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ABSTRACT 
A simple model of the phase-detection autofocus device based on the partially masked sensor pixels is described. The 
cross-correlation function of the half-images registered by the masked pixels is proposed as a focus function. It is shown 
that—in such setting—focusing is equivalent to searching of the cross-correlation function maximum. Application of 
stochastic approximation algorithms to unimodal and non-unimodal focus functions is shortly discussed. 
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1. Introduction 
In imaging, focusing can be defined as seeking for the 
image being the best approximation of the captured scene. 
The proposed autofocusing algorithm is of a stochastic 
optimization type. Within the stochastic framework we 
model the scene as a random process (continuous, sta- 
tionary and fourth-order) of an unknown distribution1. 
Assuming that the dimensions of the lens and sensors are 
far larger than the length of the light-wave we can use the 
first order (geometric/linear) approximation of the optics 
laws [1,2]. In particular, we can model the lens as a li- 
near low-pass filter with a symmetric (box) impulse re- 
sponse centered at the origin [3]. The width of the box is 
therefore proportional to the distance between the sensor 
and the image plane. One can note that the scene is “in 
focus” when the sensor is in the image plane, that is, in 
the plane where all rays from a single point at the scene 
converge into a single point (and the corresponding im- 
pulse response of the lens is the Dirac delta function). 

A popular approach to this problem in digital imaging 
is to use the sequentially collected images with their va- 
riance serving as a focus function. Such an approach is 
referred to as the contrast-detection auto-focusing (we 
will use the common CD AF acronym for shortness) 
which also includes algorithms based on an image histo- 
gram or its gradient analysis. It does not require any ad- 
ditional equipment and hence can be implemented in 
virtually all digital cameras. Its well-known issue, how- 

ever, is that a single image does not provide information 
about either: 
• the distance between the sensor and the image plane, 

or 
• the direction toward the sensor should be shifted in 

order to attain a focused image, 
and subsequently CD algorithms seek the focus itera- 
tively, in the back-and-forth manner (shifting the lens 
accordingly), and require capturing an image in each 
position determined by the algorithm. The CD AF algo- 
rithms are usually derivatives of the stochastic approxi- 
mation routines (like e.g. the golden-section search (if a 
noise is negligible) or the Kiefer-Wolfowitz algorithm (if 
the noise impact cannot be ignored) [4,5]). In conse- 
quence, they are rather slow and not directly applicable 
in e.g. object tracking or video applications. 

In order to overcome these deficiencies one can use 
algorithms based on the phase-detection auto-focusing 
(PD AF) principle, in which a single image is split into 
two, left- and right-hand side halves. Typically, image 
splitting is achieved with the help of a separate optical 
path consisting of semi-transparent/pellicle mirrors and 
dedicated line sensors and such an implementation is 
often met in digital SLRs; see e.g. [3]). The half-images 
—if the scene is out-of-focus—are shifted with respect to 
each other. Such a shift is traditionally referred to as a 
“phase shift” and maintains information about both: 
• the distance between the sensor and the image plane, 

and 
• the direction towards the sensor should be moved. 1For simplicity, we consider a 1D case rather than the full 2D one. 
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This property makes the PD AF algorithms faster than 
CD AF ones since—in principle—a single (but split) 
image suffices to determine the correct (in-focus) sensor 
position. The technological progress in image sensors 
fabrication has recently allowed partially masking the 
microlenses and subsequently implementing the PD AF 
on sensors. Masking makes possible splitting a single 
image registered by the sensor without the use of the 
aforementioned additional optical equipment. The on- 
sensor PD AF approach (at the cost of a more compli- 
cated sensor fabrication) can therefore speed up on-sen- 
sor focusing and make it appropriate in e.g. focus track- 
ing applications. It can also be considered as an interest- 
ing alternative to the CD AF-based shape-from-focus 
algorithms used in a 3D scene restitution; cf. [6-9]. 

2. Assumptions 
We propose a simple model of a sensor with masked 
pixels and a corresponding focus function. We also con- 
sider several stochastic approximation algorithms search- 
ing for the location of the focus function maximum 
(which corresponds to the location of the image sensor in 
the image plane). 

Our analysis can also be adopted to the sensors in 
which e.g. every second green pixel on the Bayer CFA is 
replaced by a phase detection pixel (such an approach 
allows for a pixel-level autofocusing precision and im- 
plies only minor modifications to existing sensors), see 
Figure 1. Several leading manufacturers, like e.g. Aptina, 
Canon, Fuji, Olympus or Sony, offer CMOS sensors 
equipped with PD AF circuits. 

Remark 1: Recently, Canon introduced an alternative 
“dual-pixel” approach in which a single pixel consists of 
two photosensors coupled under a single microlens. It 
can also be approximated by the proposed model since 
the half-images are registered there by the left-hand and 
right-hand side photosensors of each pixel. Canon’s im- 
plementation makes masking the microlenses unneces- 
sary, nevertheless, it results in a sensor with twice as 
many pixels. 

In focusing problems, it is usually assumed that the 
impulse response of the lens is of a rectangular shape, cf. 
e.g. [3,10,11]: 

( ) ( ) [ ]( ),2 ,
1 xIaxH aa−
−=              (1) 

where the width parameter a  is proportional to distance 
between the sensor and the image planes ( vsa −∼ ; see 
Figure 2). In our PD AF problem the following approx- 
imations of the impulse responses for the left- and right- 
hand side masked pixel sensors are proposed (see Figure 
3). 

( ) ( ) ( ) ( ) . and 
a

xaxHxR
a

xaxHxL −
⋅=

+
⋅=      (2) 

 
Figure 1. (a) A standard image sensor (with a Bayer CFA); 
(b) The interleaved left- and right-half masked pixels—the 
PD sensors; (c) An image sensor with embedded PD sensors. 
 

 
Figure 2. The block diagram of the on-sensor phase detec-
tion autofocus (PD AF) system model. 
 

 
Figure 3. Half-masked pixels split the rectangular impulse 
response of the lens into a pair of two triangular ones. The 
collected “shifted” half-images are used in the on-sensor 
phase detection algorithms (note that both figures, this and 
that in Figure 7, are presented for illustrative purposes and 
are not the exact schemes). 
 

Observe that both impulse responses have the same 
support and moreover that 

( ) ( ).xLxR −=                 (3) 

Collecting separately the images from the left- and 
right-hand side masked pixels, we obtain a pair of half- 
images (that is, the convolutions of the scene ( )xS  with 
either of the impulse responses): 

( ) ( ) ( ) ( )( ),xLSdxLSxIL ∗=−= ∫
∞

∞−
ξξξ  

and similarly 

( ) ( ) ( ) ( )( ).xRSdxRSxIR ∗=−= ∫
∞

∞−
ξξξ  
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About the scene ( )xS  we assume that it is a wide- 
sense fourth-order stationary and ergodic process and 
that its autocorrelation function ( )xρ  is continuous and 
bounded. Such a process admits a particularly important 
class of piecewise-smooth images; see [12, p. 529].2 
Analogous assumptions hold for the additive noise ( )xZ  
corrupting the half-images; cf. [2]. 

3. Focus Function 
In order to propose the focus function, we need the fol-
lowing lemma. 

Lemma 1: The symmetry property (3) implies that  
( )( ) ( )( )xLSxRS •=∗  

that is, that the convolution of the scene with the right- 
hand side impulse response ( )xR  equals to the scene 
cross-correlation with the left-hand side one ( )xL  (note 
that here we use the term “cross-correlation” in the sig-
nal processing sense). 

Proof: Indeed, observe that exploiting shift invariance 
of the convolution operation yields that 
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Consider now the stochastic cross-correlation between 
the left- and right-half images 
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Recall that ( )ηρ  is the autocorrelation function of the 
scene process ( )xS . Observing that due to stationarity 
we have  
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We thus have the following proposition. 
Proposition 2: The phase-detection focus function,
( )xf , is the following cross-correlation product 

( ) ( )( )( ).ηρη LLf ••=               (4) 

Proof: To verify both the unimodality and symmetry 
property of ( )ηf  observe that the cross-correlation of 
the ( )xL  with itself is the autocorrelation of ( )xL . As 
such it has a maximum at 0=x  and is a symmetric 
function w.r.t. x . Moreover, ( )xρ  is known to be sym- 
metric with a maximum at x = 0. So their cross-corre- 
lation has a maximum at 0=x  and is symmetric w.r.t. 
x . Note finally that ( )xZ  is stationary and independent 
of the image process ( )xS . Hence it has a constant va- 
riance which only adds up to the correlations of the half- 
images. Subsequently, its presence does not alter the 
unimodality property of the images correlation and the 
position of the correlation function maximum. □ 

4. Focusing Algorithms 
Because of random character of the scene process ( )xS , 
the focus function (viz. the correlation function ( )ηf ) 
needs to be estimated from its realizations (captured im-
ages). The resulting estimate (the empirical correlation 
function) can clearly be different from the actual correla-
tion function and, in particular, it can have false local 
maxima [16]. One can consider two approaches to this 
problem: 
• In the first, we can neglect the randomness and treat 

the empirical correlation function as the genuine fo-
cus function. This approach is called stochastic coun-
terpart optimization [17]. It can be justified by virtue 
of the observation that a number of data used in cal-
culations is large (as the number n of points in sensors 
can be counted in thousands). Thus, the impact of the 
random noise is averaged (the covariance estimates 
converge as fast as ( )1−nO  in the MISE sense [16]) 
and the unimodality and the position of maximum of 
the correlation function are maintained. In such a 
scenario one can use the well-known golden-section 
search algorithm [4,18]. 

• In the second, examined below, we search for the 
actual maximum of the focus function using the noisy 
data. To this end, we apply the standard Kiefer-Wol- 
fowitz algorithm, see [19] and cf. e.g. [5,20,21]. Then 
we take the version of the K-W algorithm oper- ating 

2The deterministic models of images, e.g. based on Besov or Sobolev, 
or TV spaces, are not—to the best of the Authors’ knowledge—consi- 
dered in the focusing context yet; cf. e.g. [13-15]. 
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on the smoothed functional as in [22-23] and cf. 
[24,25], in order to apply the algorithm to the case 
when the correlation function is not unimodal. 

4.1. Unimodal Case 
Since the focus function ( )xf  in (4) is unimodal by 
assumption, to apply Kiefer-Wolfowitz stochastic appro- 
ximation algorithm, we merely need to assure that ( )xf  
is also sufficiently smooth. Recalling that ( )xf  is itself 
the correlation of the continuous and bounded function 
( )( )xLL •  with the continuous and bounded autocorrela- 
tion function ( )xρ , we infer that ( )xf  has at least one 
bounded derivative, that is, it satisfies the Kiefer-Wol- 
fowitz convergence conditions. 

4.2. Multimodal Case 
Let the autocorrelation function of the scene process 
( )xS  be multimodal.3 Then, the focus function ( )xf  in 

(4) is no longer unimodal and the standard stochastic 
approximation algorithms fail in general and find local 
maxima. We show that by convolving ( )xf  with a rec- 
tangular kernel (box) function, we obtain a (smoothed) 
version of ( )xf  which gains unimodality property and 
maintains the position of the maximum of ( )xf ; cf. [22]. 
The following lemma gives sufficient conditions for the 
focus and kernel functions, ( )xf  and ( )xh . 

Lemma 3: Let ( ) ( ) [ ]( )xIrxh rr ,
12 −
−=  and let ( )xf  be  

a multimodal focus function with the global maximum at 
0, with a support included in [−r, r]. Then, the convolu- 
tion ( )( )xfh∗  is unimodal with the maximum at 0.4 

By assumption, f(x) has a global maximum at 0. Let 
F(x) denote its primitive function. The convolution of f(x) 
with a rectangular kernel ( )xh  of support [−r, r] equals 
to 

( )( ) ( ) ( ) ( ).
22

1
r

rxFrxFdf
r

xfh rx

rx

−−+
==∗ ∫

+

−
ξξ  

If, for all θ>− rx  and ,yx <  the following differ- 
ences are negative 

( ) ( ) ( ) ( ) ,0
22

<
−−+

−
−−+

r
rxFrxF

r
ryFryF  

that is if 
( ) ( ) ( ) ( ),rxFrxFryFryF −−+<−−+       (5) 

then the convolution is unimodal (since it also is symme- 
tric). Since the support of ( )xf  is at most [−r, r], then 
for any 0, >yx , we have that ( ) ( ),ryFryF +=+  and 
the condition in (5) reduces to 

( ) ( ),rxFryF −>−  
which holds for any 0, >yx , as ( )xf  is non-negative 
(and ( )xF  non-decreasing) and yx < . 

5. Numerical Simulations 
The hardware equipped with the on-sensor PD pixels has 
not been available to Authors at the time of the paper 
preparation. Therefore, we performed a simple numerical 
experiment illustrating the approach and based on a sty- 
lized model in the environment provided by the Mathe- 
matica and C++ packages. A sample scene ( )xS  is pre- 
sented in Figure 4 together with the half-images, ( )xIL  
and ( )xIR . Figure 5 shows the shape of the resulting fo- 
cus function ( )xf . In Figure 6 the results of application 
of the Kiefer-Wolfowitz algorithms are shown for the 
sequences ( ) 1−= nna  and ( ) 3/1−= nnc  (as in the orig- 
inal algorithm in [19]). The white noise of uniform dis- 
tribution in the interval [ ]1.0,1.0−  was added to the 
focus function. 

6. Final Remarks 
In the classic paper by Krotkov [26], several criteria of 
 

 
Figure 4. The sample scene (black line), and its left (brown) 
and right (red) half-images. 
 

 
Figure 5. The focus function of the scene from Figure 4. 

3But still symmetric—due to stationarity of S(x). 
4If f(x) is not symmetric, the convolution with such h(x) remains un-
imodal with the maximum at origin, but this point may no longer be the 
actual maximum of the focus function. 
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Figure 6. Mean squared error of the Kiefer-Wolfowitz algo- 
rithm vs. the number n of the algorithm test points. 
 
“a good focus function” are given. Using these criteria we 
shortly discuss the properties of the considered approach. 

6.1. Unimodality 
The unimodality property has been formally shown for 
filters with linear impulse responses, as in (2) and (3). 
Both early experiments and formal investigations suggest 
that the symmetry condition ((3) or (6)) is crucial while 
the shapes of filters can, for instance, resemble square (or 
higher monomial) functions. It should be however no- 
ticed that the real images may not be stationary (and 
hence, our assumption that the correlation function is 
symmetric (i.e. depends only on the shift between half- 
images) can be violated). Hence, the search for the cor- 
relation function maximum can result in an improper 
focus distance selection as its maximum may no longer 
correspond to the actual (or desired) focus position. In 
this case one should consider application of the global 
random search algorithms; see e.g. [17,27-29]. 

6.2. Accuracy and Reproducibility 
The accuracy and reproducibility of the PD AF algo-
rithms are affected by the presence of noise; the range of 
admissible noises is very broad and encompass virtually 
all instances found in practice, see e.g. [30]. Observe 
further that the proposed approach is of an open-loop 
control type. That is, the focus function maximum—once 
set—is not further refined. The natural extension of the 
approach is to exploit the fact that during the sensor 
movement toward the focus plane, the width of the lens 
impulse response (the parameter a  in (1)) vanishes and 
the new images captured during these movements can be 
used to evaluate the maximum. From the formal view- 
point (under our correlation function symmetry assump- 
tions), these additional measurements are not necessary 
when the image plane is fixed, nevertheless, they can be 
used in a closed-loop control algorithms, e.g. to track the 
focus when the image plane shifts. 

6.3. General Applicability 

PD AF algorithms are less general than CD AF ones as 

they require additional modifications to the sensor (at the 
cost of image quality: the masked pixels are put in place 
of the standard pixels in some implementations). How- 
ever, in contrast to the standard PD AF algorithms which 
require a separate optical path, this new PD AF one 
needs merely a new sensor. Moreover, the case we ex- 
amine is based on an assumption that scene is a 1D (or 
2D) process (random field) while in many situations it is 
in fact a 3D one. Expanding the algorithm analysis to- 
wards this assumption is a subject of our current study. 

6.4. Video Signal Compatibility 

As in the CD AF case, the video signal is registered by 
the same sensor which collects half-images for the PD 
AF algorithm. Thus, the calibration of the separate opti- 
cal path, which is often necessary in the standard algo- 
rithms based on mirror/splitter, is not required here. 
Nevertheless, the pixels are masked and part of the light 
is lost ( 1−  EV per pixel for the considered half-masked 
pixels, approximately). It can clearly be seen as a draw- 
back in low-light applications. In the abovementioned 
Canon’s “dual-pixel” implementation, all the available 
light is captured in the final image, however, the number 
of pixels to be processed is twice as large. 

6.5. Fast (Software) Implementations 
Correlation functions can be effectively computed using 
the standard routine in which both signals are trans- 
formed using FFT, and then multiplied. The correlation 
function is then obtained from the IFFT routine. The cost 
of a single run of the correlation evaluation is thus log- 
linear, ( ),log nnO  where n  is a number of pixels; see 
e.g. [18]. In a special case when the golden section- 
search algorithm is used, then it is guaranteed that the 
maximum number of test points is O(logn); see e.g. 
 

 
Figure 7. POV-Ray simulation (clock-wise): the scene (the 
white square is in focus, the red is closer and the yellow one 
is further from the focus), the image seen by a 33 × 33 sen- 
sor with non-masked pixels, the images seen by the right- 
and left-hand side half-masked microlenses. 
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[4,18]. Hence, the overall complexity is then O(nlog2n). 
When, in turn, the Kiefer-Wolfowitz algorithm is used to 
determine the focus position, the number of test points in 
which the correlation is computed is usually fixed (and 
slightly larger than O(logn)).5 

6.6. Image Readout Issues 
Using the image sensor for focusing is clearly beneficial 
from the video compatibility point of view. However, it 
also means that the algorithm speed is limited by the 
sensor framerate. Clearly, this problem is more signifi- 
cant in CD algorithms than in PD ones (especially in a 
single-image open-loop version of the latter), but in ei- 
ther case can further be alleviated when a sensor at hand 
offers random access to pixels and one is interested in 
focusing in a selected region of the scene. 
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