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ABSTRACT 

Most numerical transient flow models that consider dynamic friction employ a finite differences approach or the me- 
thod of characteristics. These models assume a single fluid (water only) with constant density and pressure wave veloc- 
ity. But when transient flow modeling attempts to integrate the presence of air, which produces a variable density and 
pressure-wave velocity, the resolution scheme becomes increasingly complex. Techniques such as finite volumes are 
often used to improve the quality of results because of their conservative form. This paper focuses on a resolution tech- 
nique for unsteady friction using the Godunov approach in a finite volume method employing single-equivalent two- 
phase flow equations. The unsteady friction component is determined by taking into account local and convective in- 
stantaneous accelerations and the sign of both convective acceleration and velocity values. The approach is used to re- 
produce a set of transient flow experiments reported in the literature, and good agreement between simulated and ex- 
perimental results is found. 
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1. Introduction 

Friction in pressurized flows can be decomposed into 
two components: static friction in steady flows and dyna- 
mic friction in transient flows. Transient flows present 
fairly important dynamic frictions that can significantly 
modify system behavior. Several types of model are used 
to calculate the dynamic friction component. One of the 
first types is the convolution-based model developed by 
Zielke [1], which uses the local acceleration and weight 
functions to calculate the unsteady friction component 
for laminar flow. The integration procedure in the Zielke 
model requires lots of memory and is very time-con- 
suming. Others such as Suzuki et al. [2] and Schohl [3] 
suggested improvements in the determination of the un- 
steady friction component. Later, Vardy and Brown [4,5], 
Prashanth Reddy et al. [6] and Vitkovsky et al. [7] pro- 
posed an extension of the Zielke convolution model for 
smooth and rough pipes with turbulent flow. Another 
type of model called the instantaneous accelerations-bas- 
ed model is noted in the literature. It attributes the atte- 

nuation of flow amplitudes to local  V t    and con- 
vective instant acceleration  V x    [6,8,9]. In instan- 
taneous accelerations-based model, the friction coeffi- 
cient  f  is decomposed into a static friction compo- 
nent  sf  and an unsteady friction component  df  
(Equation (1)).  

s df f f                   (1) 

with: 

f
d

k D V V
f

V V t x

     
a


            (2) 

where fk
V

t

 is the Brunone coefficient, is the pipe dia- 
meter, is the water velocity,  is the pressure wave 
celerity,  is the time and 

D
a

x  is the abscissa. 
Bergant et al. [10] improved this formulation by in- 

troducing  sign V a  instead of , to better reproduce 
the attenuation of flow acceleration and deceleration. For 
producing good accuracy in case of an upstream valve 
closing, second improvement was considered by the sign 
of the velocity and its acceleration or deceleration 

a
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sign
V

V
x


  


  [11-13]. 

For solving transient flows with the dynamic friction, 
several numerical methods are proposed in the literature 
and two approaches are generally used. The first ap- 
proach involves calculating the local and convective ac- 
celeration in the source term  (see Equation (4)) as 
treated by Bergant et al. [10], Brunone et al. [14] and 
Bughazem and Anderson [15]. The second one transfers 
acceleration or one part of acceleration in the variables 
and the flux terms (see Equation (4)), as illustrated by 
Bughazem and Anderson [16], Wylie [17] and Vítkovský 
et al. [11]. The first approach uses finite differences, 
while the second employs the method of characteristics 
that is a graphical procedure for the integration of partial 
differential equations (PDEs) [18]. Prashanth Reddy et al. 
[6] used the second type of resolution with the character- 
istic equations developed by Vitkovsky et al. [11] to cal- 
culate the dynamic friction component. The formulation 
of the dynamic friction component in the instantaneous 
accelerations-based model has been tested with finite dif- 
ference techniques and the method of characteristics. 
However, there is a lack of literature on the use of the 
finite volume technique in instantaneous accelerations- 
based models.  

S

Finite volume techniques, particularly those using the 
Godunov method (as presented by Toro [19] and Guinot 
[20]) are now widely used for transient flow in sewers 
(as in León et al. [21], Vasconcelos and Wright [22] and 
Sanders and Bradford [23]) but without unsteady friction. 
This paper presents and applies the instantaneous accel- 
erations-based model including a numerical method bas- 
ed on Godunov approach. Four specific objectives are 
targeted: i) to modify the single equivalent two-phase 
flow equations, ii) to consider air content, i.e. some com- 
pressibility, in the equations, iii) to propose a numerical 
method, and iv) to compare numerical and experimental 
results. 

2. Methodology 

The first section of the paper proposes the governing 
equations and the second a numerical method adapted 
from Guinot’s [20] traffic flow model. The third section 
presents two case studies in which numerical and ex- 
perimental results are analyzed. The proposed model is 
governed by the single-equivalent two-phase flow equa- 
tions. The dynamic friction component refers to the in- 
stantaneous accelerations-based model formulation and 
the resolution scheme uses the Godunov approach. This 
formulation of equations considers some compressibility 
of the fluid with variable density and pressure wave ce- 
lerity. The model results are compared to experimental 
measurements from Adamkowski and Lewandowski [24] 
and Bergant et al. [25].  

3. Governing Equations 

The pressurized flow Equations (3) and (4) are those pre- 
sented by Guinot [20] for the calculation of waterham- 
mer in the presence of a two-phase fluid with an air con- 
tent.  

U F
S

t x

 
 

 
            (3) 

Vectors , U F  and  correspond, respectively, to 
the variables, flux and source term defined by Equation 
(4).  

S

 

2

0

o

o f

m
U F

A p mm

S
g S S






  
        
 

  
  

     (4) 

where:  and t x  represent the time and the abscissa, 

oA  the flow cross-section,  the flow discharge, Q   
the fluid density, oA   the mass of fluid per unit 
length of the pipe, m Q  the mass discharge,  the 
pressure, o  the pipe slope, 

p
S fS  the friction slope cal- 

culated by Dary-Weisbach formula as following 
 2fS f V V gD , g acceleration of gravity, and 

V m   the water velocity. 
The friction coefficient is determined by considering 

local and convective instantaneous accelerations as in the 
model by Brunone et al. [8,9] that was modified by Ber- 
gant et al. [10] as in Equation (5). 

f
s

k D V V
f f a

V V t x
       

     (5) 

where the Brunone coefficient fk  depends on   ex- 
pressed in Equation (6).  

1: if   0  and  0

     or : if   0  and  0

1: if   0  and  0

     or : if   0  and  0

V
V

x
V

V
x

V
V

x
V

V
x



   
       

 
   



     (6) 

Friction f  is therefore first decomposed into static 

sf  and dynamic df  components as shown in Equation 
(5). The dynamic friction component is transformed ac- 
cording to the variables flow   and  in Equation 
(7): 

m

2 2

2 1 1o
d

k D m m m m
f a

V V t t x x

 
  

       
              

 

(7) 

In which: 
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2
f

o

k
k                  (8) 

The Brunone coefficient fk  is determined as in Ber-
gant et al. [10] by: 

*

2f

C
k            (9) 

where  (Equation *C (10)) depends more on the flow 
regime (Reynolds number ).  Re

 0.05

*

*

log 14.8 Re

laminar  flow: 0.00476

7.41
turbulent  flow :

Re

C

C











      (10) 

The contributions of the dynamic friction acceleration 
 fdg S  in the vector variable  and in the flux vec-
tor 

U
F  (Equation (4)) allows to obtain Equation (11), in 

which fd  is the friction slope due to the dynamic fric-
tion component. 

S
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

x

 (11) 

In vectorial form Equation (11) become Equation (12), 
where the sought variables are   and . The other 
variables  will be determined by considering 
the Equations (24), (25) and 

m
 , ,p a V 

V m  .  

U F U
R

t x x

  
S  
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     (12) 

with: 
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
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and 

1

1

1 o

k
k




        (14) 

Equations (12) and (13) are equivalent to Equations (3) 
and (4) if the dynamic friction component is not consid-
ered (i.e., ).  0ok 

The next proposes a numerical method for solving 
these equations for each internal cell. The exterior cells 
will be determined by the boundary conditions formaliz- 
ed in each case. Since a variable is known for each pipe 
end, one of the Riemann invariants will be used to cal- 
culate the second variable. For example, for a known 
discharge or pressure to the left boundary, the second Ri- 
emann invariant is used to calculate the second variable 
(discharge or pressure). When it is the right boundary, 
the first Riemann invariant is used. Details of the cal- 
culation will be discussed in the next section. 

4. Procedure for Numerical Solution of  
Partial Differential Equations (PDEs) 

Equations (12) and (13) resemble the Guinot’s [20] traf- 
fic flow model, in which the acceleration/deceleration of 
a vehicle influences the speed of the preceding vehicle. 
Solving this non-conservative system of balance equa- 
tions with the Godunov approach by using the solution of 
the Riemann problem, involves four steps: 

The first step is to make the solution of the Riemann 
problem of Equation (15) to express the conservation 
component of Equation (12): 

0
U F

t x

 
 

 
        (15) 

The second is to analyze the solution of the Riemann 
problem of the second hyperbolic part (Equation (16)): 

0
U U

R
t x

 
 

 
              (16) 

The third is to obtain the solution of the Riemann 
problem of the source term  corresponding to Equa- 
tion (17): 

S

U
S

t





              (17) 

The fourth step is to obtain all parameters (as velocity 
 and pressure  in each cell) needed to determine 

the flow. The next time 
V p

 dt  step is calculated by tak- 
ing into account the Courant condition: 

 d dt x a+ V , dx  corresponding to the spatial step. 

4.1. Step 1: Solution of the Riemann Problem for 
the Conservation Part 

The conservative part is close to the two-phase flow of 
the equation presented by Guinot [20] and León et al. 
[21]. The only difference is the factor 1  in the second 
line of the flux 

k
F  regarding Equation (13). If the dyna- 

mic friction component (i.e., ) is not considered, 
the equations are those usually used when only the static 
friction component is considered. Considering 

0ok 

A F U   , the Jacobian matrix of F  respecting the 
matrix , U A  can be found in Equation (18): 
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 2 2
1 1

0 1

2
A

k a V k V

 
  

  
       (18) 

After processing and arrangement, the eigenvalues of 
the matrix A  are given by Equation (19). 

1 1 2

2 1 2

k V k a

k V k a



 

  
           (19) 

With: 

 
2

2 1 2
1 o o

V
k k k k

a
             (20) 

The eigenvalues, corresponding to the eigenvectors for 
the matrix A , are  1K  and  2K  as seen in Equation 
(21). 

 

 

1

1 2

2

1 2

1

1

K
k V k a

K
k V k a

 
  
 

   

      (21) 

4.1.1. Riemann invariants of the Conservative 
Solution 

The Riemann invariants along each characteristic 
d dx t  are given by Equation (22). 

  

  

1 2

1 2

1 2

1 2

1 d d

d
across

d

1 d d

d
across

d

k V k a V

x
k V k a

t

k V k a V

x
k V k a

t

 

 

    

   

   

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

0

0
   (22) 

Equation (22) can be integrated respectively between 
 and  following approximation accor- 

ding to the trapezoidal rule, as with static friction. 

*
LU U * ,RU U

LU  
represents the variables to the left of the region of the 
constant state,  the region of the constant state and *U

RU  those to the right of the constant state region. The 
resulting equation (Equation (23)) is solved by the New- 
ton Raphson method for determining  i.e. *U *  and 

. *V

     

   

     

   
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2 2

1

*
* *
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2 2

1

*
* *

1 *
2 2

0
2

1 *
2 2

0
2

L L

L
L L

R R

R
R R

k a k aV V
k

V V

k a k aV V
k

V V

  

  

   
  
 

   

   


    

Note that the celerity , which depends on *a * , is re- 
lated to other parameters through Equation (24), as pre- 
sented by Guinot [26]. 

 

1
2

1
1

w

ref
ref w

a
a

p
a

p



 




 

    (24) 

With   fluid density, ref  the volume fraction of 
air at the reference pressure ref , p   the polytropic co- 
efficient of air ( 1   for isothermal conditions and 

1.4   for adiabatic conditions). The pressure waves 
celerity w  in water is calculated as suggested by Wylie 
and Streeter [27]. 

a

The solution of Equation (23) yields:  and *V *  i.e. 
1 2n

iV 
1 2  and 1 2n

i

1 2  used for calculating the mass dis- 

charge 1 2
1 2

n
im 
  and the vector variable 1 2

1 2
n
iU 
 . The pres- 

sure force 1 2
1 2

n
o iA p 

  is obtained by solving Equation (25) 
[20]. 

 

 

2

1 1 2

w
ref ref

o

ref ref wref w ref

a
p p

A

p p a p1  

 

  

  

 


    (25) 

4.1.2. Boundary Conditions Calculation of the 
Conservative Part 

The approach assumes half-virtual cells at 1 2i   and 
1 2i N   as suggested by Guinot [20], using a refer- 

ence pressure/velocity depending on the boundary condi- 
tions type. 

Prescribed pressure at the left boundary 
If the pressure is prescribed, i.e. known at the left 

boundary, then Equation (25) is used to determine 1 2
1 2
n  . 

Therefore Equation (24) can be used to determine 1 2
1 2
na   

from 1 2
1 2
n  . The Riemann invariant along  

1 2

d

d

x
k V k a

t
   (Equation (23)) yields the velocity  

1 2
1 2
nV   (Equation (26)) with 1

nX  corresponds to flow 
parameter X at cell 1 at time . t

 
 

     

    

1 2
1 11 21 2

21 2 1 2
1 11 2

1 2

1 1 1 2 21 2 1

1 2 1 2
2 1 1 11 2 1 2

with

1

1

n n

n

n n n

n nn

n n n

A
V A

V

A k V k a k a

A k

 

 

n   









 

 
  
   

   

    

 (26) 






   (23) Prescribed discharge at the left boundary 
If the discharge is known, then the velocity 1 2

1 2
nV  ,  

Riemann invariant (Equation (27) along 1 2

d

d

x
k V k a

t
  ,  

is combined with Equations (24) and (25) yields 1 2
1 2
n   

and 1 2
1 2
na  . 
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 
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B
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


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

 
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 

 

 

 

2B

 (27) 

Prescribed pressure at the right boundary 
If the pressure is prescribed at the right boundary, 

Equations (25) and (24), and Riemann invariant along  

1 2

d

d

x
k V k a

t
   (Equation (28) or (29)) provide 1 2

1 2
n
N

  

and 1 2
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n
NV 
  with n

NX  corresponding to flow parameter 
X  at cell  at time t . N
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2

    (29) 

Prescribed discharge at the right boundary 
When discharge o  is prescribed, Riemann invariant 

(Equation (28)) along 
Q

1 2d dx t k V k a  , combined with 
Equations (24) to (25), yields 1 2n

o o1 2 Q A
NV   , 1 2

1 2
n   

and 1 2
1 2
na   as shown in Equation (30): 
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
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
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
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 

 

 

2

2

  (30) 

4.1.3. Balance over the Cells 
The conservative part yields the homogeneous solution 
(Equation (31)) at each cell without the source term as 
presented by Guinot [20]:  

 1, 1 2 1 2
1 2 1 2

n x n n n
i i i i

i

t
U U F F

x
 

 


  


The flux 1 2
1 2

n
iF 
  will be calculated by Equation (32):  

   

1 2 1 2 1 2
1 2 1 2 1 2

1 2 1 2
21 2 1 2 1 2 1 2 1 2

1 1 2 1 2 1 2

n n n
i i i

n n
i i n n n

i i i

m V
F F U

k m Ap





  
  

 
    

  

 
         

  

(32) 

The provisional values  will be corrected in 
two successive stages, integrating the second hyperbolic 
part  and the source term . 

1,n x
iU 

SR

4.2. Step 2: Solution of the Riemann Problem of 
the Second Hyperbolic Part 

Equation (16) is solved by seeking the eigenvalues and 
vectors of  (Equations (33)). R

 



 

1 1

1 1

1 1

0 0

Case 1: 1:

0 0

Case 2 : 1:

0 0

o o

o o

o o

R
k k aV k k V a

R
k k aV k k V a

R
k k aV k k V a

 





 
    

 



           

       

 (33) 

Given that eigenvalues and vectors of  differ de- 
pending on the sign of 

R
 , each case of Equations (33) is 

treated separately in sections 4.2.1 for 1    and in 
section 4.2.2 for 1   . 

4.2.1. Resolution of Case 1 
Eigenvalues and eigenvectors of  for Case 1 are de- 
picted in Equations (34) and (35), respectively: 

R

 
1

2 1

0

ok k V a





  
     (34) 

   1 2

1
0

1
K KaV

V a

            

 (35) 

Considering the validity of the eigenvectors in Equa- 
tion (35), along each characteristic line, solution of the 
Riemann problem (Equation (36)) is obtained.  

 

 

2

1

d d 0

d
for  across 0

d
d 0

d
for   across

d o

V V a V

x

t

x
k k V a

t

 



   

 




  


 (36) 

     (31) 
Using the trapezoidal rule, as in Equation (37), the ve- 
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locity  of the constant state is calculated by Equation 
(38). 

*V

     

 

2* **
*

*
*

*

*
4 2

0
2

L LL
L

L
L

R

V V a aV V

V V

 

 

 

       
 


   

 




2




 (37) 

   
  

2*

*

* *

L R L

L

L L R L

V V
V V

V V a a

 

 

 
 

   
 (38) 

After the determination of *  and , the vector  *V

variable 
*

1 2*
1 2 *

1 2

i
i

i

U
m

 




 
 
  

  is determined for each inter 

face. The new variable  considering the second 
hyperbolic part is then calculated by applying the Rie- 
mann invariants principle [19,20]: 

1,n h
iU 

 

 
 

1

1,
1 1 2

*
1 2 1 1 2 1 1 2 1

1,
1 1 1 2 1

,

   if :

    if :

   if :

h n

n x
i

i o

n x
i o

U x t

U x x

U x x x k k V a

U x x k k V a t






  


 

 
   


   

t 



 (39) 

4.2.2. Balance over the Cells 
The following formulation (Equation (40)) is obtained 
when  is integrated over the cell for  1,h nU x t 

2 0  . 

 

 

1 11, 1,
1 1

1

1 *
1 2

1

i on h n x
i i

i

o
i

i

x k k V a t
U U

x

k k V a t
U

x

 
 






   




 





   (40) 

4.2.3. Resolution of Case 2 
In Case 2 , eigenvalues ( 1    1  and 2 ) and ei- 
genvectors (  1K  and  2K ) of  are respectively 
Equations (41) and (42): 

R

 1 1

2 0
ok k V a


  



       (41) 

   1 2

1
0

1
K K aV

a V

          




  (42) 

As in Case 1, the Riemann invariant is expressed by 
Equation (43). 

 

 

1

2

d 0  for  across  d d

d
d d   for  across  0

d

ox t k k V a

x
V a V V

t



 

   



  

 (43) 

The second part of the solution of the Riemann pro- 
blem (Equation (43)) is used to calculate the velocity  
of the constant state (Equation (44) or (45)). 

*V

   
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*

*
*

*
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0
2

L

R R R
R

R
R

V V a a V V

V V

 

 

 
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   


  (44) 

   
  

2*

*
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R L R

R

R R L R

V V
V V

a a V V

 

 

 
 

   
 (45) 

The quantities *  and  yield the vector variable  *V
*

1 2*
1 2 *

1 2

i
i

i

U
m

 




 
  
  

. 

The new variable  taking into account the second 
hyperbolic part is then calculated by applying the princi- 
ple of Riemann invariants: 

hU
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 (46) 

4.2.4. Balance over the Cells 
Integrating Equation (46) over the cell yields 

 1,h nU x t   for 1 0  : 
 

 

11,n h 1,

1 *
1 2

i o n x
i i

i

o
i

i

x k k V a t
U U

x

k k V a t
U

x

 



   
 



 





 (47) 

4.2.5. Boundary Conditions 
The last cell is calculated by considering either the first 
component of Equation (37) for 1  

1
 or the second 

component of Equation (44) for    . Each of the re- 
sulting Equations (48) or (49) is combined with the 
known flow condition: 

   
 

  

*1 2
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1 2

1 2
1 2
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2 2
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V V

 

 
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




 
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 
 
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(48) 
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 


 

21 2 * 1 2
1 2 1 2

1 2
1 2

*

0

n
R L R R RN

n
L R RN

V V a a V V

V V

 

 







     

  

n
N



 (49) 

with  dependant respectively on *a R  and L . 

4.3. Step 3: Solution of the Riemann Problem of 
the Source Term  

The source term is solved by Equation (50) to estimate 
the variable vector  of each cell depending on 

, as presented by Guinot [20] and Toro [19]. 

1n
iU 

1,n h
iU 

 1 1, 1,n n h n h
i i iU U S U    t


   (50) 

where  indicates that  is used to eva- 
luate the source term  of the Equation (13). 

 1,n h
iS U  1,n h

iU 

S

4.4. Step 4: Flow Parameter Calculation  

After determining the variables 1n
i
  and 1n

im  , veloc- 
ity  1 1n n

i i iV m   , density  i i oA  , pressure- 
wave celerity  by Equation (24), and pressure 

 by Equation (25) are determined for each cell.  
 ia

 ip

5. Results and Discussion 

Two case studies ((1) a closed downstream valve and (2) 
a closed upstream valve) are performed, and numerical 
results compared to the experimental results.  

5.1. Case Study 1: Closed Downstream Valve 
Analysis 

5.1.1. Experimental Setup of the Case Study 1 
The used experimental results are from the study of 
Adamkowski and Lewandowski [24]. The experiments 
were conducted at a test rig composed of a 98.11 m long 
copper pipe with an internal diameter of 0.016 m and a 
wall thickness of The pipe slope is 0.001 m.e 

0.5  

H

 over the horizontal plan. A steel cylinder with 
a diameter of about 1.6 m is used as an upstream reser- 
voir. A quick-closing ball valve is installed at the down- 
stream end of the pipe. Four absolute pressure semicon- 
ductor transducers are mounted on the pipe at 0.25 L, 0.5 
L, 0.75 L and L from the reservoir. The test procedure 
consists in an instant closing of the valve. During the 
tests, the steady head-water level in the upstream reser-
voir is o . The water temperature is 22.6˚C 
and the kinematic viscosity coefficient is 

1250 kP a
09.493   

 m2/s. The pressure wave celerity calculated ac- 
cording to the pipe characteristics is m/s. The 
initial velocity in the pipe before closing of the valve is 

.  

710

0.94oV 

12a  98.4

 m/s

5.1.2. Discussion of Case Study 1 Results 
Comparison of numerical results with measured results 

needs to consider several parameters such as the rate of 
air (Equation (24)) and the static friction. As shown by 
Wylie and Streeter [27], the rate of air reduces pressure 
wave celerity. This reduction is reflected in the numerical 
model by an increase in the pressure-oscillation period. 
This analysis was used to estimate the rate of air. Simu- 
lations were performed to find the value of the rate of air 
for better correspondence between measured and calcu- 
lated oscillations. The rate of air is then considered to be 
0.02%. The static friction  is selected from 
Axworthy et al. [28], who compared their numerical re- 
sults to the experimental results of Adamkowski and Le- 
wandowski [24]. The polytropic coefficient is considered 
as 

0.035sf 

1.4  . After several simulations, this value, corres- 
ponding to adiabatic conditions, seemed to yield best re- 
sults. 

Comparison between simulated and measured results 
(Figure 1) shows good correlation with the frequency of 
oscillations. The period of frequency is slightly larger in 
the case without taking into account the dynamical fric- 
tion component. There is a slight overestimation of pres- 
sure when the dynamical friction is not taken into ac- 
count, which may reach a maximum of 3 m at the down- 
stream end of the pipe. For pressure amplitudes, the dif- 
ference between measured and simulated results increas- 
es over time. This indicates that the dissipation of the nu- 
merical model is not sufficient; in other words, the fric- 
tion coefficient is underestimated. This may be due either 
to the static friction component or the dynamic friction 
component. Moreover, the increased gap between nume- 
rical results and measurements may be due to the Bru- 
none coefficient calculation by Equations (9) and (10). 
Indeed the difference becomes important beyond 2.5 s, 
i.e. when the Reynolds number in the peak pressure falls 
below 6000. This shows that when the flow dissipates or 
becomes less turbulent, the coefficient  becomes less 
accurate. 

*C

5.2. Case Study 2: Closed Upstream Valve  
Analysis 

5.2.1. Experimental Setup of the Case Study 2 
The experimental tests used to examine the unsteady- 
flow, in case of a closed valve installed upstream just 
after the pump are taken from Pezzinga and Scandura 
[29]. These results are extracted from the paper by Pra- 
shanth Reddy et al. [6]. The tests were carried out on ex- 
perimental installation composed of a zinc-plated steel 
pipeline (length 143.7 m, diameter 53.2 mm, thickness 
3.35 mm, modulus of elasticity 2.06 × 1011 N/m2, rough- 
ness 0.1 mm) fed by a centrifugal electropump. A 1 m3 
pressure tank is located at the downstream end of the 
pipe. Closing the upstream valve generates an interesting 
transient flow useful for analyzing dynamic friction.  
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Figure 1. Comparison between calculated and measured pressure (measures reported in Adamkowski and Lewandowski 
[24]): a) at pipe middle; b) at pipe end. 
 

The pressure variation is measured by pressure trans- 
ducers located at the upstream valve and at the middle of 
the pipe. The average temperature of the water during the 
tests was 15˚C; the values of the kinematic viscosity  
and of the elastic modulus K were assumed to be 1.14 × 
10−6 m2/s and 2.14 × 109 N/m2, respectively. The theore- 
tical pressure wave celerity considered by the authors [29] 
is equal to 1360 m/s. As with the downstream valve in 
Case Study 1, a low rate of air into the water is assumed. 
Several simulations are performed with different rates of 
air to find out which allows for a better comparison be- 
tween calculated and measured pressure oscillations. The 
initial velocity in the pipe, before closing of the valve, is 

v

0.288 m/soV  , and the static friction component is con- 
sidered equal to 0.035sf  .  

5.2.2. Discussion of Case Study 2 Results 
Figure 2 shows the comparison between calculated and 
measured pressure values. The best superposition of os- 
cillations is obtained with a rate of air of 0.01% and a po- 
lytropic coefficient considered equal to 1.4  . The cal- 
culated frequencies of oscillations coincide perfectly 
with those measured at the valve and at the middle of the 
pipe. Consideration of the static friction component or 
dynamic friction component shows that they tend to dis- 
sipate energy. The inclusion of the dynamic friction  
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Figure 2. Comparison between calculated and measured pressure by Pezzinga and Scandura [29]: a) at the valve location; b) 
at the middle of the pipe. 
 
component enables a better agreement between calculat- 
ed and measured pressure values. The maximum differ- 
ence obtained is 6%, and is greatest at the valve position. 
This difference may be due to the boundary condition 
calculation. The difference between measured and calcu- 
lated pressure values is very low in the first pressure 
peaks, i.e., just after the valve closure. These pressure 
peaks are the most damaging to water plants. Overall, the 
numerical results tend to overestimate pressure values, 
especially at the valve position, which may be due to the 
choice of static friction, the initial flow condition before 
the valve closure, the boundary condition calculation, or 
the early stage of computing. Another factor that might 

affect the quality of results is the choice of the rate of air. 
The choice of the polytropic coefficient may also influ- 
ence the quality of results. Experiments are rarely real- 
ized under ideal adiabatic  or isothermal  1.4  
 1   conditions. Thus, tests with a uniform measure 
of the rate of air are needed to better calibrate the model. 

6. Conclusions and Recommendations 

This paper focuses on the resolution of unsteady friction 
using the Godunov approach in a finite volume method 
with single-equivalent two-phase flow equations. The 
calculated results show good agreement with experimen- 
tal measurements, especially for the first pressure peaks, 
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which are the most dangerous for pipe safety. However, 
dissipation is found to be lower in the calculated than in 
the measured results. The differences between simulated 
results with a dynamic friction component and those with 
a static friction component are more important in the case 
of a closed upstream valve than a closed downstream 
valve. It would appear that taking the dynamic friction 
component into account is more relevant in the case of 
upstream valve closure. This could be due partly to the 
formalization of the dynamic friction component, and in 
particular, the inclusion of acceleration and deceleration, 
as well as direction of flow. The difference could also be 
due to the calculation of boundary conditions, which are 
different in the two case studies. These results demon- 
strate that the proposed approach allows dynamic friction 
to be taken into account in finite-volume models, using 
the increasingly popular Godunov approach. The results 
also point to the possibility of considering the effect of 
air in order to improve the quality of simulation models. 
The model requires further improvements to more accu-
rately reproduce the pressure values in cases of upstream 
valve closure. Searching for an adequate solution should 
address the determination of boundary conditions, the 
formalization of the dynamic friction component and the 
choice of the polytropic coefficient and experiments in 
which all parameters are adequately defined. 

REFERENCES 
[1] W. Zielke, “Frequency-Dependent Friction in Transient 

Pipe Flow,” Journal of Basic Engineering, Vol. 90, No. 1, 
1968, pp. 109-115. http://dx.doi.org/10.1115/1.2926516 

[2] K. Suzuki, T. Taketomi and S. Sato, “Improving Zielke’s 
Method of Simulating Frequency-Dependent Friction in 
Laminar Liquid Pipe Flow,” Journal of Fluids Engineer- 
ing, Vol. 113, No. 4, 1991, pp. 569-573. 

[3] G. Schohl, “Improved Approximate Method for Simulat- 
ing Frequency-Dependent Friction in Transient Laminar 
Flow,” Journal of Fluids Engineering; (United States), 
Vol. 115, No. 3, 1993. 

[4] A. E. Vardy and J. M. B. Brown, “Transient Turbulent 
Friction in Smooth Pipe Flows,” Journal of Sound and 
Vibration, Vol. 259, No. 5, 2003, pp. 1011-1036.  
http://dx.doi.org/10.1006/jsvi.2002.5160 

[5] A. E. Vardy and J. M. B. Brown, “Transient Turbulent 
Friction in Fully Rough Pipe Flows,” Journal of Sound 
and Vibration, Vol. 270, No. 1-2, 2004, pp. 233-257.  
http://dx.doi.org/10.1016/S0022-460X(03)00492-9 

[6] H. P. Reddy, W. F. Silva-Araya and M. H. Chaudhry, “Es- 
timation of Decay Coefficients for Unsteady Friction for 
Instantaneous, Acceleration-Based Models,” Journal of 
Hydraulic Engineering, Vol. 138, No. 3, 2012, pp. 260- 
271.  
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000508 

[7] J. Vítkovský, M. Stephens, A. Bergant, A. Simpson and 
M. Lambert, “Numerical Error in Weighting Function- 
Based Unsteady Friction Models for Pipe Transients,” 

Journal of Hydraulic Engineering, Vol. 132, No. 7, 2006, 
pp. 709-721.  
http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:7(
709) 

[8] B. Brunone, B. W. Karney, M. Mecarelli and M. Ferrante, 
“Velocity Profiles and Unsteady Pipe Friction in Tran- 
sient Flow,” Journal of Water Resources Planning and 
Management, Vol. 126, No. 4, 2000, pp. 236-244.  
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:4(
236) 

[9] B. Brunone, U. M. Golia and M. Greco, “Effects of Two- 
Dimensionality on Pipe Transients Modeling,” Journal of 
Hydraulic Engineering, Vol. 121, No. 12, 1995, pp. 906- 
912.  
http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:12
(906) 

[10] A. Bergant, A. R. Simpson and J. Vitkovsky, “Develop- 
ments in Unsteady Pipe Flow Friction Modelling,” Jour- 
nal of Hydraulic Research/De Researches Hydrauliques, 
Vol. 39, No. 3, 2001, pp. 249-257. 

[11] J. P. Vítkovský, A. Bergant, A. R. Simpson and M. F. 
Lambert, “Systematic Evaluation of One-Dimensional 
Unsteady Friction Models in Simple Pipelines,” Journal 
of Hydraulic Engineering, Vol. 132, No. 7, 2006, p. 696.  
http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:7(
696) 

[12] G. Pezzinga, “Quasi-2D Model for Unsteady Flow in Pipe 
Networks,” Journal of Hydraulic Engineering, Vol. 125, 
No. 7, 1999, pp. 676-685.  
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:7(
676) 

[13] G. Pezzinga, “Evaluation of Unsteady Flow Resistances 
by Quasi-2D or 1D Models,” Journal of Hydraulic Engi- 
neering, Vol. 126, No. 10, 2000, pp. 778-785.  
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:10
(778) 

[14] B. Brunone, U. M. Golia and M. Greco, “Modeling of 
Fast Transients by Numerical Methods,” Proceedings of 
International Conference on Hydraulic Transients with 
Water Column Separation, IAHR-Group, Madrid, 1991, 
pp. 273-280. 

[15] M. Bughazem and A. Anderson, “Problems with Simple 
Models for Damping in Unsteady Flow,” Proceedings of 
International Conference on Pressure Surges and Fluid 
Transients, BHR Group, Harrogate, 1996, pp. 537-548. 

[16] M. Bughazem and A. Anderson, “Investigation of an Un- 
steady Friction Model for Waterhammer and Column Se- 
paration,” 8th International Conference on Pressure Sur- 
ges, BHR Group, The Hague, 2000, pp. 483-498. 

[17] E. B. Wylie, “Frictional Effects in Unsteady Turbulent Pipe 
Flows,” Applied Mechanics Reviews, Vol. 50, No. 11S, 
1997, pp. S241-S244.  
http://dx.doi.org/10.1115/1.3101843 

[18] M. H. Chaudhry, “Open-Channel Flow,” 2nd Edition, 
Springer, 2008, p. 523. 

[19] E. F. Toro, “Shock Capturing Methods for Free Surface 
Shallow Flows,” John Wiley and Sons, 2001, p. 326. 

[20] V. Guinot, “Godunov-Type Schemes: An Introduction for 

Open Access                                                                                         JWARP 

http://dx.doi.org/10.1115/1.2926516
http://dx.doi.org/10.1006/jsvi.2002.5160
http://dx.doi.org/10.1016/S0022-460X(03)00492-9
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000508
http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:7(709)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:7(709)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:4(236)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:4(236)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:12(906)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:12(906)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:7(696)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:7(696)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:7(676)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:7(676)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:10(778)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:10(778)
http://dx.doi.org/10.1115/1.3101843


S. BOUSSO, M. FUAMBA 

Open Access                                                                                         JWARP 

1058 

Engineers,” Elsevier, Amsterdam, 2003. 

[21] A. S. León, M. S. Ghidaoui, A. R. Schmidt and M. H. Gar- 
cia, “A Robust Two-Equation Model for Transient-Mixed 
Flows,” Journal of Hydraulic Research, Vol. 48, No. 1, 
2010, pp. 44-56.  
http://dx.doi.org/10.1080/00221680903565911 

[22] J. G. Vasconcelos and S. J. Wright, “Comparison between 
the Two-Component Pressure Approach and Current Tran- 
sient Flow Solvers,” Journal of Hydraulic Research, Vol. 
45, No. 2, 2007, pp. 178-187.  
http://dx.doi.org/10.1080/00221686.2007.9521758 

[23] B. F. Sanders and S. F. Bradford, “Network Implementa- 
tion of the Two-Component Pressure Approach for Tran- 
sient Flow in Storm Sewers,” Journal of Hydraulic Engi- 
neering, Vol. 137, No. 2, 2011, p. 15. 

[24] A. Adamkowski and M. Lewandowski, “Experimental Exa- 
mination of Unsteady Friction Models for Transient Pipe 
Flow Simulation,” Journal of Fluids Engineering, Vol. 
128, No. 6, 2006, pp. 1351-1363.  
http://dx.doi.org/10.1115/1.2354521 

[25] A. Bergant, A. R. Simpson, U. O. A. D. O. Civil and E. En- 
gineering, “Water Hammer and Column Separation Mea- 
surements in an Experimental Apparatus,” Department of 

Civil and Environmental Engineering, University of Ade- 
laide, 1995. 

[26] V. Guinot, “Numerical Simulation of Two-Phase Flow in 
Pipes Using Godunov Method,” International Journal for 
Numerical Methods in Engineering, Vol. 50, No. 5, 2001, 
pp. 1169-1189.  
http://dx.doi.org/10.1002/1097-0207(20010220)50:5<116
9::AID-NME71>3.0.CO;2-# 

[27] B. E. Wylie and V. L. Streeter, “Fluid Transients in Sys- 
tems. Prentice Hall, Englewood Cliffs, NJ 07632, USA,” 
1993. 

[28] D. H. Axworthy, M. S. Ghidaoui and D. A. McInnis, “Ex- 
tended Thermodynamics Derivation of Energy Dissipa- 
tion in Unsteady Pipe Flow,” Journal of Hydraulic Engi- 
neering, Vol. 126, No. 4, 2000, pp. 276-287.  
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:4(
276) 

[29] G. Pezzinga and P. Scandura, “Unsteady Flow in Installa- 
tions with Polymeric Additional Pipe,” Journal of Hy- 
draulic Engineering, Vol. 121, No. 11, 1995, pp. 802-811.  
http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:11
(802) 

 
 

http://dx.doi.org/10.1080/00221680903565911
http://dx.doi.org/10.1080/00221686.2007.9521758
http://dx.doi.org/10.1115/1.2354521
http://dx.doi.org/10.1002/1097-0207(20010220)50:5%3C1169::AID-NME71%3E3.0.CO;2-
http://dx.doi.org/10.1002/1097-0207(20010220)50:5%3C1169::AID-NME71%3E3.0.CO;2-
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:4(276)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:4(276)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:11(802)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:11(802)

	4.1.1. Riemann invariants of the Conservative Solution
	4.1.2. Boundary Conditions Calculation of the Conservative Part
	Prescribed pressure at the left boundary
	Prescribed discharge at the left boundary
	Prescribed pressure at the right boundary
	Prescribed discharge at the right boundary
	4.1.3. Balance over the Cells
	4.2.1. Resolution of Case 1
	4.2.2. Balance over the Cells
	4.2.3. Resolution of Case 2
	4.2.4. Balance over the Cells
	4.2.5. Boundary Conditions
	5.1.1. Experimental Setup of the Case Study 1
	5.1.2. Discussion of Case Study 1 Results
	5.2.1. Experimental Setup of the Case Study 2
	5.2.2. Discussion of Case Study 2 Results

