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ABSTRACT 

To aim at the distribution parameter characteristics of UHV transmission line, this paper presents a fast extraction 
method (FE) to extract the accurate fundamentals of current and voltage from the UHV transmission line transient 
process, and locates the fault by utilizing two-end unsynchronized algorithm. The simulation result shows that this 
method has good performance of accuracy and stability, and has better location precision by comparing with results of 
one cycle Fourier algorithm. Therefore the method can efficiently improve the precision of fault location during the 
transient process, and makes the error of location results less than 0.5%. 
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1. Introduction 

Recently, with the development of communication tech-
nology and the improvement of electric power automa-
tion system, two-terminal fault location method [1-6] has 
been gradually popularized in the power system. With 
the increasing of UHV long transmission line, two-ter- 
minal fault location method that employs the accurate 
distributed parameter model and need not synchronized 
data of two-terminal will be applied extensively. Com-
pared with HV and EHV transmission line, UHV trans-
mission line has the characteristics of large transmission 
capacity, long transmission distance, smaller wave im-
pedance and larger distributed capacitance, so the fault 
transient process will be more complicated, and accu-
rately acquiring of fault electric quantity would be diffi-
cult. Most of existing location algorithms based on pha-
sor method. In the transient process of UHV AC trans-
mission system, the decaying DC offset of fault current 
and the decaying DC offset of fault voltage introduced by 
CVT extend the convergence time of the traditional Fou-
rier algorithm, decrease the accuracy of algorithm, and 
also reduce the precision of electric quantities in the fault 
transient process. 

In order to remove the influence of decaying DC offset, 
many domestic and foreign scholars have proposed some 

improved algorithms, such as difference Fourier algo-
rithm[7] and parallel compensation method [8]. Although 
difference Fourier algorithm can suppress the DC offset 
in a certain extent, it cannot remove the decaying DC 
offset; meanwhile it also amplifies the content of har-
monics. Parallel compensation method required the prior 
knowledge regarding the time constant of the DC offset, 
so it is difficult to realize in practical engineering. On the 
premise of relay protection rapid action, the present algo-
rithm has a high demand of rapidity, which will sacrifice 
some accuracy and stability. But the UHV transmission 
line require not only the higher accuracy of fault location, 
but also protection quick trip over ten milliseconds, then 
the voltage and current data window would less than one 
cycle. In order to calculate fault location fast and accu-
rately, it is important to introduce a new phasor extrac-
tion algorithm.  

Based on Matrix Pencil method [9-12], the Fast Ex-
traction method [13] is established by using matrix simi-
lar transformation and QR Factorization. It can quickly 
extract the fundamental frequency component of UHV 
transmission line, and remove the effect of decaying DC 
offset and high order harmonic component of the tran-
sient process. This paper uses the Fast Extraction method 
to identify the fundamental component of fault compo-
nent within 20 ms, and applies the fundamental to 
two-terminal fault location scheme for fault location, 
which greatly improves the accuracy of fault location 
during transient process, and has a good application 
prospect. 

*The research presented in this paper is supported by National Natural 
Science Foundation of China (51037005) and Specialized Research 
Fund for the Doctoral Program of Higher Education (2011020111
0056). 
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2. A Brief Introduction to Fast Extraction 
Method 

When faults occurred in UHV transmission line, fault 
current consists of a fundamental frequency, a decaying 
DC offset, and decaying harmonics. Capacitive voltage 
transformers produce low-frequency transient compo-
nents having over damped behavior, which resemble DC 
offset components. So the fault voltage has the same 
frequency components as the fault current. Therefore the 
fault signal can be expressed as 
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where 1 0  , 1 0q   , and 1 0q   , other defini-
tions are the same as in (1). 
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crete set of sampled transient data, (4) can be expressed 
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where n ,  and  is the size of the 
time-stepping interval used in obtaining the sampled da-
ta. 

t n  k t
kz e  t

In order to calculate the fundamental component of the 
input signal, as we all know, the fundamental amplitude 
is not decay, so let the reference signal  is as fol-
lows 
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where 1 2 50 /rad s  . 
So its discrete expression is as follows 
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3. The Basic Principle of Fault Location 

 . 

The following Figure 1 shows a single phase transmis-
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sion system between two buses. A fault occurs at loca-
tion F which is x  kilometer from bus M, the voltage 
phasor at fault point FU  can be expressed as 
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L is the whole length of transmission line;   is the 
asynchronous angle of sampling at both ends. 

Theoretically, asynchronous data at both terminals 
only affect the phase of sinusoidal signal, but has no in-
fluence on the magnitudes; therefore the fault point volt-
age magnitudes measured from two ends are equal, i.e. 
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Because the circuit parameters are known
electrical quantities of opposite end are also be obtained, 
so
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 solving (20) can get the fault position x . 
Also note that the voltage and current of (18)-(20) are 

decoupling modulus through phase-to-module transfor-
mation. The searching method for the fault location is as 
follows. 
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Figure 1. Single phase transmission system. 
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4. Simulation and Verification 

In order to improve the fault location accuracy of two- 
termi l location algorithm during the transient process, 
the Fast Extraction method (FE metho s applied to 

na
d) i

emonstra
ject of Jindongnan-Jingmen 1000 kV UHV AC transmis-

he 
simulation model is shown in Figure 2. The total length 

s of transmission 

two-terminal location algorithm. The d tion pro-

sion has been simulated by ATP-EMTP software. T

is 654 km. Positive sequence parameter
line are 0.00758 /R km1   , 0.261 365 /X km  and 

1 0.01397 / .C F km  Zero sequence parameters of tran- 
smission line are 0 0.15421 / ,R km   0 0.8306 /X km   
and 0 0.00926 /C F km . Jindongnan-Nanyang circuit 
is configured 2 groups of shunt reactors on the two ter-
minal ends of the transmission line, whose capacity is 
960 Mvar and 720 Mvar respectively. Nanyang-Jingmen 
circuit is configured 2 groups of shunt reactors on the 
two terminal ends of the transmission line, whose capac-
ity is 720 re

nyang transmission line is divided 
into 10 sections, 1

Mvar and 600 Mvar spectively. 
The Jindongnan-Na

fault location K  is located in every 
section end. There are five different fault types at differ-
ent fault locations, which are single-line-to-ground fault, 
high-resistance single-line-to-ground fault with 500   
transition resistance, phase-to-phase short circuit fault, 
phase-to-phase short circuit grounding fault, and three- 
phase short circuit fault. 
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Figure 2. UHV AC demonstration project system. 

Copyright © 2013 SciRes.                                                                                  EPE 



L. WANG  ET  AL. 1280 

In practice, digital relays are equipped with analog 
low-pass antialiasing filters prior to the analog-to-digital 
onverter. To accurately model the analog process of 

antialias filtering, the initial sampling rate in the simula-
tions is set to 20 kHz. Then the voltage and current are 
passed through a second-order low-pass Butterworth 
filter with a 350-Hz cutoff frequency. The output of this 
low-pass filter is downsampled to 

c

sf  = 4 kHz. MAT-
LAB
tio

 is used to verify the location effect of Fast Extrac-
n method, which is also compared with the measured 

location of Fourier algorithm. 
Throughout the entire discussion, fD  and L repre-

sent the real fault location and the whole length of trans-
mission line. CCD  and CPD  represent the location 
measured by the conventional Fourier method and the 
proposed method, respectively. AC  and RC  represent 
the absolute error and the relative error of the fault loca-
tion given by the conventional Fourier algorithm, respec-
tively. AP  and RP  represent the absolute error and 
the relative error of the fault location given by the pro-
posed scheme, respectively. These errors are defined as 
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The fault location obtained by the positive-sequence 
fault components, the negative-sequence fault compo-
nents, and the zero-sequence fault components measured 
by the conventional Fourier method and the proposed 
method are shown in Figures 4-6, respectively. The re-
sult of the proposed method is almost a straight line, but 
the result of the traditional Fourier algorithm is an up- 
and-down curve. 

Because different fault types all contain positive- se-
quence fault components, so the following location re-
sults are obtained by positive-sequence fault components. 
Tables 1-5 represent the location performance of the

conventional Fourier method and the proposed method, 
respectively, in terms of error in the measurement of ab-
solute error and relative error for different fault types 
such as single-line-to-ground fault, high-resistance sin-
gle-line-to-ground with 500 transition resistance, phase- 
to-phase short circui

ounding fault and three-phase short circuit fault. 
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Figure 3. Fault components of the voltage and the current 
under single-line-to-ground fault and the magnitude and 
phase angle comparisons extracted by the Fast Extraction 
method and one cycle Fourier algorithm. 
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Figure 4. DCC and DCP measured by positive-sequence fault 
components. 
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Figure 6. DCC and DCP measured by zero-sequence faul

able 1. Location results of single-line-to-ground fault using 
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[-1.76,2.45] 37.4 0.30 

72.6 [67.6,79.3 [-1.38,1.85] 73.4 0.22 

108.9 [106.4,112. [-0.69,0.94] 109.3 0.11 

145. 3.3,147. [-0.52,0.52] 145.2 0 

217.8 [215.7,218.6] [-0.58,0.22] 217.1 -0.19 

254.1 [250.5,255.5] [-0.99,0.39] 253 -0.30 

290.4 83 5,294.4 1. 0,1.10] 288.9,289] 0.4 ,-0.39
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Tab u -to-phase shor uit 
gr ng p uen lt fun ntal 
components computed by ethod and one 
cy uri m

D ) ) 

le 4. Locat
oundi

ion res
faultusing 

lts of phase
ositive seq

t circ
damece fau

 Fast Extract
 . 

ion m
cle Fo er algorith

f (km) DCC (km) εRC (%) DCP (km εRP (%

0 [0,8.2] [0,2.25] [1.5,1.7] [0.4 .47]1,0

36.3 [31.8,43.8] [-1.24,2.1] 37.4 0.3 

72.6 [69.1,78.4] [-0.96,1.59] 73.4 0.22 

108.9 [107,111.8] [-0.52,0.79] [109.2,109.4] [0.08,0.14]

1 [1

1 [1 [-

2 [2

254.1 [250.9,255.0] [-0.88,0.25] 253 -0.30 

45.2 43.7,147.1] [-0.41,0.52] 145.2 0 

81.5 80.9,181.4] 0.17,-0.03] 181.2 -0.08 

17.8 15.7,218.6] [-0.58,0.25] 217.1 -0.19 

290.4 [284.2,293.0] [-1.71,0.72] [288.9,289] [-0.41,0.72]

326.7 [319.5,331.1] [-1.98,1.21] 325.6 -0.30 

363 [354.9,363.0] [-2.23,0.00] [361.3,361.6] [-0.47,-0.39]

 
 L esul ee-ph t cir lt 

using positive quenc o
computed b Extra thod  cy  
a hm

D ) D ) ε  

Table 5. ocation r ts of thr ase shor cuit fau
 se

y Fast 
e fault fundame
ction me

ntal c
 and one

mponents 
cle Fourier

lgorit . 

f (km DCC (km) εRC (%) CP (km RP (%)

0 [0.0,8.2] [0.0,2.26] 1.5 0.41 

36.3 [29.6,45.8] [-1.85,2.62] 0.  

 

 

  

  

254.1 [251.1,254.7] [-0.83,0.17] 253 -0.30 

  

37.4 30

72.6 [67.4,79.7] [-1.43,1.96] 73.4 0.22 

108.9 [107.5,111.2] [-0.39,0.63] 109.3 0.11 

145.2 [143.3,147.8] [-0.52,0.72] 145.2 0 

181.5 [180.7,181.6] [-0.22,0.027] 181.2 0.08 

217.8 [213.7,219.2] [-1.13,0.39] 217.1 -0.19 

290.4 [282.6,295.0] [-2.15,1.27] [288.9,289] [-0.41,-0.39]

326.7 [317.1,333,4] [-2.64,1.85] 325.6 -0.30 

363 [355.0,363.0] [-2.20,0.00] 361.5 -0.41 

 
From the above Tables 1-5, it is to be noted that the 

m m erro t l ve e
con tion er a imit of %
4.05 xim e error of fault lo
gi  t ed mai ithin a  of

 T  e by t oposed method 
is le of m  th at of t on-
vent et e p on of t
m a he ed me d is
more accurate than that of Fourier method. 

5 c

During t p H smiss ne, 
voltage a c of ing D set 
and harm h sion  th ist-
in -c r s o
prove the th tro  Fast ac-
tio eth u am ompo of 
he fa t com n rrent. 

 
mission Lines Using Asynchronous Dada 

at Both Ends,” Power System Technology, Vol. 24, No. 2, 
2000, pp. 45-4

aximu relative r of faul ocation gi n by th  
, 

[

ven
%], bu

al Fouri
t the ma

lgorithm is in
um relativ

 a l  [-4.9
cation 

 
[8]

ven by he propos  method re ns w  limit
0.47% . he relative rror given he pr
 smal

ional
r one order 
 Fourier m

agnitude
hod. So th

an th
recisi

he c
wo-ter- 

 
[9] Y. Hua and T. K. Sarker, “Matrix Pencil Method and Its 

Performance,” Acoustics, Speech, and Signal Processing, 
Vol. 4, 1988, pp. 2476-2479. 

inal f ult location given by t propos tho

. Con lusions 

he transient rocess of U V tran ion li
nd current 
onics. The p

ontain lots 
asor preci

decay
given by

C off
e ex

g one ycle Fourie algorithm i  lower. In rder to im-
 precision, is paper in duces a  Extr

n m
ul

od to comp
ponents a

te the fund
bout voltage a

ental c
d cu

nents 
t

The distributed parameter of transmission line is si-
mulated by ATP-EMTP software. And the location re-
sults based on the fault components of voltage and cur-
rent obtained by the proposed method is compared with 
that of the conventional Fourier algorithm. The simula-
tion results show that the proposed method can effi-
ciently improve the precision of fault location during the 
transient process, and makes the error of location results 
less than 0.5%; therefore it has a good application pros-
pect. 
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