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ABSTRACT 

We study two particle quantum walks on one dimensional chain. Probability distribution of two particle quantum walks 
is dependent on the initial state, and symmetric quantum walk or asymmetric quantum walk is analogous to that of one 
particle quantum walk. The quantum correlation probability is much different from classical coincidence probability. 
The difference reflects quantum interference between two particles. 
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1. Introduction 

Random walk is relevant to many aspects of our lives, 
providing insight into diverse fields. It forms the basis of 
algorithms [1] and describes diffusion processes in phy- 
sics or biology, such as Brownian motion [2]. It has also 
been used as a model for stock market prices [3]. Quan- 
tum walk is the quantum counterpart of classical random 
walk. It is immediately noticed that quantum walks 
behave quite differently from classical random walk [4]. 
Quantum walk is expected to have implications for va- 
rious fields, for instance, as a primitive for universal 
quantum computing [5], systematic quantum algorithm 
engineering [6], or for deepening our understanding of 
the efficient energy transfer in biomolecules for photo- 
synthesis [7]. Quantum walk has attracted a great deal of 
attention in the scientific community in recent years. 
There have been several suggestions for practical imple- 
ments of quantum random walks, such as trapped ions [8, 
9], optical lattices [10,11] and QED cavity[12]. 

In this paper, we aim to numerically simulate quantum 
walks of one or two quantum particles on a chain. The 
quantum correlation probability is much different from 
classical coincidence probability. The difference reflects 
quantum interference between two particles. Quantum 
interference is matter wave interference based on wave- 
particle dualism of quantum mechanics.  

The paper is organized as following. In Section 2, the 

quantum walk operations are introduced. In Section 3, 
distribution probability of two particles is displayed. The 
comparison between two particle quantum walks with 
one particle quantum walk is stated in Section 4. Brief 
conclusions are given in Section 5.  

2. Quantum Walk in One-Dimensional  
Systems 

Quantum walk on a line is a simple example which 
shows many properties of quantum walks. It is often used 
as a tool in the analysis of quantum walks on more 
complicated graphs [4]. 

In a classical random walk on the line, a particle is in a 
certain location at start. At each time step, the particle 
moves left or right randomly with probability 1/2. This is 
realized by throwing a coin. If the coin is upward, the 
particle moves left. Otherwise the particle moves right. 
After many time steps, the random walk yields a bino- 
mial probability distribution.  

Quantum walk is realized on a line or a circle by a 
quantum coin. Let H be the Hilbert space spanned by 
the positions of the particle. The basis states of the space 
are  :n n Z , where n  corresponds to a particle 
localized in position . However, quantum walker has 
been assigned an additional quantum degree of freedom 
which could be spin or other chirality [13]. The walker 
goes left or right depending on the spin degree of 
freedom. Thus the position space is augmented by coin 

n
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space HX spanned by two basis states  ,   . States 
of the total system are in the space of C PН = Н Н

n

 
[14].  

Suppose the particle is initially localized on site . 
The initial state of the particle is  

   0 ,0a n n b n   ,1n        (1) 

where  are complex amplitudes of the 
state. According to normalization, we have 

    and a n b n

   2 2
1a n b n  . If the initial state is asymmetric,  

then  and . The symmetric     1,0a n     0,0b n 

state corresponds to   1 
,0

2
a n   

 
 and 

  1
0,

2
b n

 
 
 

  [15]. In each time step, there are two  

operations, coin flip operation and shift operation. The 
coin flip operation generates a superposition state  

,0 ,0 ,1

,1 ,0 ,1

C n a n b n

C n c n d n

 

 
        (2) 

A frequently used balanced unitary coin is the so 
called Hadamard coin H 

1 11

1 12
H

 
   

. 

In the shift operation, spin-up state moves left while 
spin-down state moves right.  

,0 1,0

,1 1,1

S n n

S n n

 

 
           (3) 

Running N time steps of quantum walk, the probability 
distribution is very different from the classical normal 
distribution.  

What is quantum walk mechanics of two particles on a 
chain? Suppose initially one particle is on site  and 
the other on site . Since each particle has spin states, 
the initial state of the system is expressed as following. 

m
n

mn mn mnm n m n

mn mnm n m n

a b

c d

      

     
         (4) 

where mn , mn , mn  and mn  are complex ampli- 
tudes of the state. Because of normalization, 

a b c d

2 2 2 2
1mn mn mn mna b c d    . 

The quantum coin in two particle case is ˆ ˆ ˆ
m nH H H . 

where ˆ
mH  is quantum flip operation on the  mth

particle and ˆ
nH  is quantum flip on the . Thus the 

Hadamard coin is  
nth

1 1 1 11 1ˆ
1 1 1 12 2m n

H
  

   

    

      (5) 

First, the Hadamard coin operates on the initial state. 
The coin flip operation generates new superposition 
state. 

ˆ
mn mn mn mnm n m

mn mnm n m n

H a b

c d

  
n

        

      
   (6) 

In which 
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        (7) 

Second, the particle states moves along the chain 
according to their spin states. Spin-up state moves left 
while spin-down state moves right. We have the fol- 
lowing recursion relations. 
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d
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        (8) 

One step of quantum walk is accomplished in this way.  
2 2 2

mn mn mn mn mnp a b c d    2
 is called correlation  

probability. That is probability of one particle on site  
and the other on site  after  steps quantum walk. If 

 and  are same, that is probability of two particles 
coincide on one site.  

m
n T

m n

3. Quantum Walk Probability Distribution 
of Different Initial States 

Suppose two particles are indistinguishable. There are 
three types of initial spin conditions: both spin up, both 
spin down, one spin up and the other spin down. The 
initial states are 

 
1 2 , 1 2 : both spin up, one on site  and the other on site ;

1 2 , 1 2 : one on site  with spin up, the other on site  with spin down

1 2 , 1 2 : both spin down, one on site  and the other

mn nm

mn nm

mn nm

a a m n

b c m n

d d m

 

 

 

；

 on site .n
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We simulate ten step quantum walk on a chain of 

length 21 and calculate the correlation probability. 
Figure 1 and Figure 2 both correspond to the first initial 
state in which two spin up particles locate on two 
different sites in the middle of the chain. After 10 steps 
of quantum walks, maximum probability appears on site 
4 and 6. It reflects that spin up particles move left with 
bigger probability. Similar result happens to the third 
initial state. But the moving direction of spin down 
particles is right. 

The correlation probability after ten steps quantum 
walk with initial state of one spin up and the other spin 
down is displayed in Figures 3 and 4. The maximum 
correlation probability is at (18,4) or (4,18). This 
indicates big probability of one particle moves to site 4 
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Figure 1. Correlation probability of two particles quantum 
walk on a chain of length 21 after 10 steps. Two spin up 
particles initially locate on site 10 and 12 respectively. The 
two particles mainly move left on the chain. 
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Figure 2. Correlation probability of two particles quantum 
walk on a chain of length 21 after 10 steps. Two spin up 
particles initially locate on site 10 and 11 separately. The 
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two particles mainly move left on the chain. The probability 
is more concentrated in this case. 
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Figure 3. Correlation probability after 10 steps of quantum 
walk on a chain with 21 site. The two particles are initially 
at site 10 with spin up and site 12 with spin down. The 
probability of moving to opposite directions is big. The 
probability of returning to the starting point is small. But 
there is certain probability that they move to the same di-
rection.  
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Figure 4. Correlation probability after 10 steps of quantum 
walk on a chain with 21 site. The two particles are initially 

 
turning to their original locations is small. This result is 

at site 10 with spin up and site 11 with spin down. The 
probability of moving to opposite directions is big, but the 
probability of moving to the same direction is small. The 
probability of returning to the starting point is small, too.  
 
and the other moves to site 18. But the probability of
re
consistent with the outcome of waveguide array 
experiment in ref. [16]. In ref.[16], correlated photons are 
coupled into central waveguides of the array. After a 
period of time, the output light tense is big at the two 
lobes. Photons undergoes quantum walk in the 
waveguide and goes out far from the center. However, 
there is some difference between Figures 3 and 4. The 
correlation probabilities at (4,4) and (18,18) are bigger in 
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Figure 3 than that in Figure 4. If the two particles are 
initially one site interval, each of them move right or left 
and overlap on some sites. When two particles are 
initially located nearby, they often stagger each other. 
There is little chance to reinforce.  

4. Comparison with One Particle Quantum 
Walk 

o 
stu e results are displayed in Figures 5 and 6. 
Two particle quantum walk on a long chain is als

died. Th
Suppose the two particles are at site 200 and 201 at 
beginning. When they both spin up, they tends to move 
left after some steps. If one is spin up and one spin is 
down, the probability distribution is symmetrical. These  
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Figure 5. Probability distribution of two particle quantum 
walk on a chain of N = 400. Two spin up particles are ini-
tially at site 200 and 201.Time steps are 80 and 180 respec-
tively. The particles move to the left. The result is similar to 
one particle quantum walk.  
 

0 100 200 300 400

0.00

0.02

0.04

0.06

0.08

0.10

p
ro

ba
b

ili
ty

site

 80
 180

 

Figure 6. Probability distribution of two particle quantum 
walk on a chain of N = 400. One is spin up while the other is 
spin down initially at site 200 and 201. Time steps are 80 
and 180 respectively. The quantum walk is symmetric. It is 
similar to one particle quantum walk. 

results are similar to one particle quantum walk on a 
chain [14].  

In classical statistics, the coincidence probability of 
two events is equal to the multiply of probabilities of 
single events. That is AB A BP P P   [17]. In quantum 
random walks, one particle at site m  is treated as an 
event. The probability of this event is mP . The 
probability of the other particle on site n  is nP . The 
probability of one particle at site m  and the other 
particle at site n  is mnP . In this work of two particle 
quantum walk, it is found that correlation probability is 
not equal to multiply of single event probabilities. Figure 
7 is the difference between mnP  and m nP P  where 

60m   and 68n  . There is no difference in the first 
20 steps because the particles have not arrives at site 60 
or 68. When the particles arrive at the specific sites, 
quantum correlation probability is bigger than coinci- 
dence probability. During 20 and 50 steps, the difference 
changes severely. After 50 steps, the difference is very 
small because the particles have passed the objective 
sites. This manifests that correlation probability is 
distinct with coincidence probability in quantum random 
walk.  

5. Conclusion 

rticle quantum walks on one dimen- 

 

We study two pa
sional chain. Probability distribution of two particle 
quantum walks is dependent on the initial state, such as 
location and spin. The properties of symmetric quantum 
walk and asymmetric quantum walk are analogous to that 
of one particle quantum walk. When the two particles are 
one site apart initially, diffusion is faster and probability 
distribution is even on the chain. The quantum corre- 
lation probability is much different from classical coin- 
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Figure 7. The difference between quantum correlation
probability and multiply of two single probabilities. Two

 
 

spin up particles are initially on site 80 and 88 on the chain 
of N = 160.  
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