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ABSTRACT

Let the generalized function (tempered distribution) f on R be a p-periodic eigenfunction of the Fourier transform

operator F , ie., f(x+p)="f(x),F =Af, for some 21eC. We show that A=1,—i,—1, or +i, that p=+N

o N-1
for some N =1,2,---, and that f has the representation f (X) = z Z}/[n]5{x—£— mp] where & is the Dirac
p

m=-on=0

functional and y is an eigenfunction of the discrete Fourier transform operator F, with

A

(A= y[n]e ™ =1k

We generalize this result to p,,p, -periodic

eigenfunctions of F on R? andto p,,p,, p,-periodic eigenfunctions of F on R’.

Keywords: Eigenfunction; Fourier Transform Operator

1. Introduction

In this paper, we will study certain generalizations of the
Dirac comb (or III functional, see [1])

m(x) = nicé(x—n) M

where o is the Dirac functional. We work within the
context of the Schwartz theory of distributions [2] as
developed in [1,3-7]. For purposes of manipulation we
use “function” notation for 6, III and related func-
tionals. Various useful proprieties of & and III are
developed in [1,3-5].

The III functional is used in the study of sampling,
periodization, etc., see [1,4,5]. We will illustrate this
process using a notation that can be generalized to an
n-dimensional setting. Let &, e R with & # 0, and let

A= 1 . We define the lattice

EH

Open Access

L,

a

,=1{na :neZ}
and the corresponding @, -periodic Dirac comb

grid, (x):= Y &(x-a). ®))
ae[al

The Fourier transform of the &, -periodic Dirac comb
is

grid;, (s) =[A|grid, (s). (3)

Let g be any univariate distribution with compact
support. We can periodize g by writing

f(x):= grid, (x)*g(x), “)

where * represents the convolution product, to obtain
the weakly convergent Fourier series

()= 30 [Alg" (k)e™ )
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We observe that grid, has support at the points
na, n=0,+1,+2,--- of the lattice Eal , while the Fourier
transform |A1 | grid, has support at the points

aﬂ, n=0,+1,+2,--- of the lattice ﬁA{ . It follows that
i
grid, =grid,
if and only if
a, ==%l,
i.e., if and only if
grid, =1IL 6)

Let F be the Fourier transform operator on the
space of tempered distributions. It is well known [1,4,5],
that F is linear and that

F'=1, @)

where 7 denotes the identity operator on the space of
tempered distributions. We are interested in tempered
distributions f such that

Ft=af, ®

where A 1is a scalar. Any distribution f that satisfies (8),
and that we will call eigenfunction of F , must also sat-
isfy the following equation

F'f=i"f, neN 9)

due to the linearity of the operator F . When n=4,
then F*f =A*f . Thus the eigenvalues of the operator
F are 1,-1,i,—i

Eigenvectors of F

We first consider the eigenvectors of the discrete Fourier
transform operator F since, as we will see later, they
can be used to construct all periodic eigenfunctions of the
Fourier transform operator F [8,9].

Definition 1. Let N =1,2,--- . The matrix
1 1 1 1
| 1 W o’ oM
_7:N ::W 1 e ?4 IN-2 ,

1 N N2 o (NN
w=e2"N s said to be the discrete Fourier transform
operator.

It is easy to verify the operator identity
1
F N2 = WRN

where

Open Access

00 - 00
0 00 0
0 00 0
Ry = o
0
L 1 O .

is the reflection operator. It is easy to verify
2
1 1
4 2
]:N:|:NRN:| N2R _N2 N

where I, isthe NxN identity matrix. In this way we
see that if

F =21, 1=0,

then
1
4
SRR
so A must take one of the values il/\/ﬁ,ii/\/ﬁ.
Let M, (N) be the multiplicity of the eigenvalue

()
PN

of F,,r=0,1,2,3, and let
fN,r,,u [n]i :u = 1529”'7

be orthonormal eigenvectors of F corresponding to
the eigenvalue

M. (N) (10)

Example 1. N=2

The matrix
1 1
7oL
211 -1

has the eigenvalues 4, :1/\/5, 4 =—1/\/§ with cor-
responding eigenvectors

i)

We normalize these vectors to obtain

—1+f
a2z

RN
Jar22

201 201[1
\/4 2

221[0 > 221[1]=
V4+2
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2. The Main Results

A generalized function f, f =0, is said to be an eigen-
function of the Fourier transform operator F if

Ft=Aaf

For A =+1,%#i. We would like to characterize all pe-
riodic eigenfunctions f of the Fourier transform operator
F,ie.,

Ft =11, =0,

within the context of 1,2,3 dimensions.

2.1. Periodic Eigenfunctions of F or R

Let f be a p-periodic generalized function on R,
p >0, and assume that

F=F =Af

where A=%1,4i and f #0. The 2-periodic function

F(s)=4 2. T[k]s
0<k< p2
We recognize this as the Fourier transform of

f(x>={ >

0<k< p2

0<k<p?

We define
}/[H]ZZ z 1—~[k]ezr:ikn/p2
0£k<p2
and write
1 o0
f(x)—F Zy[n]&(x——) (13)

Now if the term

rlnle( x-2 ] rtn] 20

p

appears in the sum (13) then (since f

s

must also appear. Thus

Aot

for some integer n’. It follows that

is p-periodic)

Open Access
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() S| 2t
i o2

r[k]e“**/p}mx){ »

0<k<p

rle o k-1

p

W. KAMMLER

f(x)=

%{III@]+IH(X_;/zj—HI[X_22/2j+111(x_23/2j},

is such an eigenfunction, constructed from the eigen-
vector f,,, of F,. We will now characterize all such
periodic eigenfunctions.
Since f is p-periodic, f
convergent Fourier series

f(x)= k;iﬁoor[k]e“‘kx/ ;

We Fourier transform term by term to obtain the
weakly convergent series

is represented by its weakly

(In

k

F(s)= ki@r[k]&(s—gj

for the Fourier transform of f . Now since F=Af
and A#0, F mustalso be p- periodic with

(3 )3l3)

(12)

iz{

p N=-—w0

3 F[k]ez““‘”/pz}d(x—ﬂj.

0<k< p2 p

n p’+n

PP
ie,

p’=n'-n,
and

7[n]=7[n]
thus

p’=N

for some N =1,2,---,
can use (13) to write

and since y[n] is N-periodic, we

where
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N-1
}/[n] _ Zr[k]eznikn/N
k=0

is the inverse Fourier transform of the N-periodic
sequence of Fourier coefficients T'. Since F=A4f we
can use (12), (14) to see that

F[k]:(}‘,\,y)[k]:%y[k], k=01 N1,

i.e., that » is an eigenvector of the discrete Fourier
transform operator F, associated with the eigenvalue

IN

Theorem 1. Let the generalized function f on R
be a p-periodic eigenfunction of the Fourier transform
operator F with eigenvalue A=1-i,-1, or +i .
Then p:\/ﬁ for some integer N =1,2,--- and f
has the representation

f(x)=

m

. In this way we prove the following

(15)

> x5 )

where » is an eigenvector of the discrete Fourier

i&(x—nﬁ)+

n=—w

_ 1

“H )

fi (x)

and

_ 1

Ja+22

1

)

f,(x)

N=—w

from the eigenvectors f,;, and f,, for F . It is
easy to verify that

(71)(s) = £ (). (FL.)(5) = =T (s)-

Characterization of periodic eigenfunctions of F
on R?

Let f be a bivariate generalized function and
assume that f is an eigenfunction of F ,i.e.,

F=F =Af

with A=1-i,-1, or +i, (and f #0). Assume further
that f is a,,a,-periodic, i.e.,

f(x+a)=f(x), f(x+a,)=f(x).

Here a,,a, are linearly independent vectors in R”.

Open Access
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transform operator F with
(7n7)[k]

1 N-1 i
W Z}/[n]e—Znnkn/N

n=0
A

JIN

Example 2. When N =1
ponding 1-periodic

y[K], k=0,1,---,N 1.

we obtain the corres-

with
I =111

Of course, this particular result is well known, see [1].
Our argument shows that a periodic eigenfunction of the
Fourier transform operator that has one singular point per
unit cell must be a scalar multiple of the Dirac comb
I .

Example 3. When N =2, we obtain the x/f—periodic
eigenfunctions

0

—1++2

1
—mn_zmﬁ(x—ﬁ—nﬁj
—1++/2

i&(x—n 2)—

1
2 b

1442 & 1
Ja+242 n—zf(x_f_nﬁ)

2

B

We simplify the analysis by rotating the coordinate
system as necessary so as to place a shortest vector from
the lattice £, , along the positive X-axis. We can and
do further assume with no loss of generality that a,,a,
have the form

a :(alao)T > 8, :(ﬂpﬂz)T

&

where
a, >0 (16)
al <P+ p; 17
B, >0 (18)
0<p <aq,. (19)
AJCM
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The dual vectors then have the representation

(B-B)'

A= A=——(0a)",

1ﬂ2 lﬂl

and

gridal’az(x)zg Zw: S(x—-na -n,a,)

has the Fourier transform
grldal a ( ) = AkZ kz 5(S_k1A1 - szz)
| =—0Ky==0

where A:|det(A1,A2)| Now since f is
a, -periodic, f can be represented by the weakly
convergent Fourier series

oki A +ky Ay el

-5[Xl—nﬂ X+ 1ﬂ1 nzalj}
ap; ap;

We define

vl )= 3

{F[kl,kQ]
ki Ay +ko Ay eld

(23)
.eQ"i{(ﬂlz+ﬁ22)nlkl’alﬂl(”lkz +n2kl)+a12n2k2}/(a12ﬂ22) }
and write
(hx)-—L 3 3 { n.n)
a ,Bz Ny =—oony =—0
(24)
.6[)(1 1ﬂ2 ng —ne J}
(24 ﬂz a,p,
Now f is a,a, -periodic, so if y[n,n,]=0 for

some integers n,n,, then the term

ng,
Xy +
alﬂZ

nlﬁl - J

5 o -
7[“1 nz] [Xl o = af,

equals the term

Open Access

i Z F[klakz]'ezni(klA‘+k2A2)(”1Ai+”2A2

W. KAMMLER

weakly convergent series
Fs)= 5 BTk,

From (21), we see that the support of F lies on the
lattice £Al’ A and since F=Af , F must also be
a,,a, -periodic so we can write

F(s)

={ > F[kl,kz]5(s—k1Al—szz)}*gridahaz(s)
ki A +ko Ay U
(22)

@n

HMS

]5(S_k1A1 _szz)'

where

U= {xa+xa,:0<x <1,0<x, <1}
is a primitive unit cell associated with the lattice £, , ,
where X/,x; are affine coordinates, and * is the

bivariate convolution product. Using the bivariate inverse
Fourier transform, we see that

S(x-nA-nA )|

© o zm 5 +/?2)nlkl —ay (ko +1oky ) +arf nzkz}/(alzﬂzz)
> 2 H Y Tlk.k,]-e I
—o | A+ A el 1

1A 1ﬂ2 ﬂl_néal
y[nl,n2]5[ L+ . j

a,p,

and the term
n g n g —n«a

n,n, 8| x — 22X, - p, 2
7[1 2] (1 B - a1ﬂ2 B+ a B, j
equals the term
7/[”1"3 ng]é‘(xl 1:32 A~ e, j

alﬂz a,p,

for some integers n;,n;,n’,n; . From the supports of

these O -functions we see that

ap  ap
ie.,
alz =n-n
alz =N,
for some N, =1,2,--- . Likewise, we see in turn that

AJCM
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nA —ne =np -ne,
(nf=n) B =(m-n)a,
a; ﬂl _( )0‘1»
o f=n-n=M

forsome M =0,%1,£2,---, and analogously

ng _ng

ple P
apf, ap

af =n/-n =M.

Finally,

"

B, - ng-na, _ _ g —ma,
2 - s

,Bz +131 =N,

for some N, =1,2,---
now write

. Using these expressions we can

N,N, —M>
B, = —
Nl
1 T
a =——(N,,0
1 Nl( 1-0)
)
aZ:LN(M,JNlNZ—Mz)
1
1 T
A= ( N,N, Mz,—M)

where, in view of (16)-(19)
N, <N,, 0<M <N,

and

lal=VN. as]|=VN..

From (21), (23) we also have

A= 3 {r[w

ki A +ky Ay eld

(25)
.eZTri{Nznlkl—M (mk gk J+Nimgky /(NN M2 )} }

Open Access

F(s)= 3 3 Tlkok]6(s—kA—kA)

kj =—o0ky =—c0

k

=3 kK)o @)
k) =—oky =—c0 N1
kM —k,N,
SZ
N, (NN, =M?)
We will now consider separately the cases
M=0,M>0.
Case M =0

When M =0 the vectors a,,a, are orthogonal and
f has the corresponding periods

@ :\/N—l’ﬂzz\/N—z»

along the x-axis and y-axis, respectively. The function y
is represented by the synthesis equation

N;—IN, -1 )
7lnon]= X 3 ko]0, @)
ki =0k, =0
and by using (24) and (26), in turn we write

F(s.s,)

0 0 k k
= r[k.k |- 8|s ——F—=,s, ————=
kIZOOkzZW{ [ 1 2] [ 1 Nl ’ N2 J}

:/”(Sl’s ) g“’: i@{)’

Ny =-ony

e )

In this way we conclude that

I'[k,k,]=

7[k13k2]- (28)

A
VNN,

Thus y must be an eigenvector of the bivariate
discrete Fourier transform J , associated with the

A
9
V Nl N2
an N, N, -periodic sequence of complex numbers, we
can write

(9= 5 555 o)

—my /N, X, —n—\/’\zT—mz\/N—z}}
2

AJCM
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Case M =0
We observe that

1 (NI,O)T,

oy
N,a, - Ma, :\/N_I(M,JNINZ—MZ)T—M( N,.0)
:ﬁ(O,N“/NINZ—MZ)T.

1

aq =

Since f is a,a,
a‘l’NlaZ

-periodic, then f is also
—Ma, -periodic. Thus f has the periods

a,=+N,,and g, =

along the x-axis and the y-axis, respectively, a situation
covered by the analysis from the M =0 case. In this
way we prove

Theorem 2. Let the generalized function f on R’
be an a,,a, -periodic eigenfunction of the Fourier
transform operator F with eigenvalue A=1,-i,—1, or
+i . Assume that the linearly independent periods a,,a,
from R’ have been chosen as small as possible subject
to the constraint that 0<|a|<|a,||. Then there are
positive integers N, <N, such that

= /Ny ]| = YN,

and there is a nonnegative integer M < N, such that &
is orthogonal to

N, (N,N, —M?)

a, =N,a, —Ma,
with

s = N3 N = Ny (NN, = M),

The generalized function f is a,,a, -periodic and
there is an orthogonal transformation Q such that

fo (x):= 1(Qx)

is ( N, ,O)T ,(O,\/WZ' )T -periodic with the representation

AUEDPPHHILEN

5 R~ m, N |
S e AU
Here y isan eigenfunction of Fy \, with
(le w7 [k ko]

Ny —IN5 -1

227[

N N2’ M=0ny=0
A

\/WV[ 15 ]

] . e’zni(klnl/Nl +kany /N3 )

Open Access

for 0<k <N,-1,0<k, <Nj-1.
Note that the N;N, normalized eigenfunctions y
denoted by

le»"l»%’liNsz»/lz [nl’nZ] = le,rl,yl [nl]' sz,rz,yz [nz]a (29)

with g =1,--,M, (N, ),k=12 of F  serve as
an orthonormal basis for the N;N, dimensional space
Py, n, of N, N, -periodic discrete real valued functions.
Here (29) has the corresponding eigenvalue

ErEr
N

Theorem 3. Let the generalized function f on R’
be an a,a,,a,-periodic eigenfunction of the Fourier
transform operator F with eigenvalue A =1,-i,-1,or
+i . Assume that the linearly independent periods
a,a,,a, from R’ have been chosen as small as
possible subject to the constraint that
0<|a]l<|a] <as] - Then there are positive integers
N, <N, <N, suchthat

Jaufl= VNV e = NG s = Ny

and there are nonnegative integers

0<M, <N, 0<M, <N, 0<M, <N, +N,

=0,1,2,3.

such that a,,
a;=N,a, -Ma,
and

a =N, [ (M,M, = N,;M, )2, ~(N;M, MM, )a,

+(N1N2—Mf)a3]

are pairwisely orthogonal with

ezl = N, ]| = /N2

where
Ny =N, (NN, -M7),
NG = N (NN, = M) NN, N, +2M, MM,
—(N1M32+N2M22+N3M12)]

The generalized function f is a;,a;,a; -periodic,
and there is an orthogonal transformation Q such that

fo (X) = f(Qx)

is
(VN,.0.0) . (0./NZ.0) . (0.0.N] )’

-periodic with the representation

AJCM
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N —INj —IN§ -1

> 2.2 2

my,my ,ms =—oon; =0y =0n3 =0

fo (x)=

Here
Nj—IN5 -IN3 -1
(s )[Kiskos ]ZZZ%Mm
nl Onz 0|’13
where
_ 1
N,N;N;
for
0<k <N, -1,0<k, <N; -1,
and

2.2. Some Quasiperiodic Elgenfunctlons of the
Fourier Transform Operator on R?

In this section we will construct some quasiperiodic
eigenfunctions of the Fourier transform operator. A
generalized function f is said to be quasiperiodic if the
Fourier transform f”" is a weighted sum of Dirac &
functionals with isolated support [10].

Lemma 1 Let a,a, be linearly independent vectors
in R*.If

|det[a, a,]|=1,

and grid, , isdistinct from grid; , , then
f.(x)= grid, . (x)+ grid; . (x) (31)
f(x)= grid, , (x) —grid; (x) (32)

are eigenfunctions of the Fourier transform operator F
associated with 4 =1,4 =—1, respectively.

Quasiperiodic eigenfunctions of F on R? with
m-fold rotational symmetry.

Let
az/ Isin(znj (33)
n
for some n=3,4,---, and let

a, = a(cos(2nk/n),sin(2nk/n))T (34)

where 0<k<n-1, be the vertices of a regular
n—gon with center at the origin. The parameter «

has been chosen so that
det[a, &, ]=1
foreach k=1,2,---,n—1. Thus
grid} = grid, k=0,1,---,n-1

A8y Qay ,Qay, °

Open Access

[nl,nz,ns]ﬁ(xl—%—m1 N,, \/_ —m,/NJ, %, — T \/—} (30)

] *Z"i(klnl/Nl+kznz/Nﬁ+k3”3/N3')} - A }/[k ]
1

JN,NIN!

(with a, :=a,) where

o 0 -1
1o
is a quarter turn rotation. We will use this fact to generate
quasiperiodic eigenfunctions of F on R’ with
rotational symmetry.

We will now construct a family of quasiperiodic
eigenfunctions of F that have rotational symmetry. Let
n=3,4,---,and a,,k=0,1,2,---,n—1 be given by (34),
let o be given by (33), and let

f.. (X) =

n-1
sz()gridak’akn ( )+gl’ldak A (X)’ (35)

and
n-1
fo(x)= kZgridalk o, (X)—gridy . (x),  (36)
=0
(with a, :=a,). Figures 1 and 2 show representations of

such eigenfunctions with n=5 and n=7 respectively.
Filled circles correspond to negatively scaled Dirac ¢ ’s,
and unfilled circles correspond to positively scaled Dirac
0 ’s. The radius of each circle is proportional to the
square root of the modulus of the scale factor for the
corresponding ¢ . By construction,

fA=1f, and ) =—f_

3. Representation of Some Quasiperiodic
Eigenfunctions

; The quasiperiodic eigen-

Figure 1. (&) f,_; (b) f,, ;
functions f,_ with 10-fold rotational symmetry, and f,,

with 20-fold rotational symmetry for the Fourier transform
operator F with respectively A =-1,and A=1.

AJCM
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[1]

(@) (b)
Figure 2. (a) f,_; (b) f
functions f,_ with 14-fold rotational symmetry, and f,,

with 28-fold rotational symmetry for the Fourier transform
operator F with respectively A=-1,and A=1.

The quasiperiodic eigen-

7+
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