According to the above results, it is possible to conclude 
that the use of previous γ-irradiation improves the hy-
drogen intake at room temperature in carbon black from 
an over-pressurized atmosphere. The carbon black is 
converted into a more amorphous material by the effect 
of the irradiation. The X-ray diffraction is a valid tech-
nique to observe the changes that take place in the carbon 
black as a consequence of γ-irradiation and the alteration 
in the crystalline structure is explained by the change in 
the lattice parameter Lc. 
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