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Abstract 
 
We present wavelet bases made of piecewise (low degree) polynomial functions with an (arbitrary) assigned 
number of vanishing moments. We study some of the properties of these wavelet bases; in particular we con- 
sider their use in the approximation of functions and in numerical quadrature. We focus on two applications: 
integral kernel sparsification and digital image compression and reconstruction. In these application areas the 
use of these wavelet bases gives very satisfactory results. 
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1. Introduction 
 
In the last few decades wavelets and wavelets techniques 
have generated much interest, both in mathematical ana- 
lysis as well as in signal processing and in many other 
application fields. In mathematical analysis wavelet bases, 
whose elements have good localization properties both in 
the spatial and in the frequency domains, are very useful 
since, for example, they consent to approximate functions 
using translates and dilates of one or of several given 
functions. In signal processing, wavelets were initially 
used in the context of subband coding and of quadrature 
mirror filters, but later they have been used in a variety 
of applications, including computer vision, image proce- 
ssing and image compression. The link between the ma- 
thematical analysis and signal processing approaches to 
the study of wavelets was given by Coif-man, Mallat and 
Meyer (see [1-6]) with the introduction of multiresolu- 
tion analysis and of the fast wavelet transform, and by 
Daubechies (see [7]) with the introduction of orthonor- 
mal bases of compactly supported wavelets. 

Let A  be an open subset of a real Euclidean space 
and let  2L A  be the Hilbert space of the square inte- 
grable (with respect to Lebesgue measure) real func- 
tions defined on A . In this paper when A  is a suffici- 

ently simple set (i.e. a parallelepiped in the examples 
considered), starting from the notion of multiresolution 
analysis, we construct wavelet bases of  2L A  with an 
(arbitrary) assigned number of vanishing moments. The 
main feature of these wavelet bases is that they are made 
of piecewise polynomial functions of compact support; 
moreover the polynomials used are of low degree and ge- 
nerate bases with an arbitrarily high assigned number of 
vanishing moments. This fact makes possible to perform 
very efficiently some of the most common computations, 
such as, for example, differentiation and integration. 
However the lack of regularity of the piecewise polyno- 
mial functions used can create undesirable effects in the 
points where the discontinuities occur when, for example, 
continuous functions are approximated with discontin- 
uous functions. Note that the wavelet bases studied here, 
in general, make use of more than one wavelet mother 
function. Thanks to these properties these wavelet bases 
in several applications can outperform in actual computa- 
tions the classical wavelet bases and, for example, in this 
paper we show that they have very good approximation 
and compression properties. The numerical results of Se- 
ction 4 corroborate these statements both from the qua- 
litative and the quantitative point of view. 

The wavelet bases introduced generalize the classical 
Haar’s basis, that has only one vanishing moment and is 
made of piecewise constant functions (see, for example, 
[8]), and are a simple variation of the multi-wavelets  

*The numerical experience reported in this paper has been obtained 
using the computing resources of CASPUR (Roma, Italy) under grant:
“Algoritmi di alte prestazioni per problemi di scattering acustico”. The
support and sponsorship of CASPUR are gratefully acknowledged.
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bases introduced by Alpert in [9,10]. The results reported 
here extend those reported in [11,12] and aim to show 
not only the theoretical relevance of these wavelet bases 
(also shown, for example, in [9,10,13,14]) but also their 
effective applicability in real problems. In particular in 
this paper we study some properties of the wavelet bases 
considered and the advantages of using some of them in 
simple circumstances. In fact the orthogonality of the 
wavelets to the polynomials up to a given degree (i.e. the 
vanishing moments property) plays a crucial role in pro- 
ducing “sparsity” in the representation using these wavelet 
bases of functions, integral kernels, images and so on. 
These wavelet bases as the wavelet bases used previou- 
sly have good localization properties both in the spa- tial 
and in the frequency domains and can be used fruit- fully 
in several classical problems of functional analysis. In 
particular we focus on the representation of a function in 
the wavelet bases and we present some ad hoc quadra- 
ture formulae that can be used to compute efficiently the 
coefficients of the wavelet expansion of a function. 

We consider also the use of these wavelet bases in 
some applications, initially we focus on integral kernel 
sparsification. This is a relevant task, see for example 
[10,15], since it makes possible, among other things, the 
approximation of some integral operators with sparse 
matrices allowing the approximation and the solution of 
the corresponding integral equations in very high dimen- 
sional subspaces at an affordable computational cost. In 
[11,12,16], for example, we exploit this property to solve 
some time dependent acoustic obstacle scattering pro- 
blems involving realistic objects hit by waves of small 
wavelength when compared to the dimension of the ob- 
jects. Let us note that these scattering problems are trans- 
lated mathematically in problems for the wave equation 
and that they are numerically challenging, moreover 
thanks to the use of the wavelet bases, when boundary 
integral methods or some of their variations are used, 
they can be approximated by sparse systems of linear 
equations in very high dimensional spaces (i.e. linear 
systems with millions of unknowns and equations). Later 
on we focus on another important application of wavelets: 
digital image compression and reconstruction. In this 
framework, the basic idea is to distinguish between re- 
levant and less relevant parts of the image details dis- 
regarding, if necessary, the second ones. In particular we 
proceed as follows: a digital image is represented as a 
sequence of wavelet coefficients (wavelet transform of 
the original image), a simple truncation procedure puts to 
zero some of the calculated wavelet coefficients (i.e.  
those that are smaller than a given threshold in absolute 
value) and keeps the remaining ones unaltered (com- 

pression). The truncation procedure is performed in such 
a way that the reconstructed image (i.e. the image ob- 
tained acting with the inverse wavelet transform on the 
truncated sequence of wavelet coefficients) is of quality 
comparable with the quality of the original image, but 
the amount of data needed to store the compressed image 
is much smaller than the amount of data needed to store 
the original image. We present some interesting numerical 
results in wavelet-based image compression and recon- 
struction. Moreover we define a compression coefficient 
to evaluate the performance of the compression procedure 
and we study the behaviour of the compression coeffici- 
ents on some test problems, in particular we show that 
the compression coefficients increase when the number 
of vanishing moments of the wavelet basis used increases. 
This property can be exploited in several practical appli- 
cations. 

The paper is organized as follows. In Section 2 using a 
multiresolution approach we present the wavelet bases. 
In Section 3 some mathematical properties of the wavelet 
bases introduced are discussed and some applications of 
these bases to function approximation are shown. Fur- 
thermore some quadrature formulae that exploit the bases 
properties are presented. In Section 4 applications of the 
wavelet bases introduced to kernel sparsification and 
image compression are shown. In particular in Subsection 
4.1 we study some interesting properties of the bases 
considered and we present some results about integral 
kernel sparsification. In Subsection 4.2 we focus on ap- 
plications of the wavelet bases to image coding and com- 
pression showing some interesting numerical results. Fi- 
nally in the Appendix we give the wavelet mother func- 
tions necessary to construct the wavelet bases employed 
in the numerical experience presented in Section 4. To 
build these mother functions we have used the Symbolic 
Math Toolbox of MATLAB. The website http://www. 
econ.univpm.it/recchioni/scattering/w17 contains auxili- 
ary material and animations that help the understanding 
of the results presented in this paper and makes available 
to the interested users the software programs used to ge- 
nerate the wavelet mother functions of the wavelet bases 
used to produce the numerical results presented. A more 
general reference to the work of the authors and of their 
coworkers in acoustic and electromagnetic scattering 
where the wavelet bases introduced have been widely 
used is the website http://www.econ.univpm.it/recchioni 
/scattering. 
 
2. Multiresolution Analysis and Wavelets 
 
Let us use the multiresolution analysis introduced by 
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Mallat [1,2], Meyer [3-5] and Coifman and Meyer [6] to 
construct wavelet bases. Let us begin introducing some 
notation. Let R be the set of real numbers, given a posi- 
tive integer s let sR  be the s-dimensional real Eucli- 
dean space, and let  1 2= , , ,

T s
sx x x x R  be a gene- 

ric vector where the superscript T  means transposed. 
Let ( , )   and   denote the Euclidean scalar product 
and the corresponding Euclidean vector norm respecti- 
vely. 

For simplicity we restrict our analysis to the interval 
(0,1). More precisely, we choose  = 0,1A R . Let 

  2 0,1L  be the Hilbert space of square integrable 
(with respect to Lebesgue measure) real functions de- 
fined on the interval (0,1). We want to construct ortho- 
normal wavelet bases of   2 0,1L  via a multiresolu- 
tion method similar to the methods used in [9,1-6]. Note 
that using the ideas suggested in [13,14] it is possible to 
generalize the work presented here to rather general do- 
mains A  in dimension greater or equal to one. 

Given an integer 1,M   we consider the following 
decomposition of   2 0,1L : 

        2 0,1 = 0,1 0,1 ,M ML P V       (1) 

where   denotes the direct sum of two orthogonal 
closed subspaces   0,1MP  and   0,1MV  of 

  2 0,1L . In other words, the vector space generated by 

the union of   0,1MP  and   0,1MV  is   2 0,1L  
and we have: 

         1

0
= 0, 0,1 , 0,1 .M Mdx f x g x f P g V    

(2) 

We take   0,1MP  to be the space of the poly- 
nomials of degree smaller than M  defined on (0,1) and 
we consider a basis of   0,1MP  made of M polyno- 
mials orthogonal in the interval (0,1) with respect to the 
weight function   = 1,w x  0,1 ,x  having 2L -norm 
equal to one. For example we can choose as basis of 

  0,1MP  the first M Legendre orthonormal polyno- 
mials defined on (0,1) and we refer to them as ( ),qL x  

(0,1),x  = 0,1, , 1q M  . 
To construct a basis of   0,1MV  we use the ideas 

behind the multiresolution analysis. Let us begin defining 
the so called “wavelet mother functions”. Let 2N   be 

an integer and let   1
1 2 1= , , ,

TN N
N R    
   be a 

vector whose elements  0,1 , = 1,2, , 1,i i N    are 

such that 1< , = 1,2, , 2i iη η i N  . Given the integers 

J, M, N, such that 1,J   1,M   2,N  we define the 
following piecewise polynomial functions on (0,1): 

11, , ,

1, , 1, , ,

1, , ,

( ), (0, ),

( ) = ( ), [ , ), = 1,2, , 2,

( ), [ ,1),

M
Nj N

M M
N N i ij N i j N

M
N NN j N

p x x

x p x x i N

p x x



 





 







 
  





  

= 1, 2, , ,j J               (3) 

where     1

=0, , , , , , , ,
= 0,1 ,

MM l M
N Nli j N l i j M N

p x q x P
 

   

= 1, 2, , ,i N  = 1, 2, , ,j J  are polynomials of degree 
smaller than M  to be determined. The functions 

, ,
,M

Nj N 
  = 1, 2, , ,j J  defined in (3) will be used  

as “wavelet mother functions”. In fact through them we 
generate the elements of a wavelet family via the 
multiresolution analysis. 

For simplicity let us choose = / ,i i N  =i  1,2, ,  
1N  . We note that results analogous to the ones 

obtained here with this choice can be derived for the 
general choice of ,i  = 1, 2, , 1,i N   at the price of 
having more involved formulae. 

Let us define the functions: 

 
 

  
    

2
, ,

, , , ,

,

= , 1 ,

0, 0,1 \ , 1 ,

m
M m

Nj N

M
m mNj m N

m m

N N x

x x N N

x N N



 



  

 

 

 


 


  

  

 

= 0,1, , 1, = 0,1, , = 1, 2, , ,mN m j J       (4) 

whose supports are the intervals   , 1m mN N    
 0,1 , = 0,1, , 1,mN   = 0,1,m  . Moreover we  

define the set of functions   
, ,

0,1M
NN J

W


 as follows: 

      
 



, ,

, , , ,

0,1 = , 0,1 , = 0,1, , 1,

, (0,1), = 1, 2, , ,

= 0,1, , = 0,1, , 1 ,

M
N qN J

M
Nj m N

m

W L x x q M

x x j J

m N



 




 









 

(5) 

where   ,qL x  = 0,1, , 1,q M   and 
, ,

( ),M
Nj N

x


  

 0,1 ,x  = 1, 2, , ,j J  are the functions defined above 

when we choose   = 1 , 2 ,3 , , 1
TN N N N N N  .  

We want to choose J , M , N , and the coefficients 
of the polynomials that constitute the functions 

, ,
,M

Nj N 
  = 1, 2, , ,j J  defined in (3), that is the 

coefficients 
, , , , , Nl i j M N

q


, = 0,1, , 1l M  , of 
, , ,

M
Ni j N

p


, 

= 1,2, ,j J , = 1, 2, , ,i N  in order to guarantee that 

the set   
, ,

0,1M
NN J

W


 defined in (5) is an orthonormal 

basis of   2 0,1L . This can be done when J, M, N 
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satisfy some constraints specified later imposing the fol- 
lowing conditions to the wavelet mother functions (3): 

i) the functions 
, ,

,M
Nj N 

  = 1, 2, , ,j J  have the 

first M  moments vanishing, that is: 

 1

0 , ,
= 0, = 0,1, , 1, = 1, 2, , ,M l

Nj N
dx x x l M j J


     

(6) 

ii) the functions 
, ,

,M
Nj N 

  = 1, 2, , ,j J  are ortho- 

normal functions, that is: 

   1

0 , , , ,

0, ,
=

1, = ,

, = 1,2, , .

M M
N ' Nj N j N

j j
dx x x

j j

j j J

 


   





   (7) 

Note that depending on the choice of the integers J , 
M, N  it may not be possible to satisfy the relations (6), 
(7) with functions of the form (3). 

We note that in general the number of the unknown 
coefficients 

, , , , ,
,Nl i j M N

q


 = 0,1, , 1,l M   of  

, , ,
,M

Ni j N
p


 = 1, 2, , ,j J  = 1, 2, , ,i N  is bigger than  

the number of distinct equations contained in (6) and (7). 
More precisely only when = = 1J M  and = 2N  the 
number of equations is equal to the number of unknowns 
and the unknown coefficients are determined up to a 
“sign permutation”. That is we can change sign to the 
resulting wavelet mother functions. In this case the set of 
functions defined in (5), (6), (7) when 1 = 1 2  is the 
well-known Haar’s basis (see [8]). In all the remaining 
cases, when the relations (3), (6), (7) are compatible, the 
functions that satisfy (6), (7) generate through the multi- 
resolution analysis an orthonormal set of   2 0,1L . 
When the integers J, M, N satisfy some relations this 
orthonormal set is complete, that is is an orthonormal 
basis of   2 0,1L , and can be regarded as a generali- 
zation of the Haar’s basis. We must choose some cri- 
terion to determine the coefficients of the polynomials 
contained in (3) that remain undetermined after imposing 
(6), (7). It will be seen later that the criterion used to 
choose the undetermined coefficients influences greatly 
the “sparsifying” properties of the resulting wavelet basis, 
that is influences greatly the practical value of the resul- 
ting wavelet basis. On grounds of experience we restrict 
our analysis to two possible criteria: 

1) impose some regularity properties to the wavelet 
mother functions (3), 

2) require that the wavelet mother functions (3) have 
extra vanishing moments after those required in (6). 

Note that the analysis that follows considers only 
some simple examples of use of these criteria and can be 

easily extended to more general situations to take care of 
several other meaningful criteria besides 1) and 2) such 
as, for example, a combination of these two criteria or ad 
hoc criteria dictated by special features of the concrete 
problems considered. 

We begin adopting criterion 1). We choose =J  
 1N M  and in order to determine the coefficients left 
undetermined by (6), (7) we impose the following 
regularity conditions to the piecewise polynomial 
functions 

, ,

M
Nj N 

 : 

   
, , , 1, , ,

=

, ,

M M
N i N ii j N i j N

d d
p p

dx dx
for i j and

 

  
 




    

    (8) 

where the sets of indices  1, 2, , 1 ,N    

  1, 2, , 1 ,N M   0,1,   are chosen such 

that (6), (7), (8) (and (3)) are compatible. 
Note that when all the undetermined parameters have 

been chosen conditions (6), (7), (8) (and (3)) determine 

the functions 
, ,

,M
Nj N 

  = 1, 2, ,j   1 ,N M  up to a 

“sign permutation”. We denote with  , , ,N
M
j N   =j  

 1,2, , 1 ,N M  a choice of the functions 
, ,

,M
Nj N 

  

 = 1, 2, , 1 ,j N M  given in (3) satisfying (6), (7) 

and (8). Similarly we denote with  , , , , ,N

M

j m v N   =m  

0,1, ,  = 0,1, , 1,mN    = 1, 2, , 1 ,j N M  the 

functions defined in (4) when we replace 
, ,

M
Nj N 

  with 


, , N

M
j N   and with      , 1 , 0,1N

M

N N MW   the set corres- 

ponding to   
, ,

0,1M
NN J

W


 when we choose =J  

 1N M  and we replace 
, , , ,

M
Nj m N 

  with  , , , , ,
M

Nj m N   

 = 1, 2, , 1 ,j N M  = 0,1, ,m   = 0,1, , 1mN  . 

We will see later that      , 1 , 0,1N
M

N N MW   is an ortho- 

normal basis of   2 0,1L . 

Let us adopt criterion 2). We choose  = 1J N M  
and in order to determine the coefficients 

, , , , ,
,Nl i j M N

q


 

= 0,1, , 1,l M   of 
, , ,

,M
Ni j N

p


  = 1, 2, , 1 ,j N M  

= 1, 2, , ,i N  left undetermined by (6), (7), we add to (6), 
(7) (and (3)) the following conditions: 

 

 

1

0 , ,
= 0, = , , 1 ,

= 1,2, , 1 ,

M l
N jj N

dx x x l M M

j N M


  



 


 (9) 
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where the integers 0j   are chosen such that (6), (7), 
(9) (and (3)) are compatible. That is we impose the 
vanishing of some extra moments beside those contained 
in (6). Let us observe that in (9) when we have = 0j  
for some   1, 2, , 1 ,j N M   the corresponding 
index l  ranges in a set of decreasing indices, i.e. 

= , 1,l M M   in this case, with abuse of notation, we  

assume that no extra conditions on 
, ,

M
Nj N 

  are added to 

(6), (7). In other words when for some  

  1, 2, , 1j N M   we have = 0j  condition (9) 

for 
, ,

M
Nj N 

  is empty. We note that only some wavelet 

mother functions (not all of them) can have extra 
vanishing moments (i.e. only for some j  we can have 

1j  ) in fact if we choose 1,j   

 = 1, 2, , 1 ,j N M conditions (6), (7), (9) (and (3) are 

incompatible. In fact when  = 1J N M  the unknown 

coeffints of 
, ,

,M
Nj N 

   = 1, , 1 ,j N M  defined in (3) 

constitute a vector space of dimension NM . Imposing 

one extra vanishing moment to the functions 
, ,

,M
Nj N 

  

 = 1, 2, , 1 ,j N M  that is requiring (6), (7) and: 

   1

0 , ,
= 0, = , = 1, , 1 ,M l

Nj N
dx x x l M j N M


    (10) 

is equivalent to choose 1NM   linearly independent 
vectors in a vector space of dimension NM  and this is 
impossible. However, for example, it is possible to 
impose one extra vanishing moment to 1NM M   
wavelet mother functions, or two extra vanishing 
moments to 2NM M   wavelet mother functions, 
and so on down to 1NM M   extra vanishing mo- 
ments to only one wavelet mother function. Let us note 
that compatible sets of conditions (6), (7), (9) (and (3)) 
correspond in general to situations where the number of 
conditions is smaller than the number of coefficients of 
the piecewise polynomial functions, that is even after 
adding (9) to (6), (7) (and (3)) some of the coefficients of 
the wavelet mother functions may remain undetermined. 
In this case the undetermined coefficients can be chosen 
arbitrarily or, for example, they can be chosen using cri- 
terion 1) or some other criterion. We denote with  


, , N

M

j N 
   = 1,2, , 1j N M  a choice of the functions 

, ,
,M

Nj N 
  = 1,2, , 1j N M  satisfying conditions (6), 

(7), (9) (and (3)) with a non trivial choice of 0,j   

 = 1,2, , 1j N M  (i.e. a choice such that > 0j  

for some j ), with 
, , , , N

M

j m v N 
  = 0,1, ,m    

= 0,1, , 1,mN    = 1, 2, , 1 ,j N M  the functions 

defined in (4) when we replace 
, ,

M
Nj N 

  with 
, ,

M

Nj N 
  

and with 
 

  
, 1 ,

0,1
M

NN N M
W


 the set corresponding to 

  
, ,

0,1M
NN J

W


 when we choose =J   1N M  and 

we replace 
, , , ,

M
Nj m N 

  with 
, , , ,

,
M

Nj m v N 
   

 = 1, 2, , 1 ,j N M  = 0,1, ,m   = 0,1, , 1mN  . 

We will see later that 
 

  
, 1 ,

0,1
M

NN N M
W


 is an ortho- 

normal basis of   2 0,1L . 

Note that if  < 1J N M  the relations (3), (6), (7) 

are compatible and the corresponding set (5) is 
orthonormal but is not complete, moreover if >J  

 1N M  the relations (3) ,(6), (7) are incompaible. 

Note that the fact that the wavelet mother functions (3) 
are piecewise polynomials from one hand makes easy 
and efficient their use in the most common computations 
(i.e. for example differentiation, integration,...), but on 
the other hand may create undesired effects in the dis- 
continuity points of the wavelets when regular functions 
are approximated with discontinuous functions. 

The choice of the criteria 1) and 2) is motivated by the 
following reasons. When criterion 1) is adopted we try to 
approximate regular functions using a basis made of “as 
much as possible” regular wavelets. This is done in order 
to minimize the undesired effects coming from the fact 
that regular functions are approximated with non regular 
wavelets choosing M  large and N  small. The goal 
that we pursue when we adopt criterion 2) is the con- 
struction of wavelet bases made of piecewise polynomial 
wavelets made of polynomials of low degree with “as 
much as possible” vanishing moments so that, as will be 
seen better in Section 4, the “sparsifying” properties of 
the resulting wavelet bases are improved in comparison 
with those of the wavelet bases that do not satisfy 
criterion 2). This is done choosing M  small and N  
large so that a great number of extra vanishing moments 
can be imposed to many wavelet mother functions made 
of polynomials of low degree. As a matter of fact, 
choosing M  and N  appropriately, it is possible to 
construct wavelet bases satisfying to some extent the two 
criteria 1) and 2) simultaneously. However this is beyond 
the scope of this paper. We note that increasing N  the 
number of the wavelet mother functions and the number 
of their discontinuity points increase. 

In the Appendix we give the wavelet mother functions 
necessary to construct the wavelet bases used in the 
numerical experience presented in Section 4. 
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3. Some Mathematical Properties of the 
Wavelet Bases 

 
Let us prove that the set of functions considered 
previously are orthonormal bases of   2 0,1L . 

Lemma 3.1. Let 2N   be a positive integer and ,mT  

=m  0,1,  be the following closed subspaces of 

  2 0,1L : 

       


2= 0,1 = , , 1 ,

, = 0,1, 2, , 1 , = 0,1, 2, .

m m
m

m

T f L f x p x N N

p R N m





 



   

  
 

(11) 

Then we have: 

0 1 2 3 ,T T T T              (12) 

  1
=0 = 0,1 ,m mT P            (13) 

  2
=0 = 0,1 .m mT L            (14) 

Proof. Properties (12), (13) can be easily derived from 
(11). The proof of (14) follows from the density of the 

piecewise constant functions in   2 0,1L  (see [17] 

Theorem 3.13 p. 84). This concludes the proof. 
Note that for = 0,1, ,m   the fact that   mf x T  

implies that for = 0,1, ,   1mN   as a function of x  

for  0,1x     , 0= m
mf x f N x T   . 

Theorem 3.2. Let 1,J   1,M   2N   be three 
integers such that the conditions (6), (7) can be satisfied 

with functions of the form (3) and let  
, , , ,

,M
Nj m N

x
 

  

 0,1 ,x  = 1,2, , ,j J  = 0,1, ,m   = 0,1, , 1,mN   

be the functions defined in (4), we have: 

 1

0 , , , ,
= 0,

= 0,1, , 1, = 0,1, , 1,

= 0,1, , = 1, 2, , ,

M p
Nj m N

m

dx x x

p M N

m j J

 


 


 
 

      (15) 

and 
1

0 , , , , , , ,
( ) ( )

0, o o ,
=

1, = a = a = ,

= 0,1, , 1, = 0,1, , 1,

, = 0,1, , , = 1,2, , .

M M
N Nj m N j m N

m m

dx x x

m m r r j j

m m nd nd j j

N N

m m j j J

   
 

 
 

 

  



    
   

 
 



 
 

     (16) 

Proof. Property (15) follows from definition (4) and 
Equation (6). The proof of (16) when = ,m m  =    

and j j  follows from the fact that the supports of  

the functions 
, , , ,

M
Nj m N 

  and 
, , , ,

M
Nj m N 


  

 are either  

disjoint sets or sets contained one into the other. When 
=m m  and     the supports are disjoint and when 

,m m  let us suppose for example > ,m m  the 
supports are either disjoint sets or sets contained one into 
the other depending on the values of the indices   and 
  . In fact when the supports are disjoint condition (16) 
is obvious, when the supports are contained one into the 
other condition (16) follows from (15). Finally when 

= ,m m  = ,    =j j  condition (16) follows from 
Equation (7). This concludes the proof. 

Note that if we choose 
, , , ,

M
Nj m N 

 = 
, , , , ,N

M

j m v N   

 = 1, 2, , 1 ,j N M  = 0,1, ,m   = 0,1, , 1,mN   

then (15) can be improved, that is we can add to it the 
following condition: 

  

 

1

, , , ,0
= 0,

= , , 1 ,

= 0,1, , 1,

= 0,1, , = 1, 2, , 1 ,

M p
Nj m N

j

m

dx x x

p M M

N

m j N M

 





 









 

      (17) 

where 0j   are the non negative integers (not all zero) 
that have been used in conditions (6), (7), (9) to 
determine the wavelet mother functions. 

Theorem 3.3. If  = 1J N M  the conditions (6), (7) 
can be satisfied with functions of the form (3) and the set  

  
,( 1) ,

0,1M
NN N M

W


 defined in (5) is an orthonormal 

basis of   2 0,1L . 

Proof. Let  = 1J N M  it is easy to see that 

conditions (3), (6), (7) are compatible and the set 

    
, 1 ,

0,1M
NN N M

W


 is an orthonormal set of functions 

such that for = 0,1, ,m   the subspace mT  defined in 

(11) is contained in the subspace generated by 

    
, 1 ,

0,1M
NN N M

W


. So that from Lemma 3.1 it follows 

that 
    

, 1 ,
0,1M

NN N M
W


 is a basis of   2 0,1L . This 

concludes the proof. 
The following corollary is a particular case of 

Theorem 3.3: 

Corollary 3.4. The sets   ,( 1) , (0,1)
M

NN N MW   and 


 

  
, 1 ,

0,1
M

NN N M
W


 are orthonormal bases of   2 0,1L . 

To unify the notation let us rename the functions be- 

longing to the basis   
,( 1) ,

0,1M
NN N M

W


 of   2 0,1L  

defined in (5) as follows:   
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       

     
, , , , 1, , , ,

1, , , ,

= , 0,1 , = 0,1, , 1 1, = 0,1, , = 0,1, 1,

= , 0,1 , = , 1, , 1, = 0, = 0,

M M m
N Nj m N j m N

M
N jj m N

x x x j N M m N

x L x x j M M m

   

 

 





 

    

     

  


      (18) 

so that the basis   
,( 1) ,

0,1M
NN N M

W


 of   2 0,1L  defined in (5) can be rewritten as: 

  


,( 1) , , , , ,
(0,1) = ( ), (0,1), = , 1, ,0,1, , ( 1) 1,

= 0 w < 0, = 0,1, w 0, = 0,1, ( 1) ,

M M
N NN N M j m N

m

W x x j M M N M

m hen j m hen j N

  







      

 

 

 
            (19) 

where )(  denotes the maximum between 0 and  . 
For later convenience in the study of integral operators 

and images let us remark that wavelet bases in 
    2 0,1 0,1L   can be easily constructed as tensor 

product of wavelet bases of   2 0,1L  that is, for 
example, the following set is a wavelet basis of 

    2 0,1 0,1L  : 

             
 

 

,( 1) , , , , , , , , , , , , , , , ,
(0,1) (0,1) = , = , , 0,1 0,1 ,

, = , 1, ,0,1, , 1 1, = 0 w < 0, = 0,1, w 0, 0

0, 0,1 0, = 0,1, 1 , = 0,1, ,

M M M M
N N N NN N M j m j m N j m N j m N

m m

W x y x y x y

j j M M N M m hen j m hen j m

when j m when j N N

       

 

     





     

       

      

  

     1 ,




   (20) 

where ,M  ,N  N  are the quantities specified pre- 
viously and we have chosen  = 1J N M . The pre- 
vious construction based on the tensor product can be 
easily extended to the case when A  is a parallelepiped 
in dimension 3s  . 

Note that with straightforward generalizations of the 
material presented here, it is easy to construct wavelet 
bases for  2L A  when A  is a sufficiently simple sub- 
set of a real Euclidean space (see [12,16] to find several 
choices of A  useful in some scattering problems). The 
analysis that follows of the wavelet bases when 

 = 0,1A  can be extended with no substantial changes 
to the other choices of A  considered here. 

The 2L -approximation of a function with a wavelet 
expansion, is based on the calculation of the inner pro-  

ducts of the function to be approximated with the wave- 
lets to find the coefficients that represent the function in 
the chosen wavelet basis. That is the function is appro- 
ximated by a weighted sum of the wavelet basis func- 
tions. Let us note that in contrast with the Fourier basis 
that is localized only in frequency, the wavelet basis is 
localized both in frequency and in space, and in the most 
common circumstances only a few coefficients of the 
wavelet expansion must be calculated to obtain a satis- 
factory approximation. 

In order to calculate the wavelet coefficients of a 
generic function, we proceed as follows. Given ,M  ,N  

for = 0,1, ,m   let , ,M N mI  be the following set of 

indices: 

       ˆ
, ,

, 0
ˆ ˆ= = , , = , 1, , 1 2, 1 1; = ; = 0,1, , 1

0, < 0
T m

M N m

m j
I j m j M M N M N M m N

j
  



           
  

  (21)

The wavelet expansion of a function   2 0,1f L  
on the basis (19) can be written as follows:  

     
, , , ,

=0 , ,

= , 0,1 ,M M
N NN N

m IM N m

f x c x x
   







     (22) 

where for = 0,1, ,m   the coefficients 
, ,

,M
NN

c
 

 

, ,M N mI   are given by: 

   1

, ,0, , , ,
= , ,M M

N N M N mN N
c dx f x x I
   

     (23) 

and the series (22) converges in   2 0,1L . Note that  
when m m  we have , , , , =M N m M N mI I    so that 

for = 0,1, ,m   it is not necessary to write explicitly 

the dependence on m  of the coefficients 
, ,

,M
NN

c
 

 

, ,M N mI   defined in (23). The integrals (23) are the 

2L -inner product of the function f  either with a wave- 

let function, or with a Legendre polynomial depending 
on the values of the indices. 
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In order to calculate efficiently the integrals (23) we 
construct some simple ad hoc interpolatory quadrature 
formulae that take into account the definition of the basis 
functions. In particular let 

 , , , ,= | 0 , = 0,1, ,M N m M N mI I j m       (24) 

and 

 , , , ,= | < 0 , = 0.M N m M N mI I j m        (25) 

For = 0,1, ,m   and , ,M N mI   using (18) and (4), 
we can rewrite (23) as follows: 

   

   

1

0, , 1, , , ,

( 1)
2

1, ,

, ,

=

= ,

.

M M
N NN j m N

m mN M m
m NN j N

M N m

c dx f x x

N dx f x N x

I

   



 











 



 





  (26) 

Note that the integrals in (26) depend on the function 

f  and on the wavelet mother functions 
1, ,

,M
Nj N 

  

 = 0,1, , 1 1,j N M   given in (3). The change of 
variable = ,mt N x    , 1 ,m mx N N       in (26) 
gives: 

   1
2

, ,0, , 1, ,

, ,

= ,

,

m
M M

N N m NN j N

M N m

c N dt f t t

I

  













     (27) 

where 

      , , = , 0,1 ,

= 0,1, , = 0,1, , 1.

m
N m

m

f t f N t t

m N

 



  

 
     (28) 

Let  0,1 ,kt   = 0,1, , ,k n  be 1n   distinct nodes, 

given 1n   couples   , ,, ,k N m kt f t  = 0,1, , ,k n  we  

consider the interpolating Lagrange polynomial of de- 

gree n , , ,n N mf   of the data   , ,, ,k N m kt f t  =k  

0,1, , ,n  that is given by: 

      , , , ,
=0

= ,
n

n N m N m k k
k

f t f t t            (29) 

where ,k  = 0,1, , ,k n  are the characteristic Lagran- 
ge polynomials defined as: 

 
=0,

= , = 0,1, , ,
n

j
k

j j k k j

t t
t k n

t t






        (30) 

and characterized by the property   ,= ,k j k jt   , =k j  
0,1, , ,n where ,k j  is the Kronecker symbol. We 
have: 

, , , , , ,= ,N m n N m n N mf f R f              (31) 

where , ,n N mR f   is the interpolation error. Substituting 

, ,N mf   with , ,n N mf   in (27) we obtain the following 

approximation: 

    

     

1
2

, ,0, , 1, ,

1
2

, , , ,0 1, ,
=0

= , .

m
M M

N n N m NN j N

m n
M

N m k k N M N mj N
k

c N dt f t t

N f t dt t t I

  

 
 





 



  

 



 
 

(32) 
Note that in (32) the symbol   means “approximates”. 
Defining 

   

 

1

0, , , 1, ,
= ,

= 0,1, , 1 1, = 0,1, , ,

M M
N k Nk j N j N

d dt t t

j N M k n

 





 


 

    (33) 

Equation (32) can be rewritten as: 

 2
, , , ,, , , , ,

=0

, .
m n

M M
N N m k N M N mN k j N

k

c N f t d I  


    (34) 

This technique leads to interpolatory integration rules 
with weights defined in terms of the wavelet mother 
functions. We note that in general, the weights of these 
quadrature rules can have alternating signs, this impacts 
negatively on the stability of the computations. Never- 
theless, choosing n  small it is possible to minimize the 
number of the quadrature weights large in absolute value 
and not all of the same sign and it is possible in everyday 
computing experience to avoid the Runge phenomenon. 
Having in mind definition (3) and choosing a small 
number of quadrature nodes, the integrals (33) that 

define 
, , ,

,M
Nk j N

d


  = 0,1, , 1 1,j N M   = 0,1, , ,k n  

are very easy to calculate since the integrands are low 
degree piecewise polynomial functions. 

It is easy to see that (34) is valid also for , , ,M N mI   

choosing = 0,m  = 0,     , , =N m k kf t f t  and de- 

fining 
, , ,

M
Nk j N

d


 as: 

   1

10, , ,
= ,

= , 1, , 1, = 0,1, , .

M
N k jk j N

d dt t L t

j M M k n


  

   


 

  (35) 

In conclusion, once the wavelet basis and the nodes 
,kt  = 0,1, , ,k n  (with n  small) have been chosen, 

the integrals that define 
, , ,

,M
Nk j N

d


 

= , 1, ,0,1, , ( 1) 1,j M M N M      = 0,1, , ,k n  
that is the integrals (33) and (35), can be calculated  

explicitly and tabulated so that the coefficients 
, ,

M
NN

c
 

  

with , , ,M N mI   = 0,1, ,m   defined in (23) can be 
approximated with the quantities defined in (34) and 
therefore the wavelet expansion (22) can be approxi- 
mated very efficiently. 

Let us define the quadrature error made approximating 
with (34) the wavelet coefficients given in (26), that is:   
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     1
2

, , , , , ,0, , 1, , , , ,
=0

= , .
m n

M M M
n N N m N N m k N M N mN j N k j N

k

E c N dt f t t f t d I    


 


                (36)

For the quadrature error we prove the following 
lemma:  

Lemma 3.5. Let  0,1 ,kt   = 0,1, , ,k n  be 1n   
distinct nodes and let t  be a point belonging to the 
domain of the function , ,N mf   defined in (28). Assume 

that   1
, , 0,1 ,n

N mf C
  where   1 0,1nC   is the 

space of the real continuous functions defined on (0,1)  
1n  -times continuously differentiable. Then there exists 

a continuous function    0,1 ,t    0,1 ,t  such 
that the quadrature error is given by: 

 
 2 1 1

, , 1 , ,0, , 1, ,
= ( ( )) ( ) ( ) , , = 0,1, ,

1 !

m

nM M
n N N m n N M N mN j N

N
E c dt f t t t I m

n   
  


 

 
 

               (37)

where  1n t   is the nodal polynomial of degree 1n   
that is    1 =0= n

n i it t t    . 
Proof. It is sufficient to note that from (29) and (31) 

we have: 

    1
2

, , , ,0, , 1, ,
= , , = 0,1,

m
M M

n N n N m N M N mN j N
E c N dt R f t t I m  


 


   .                   (38)

The thesis follows from standard numerical analysis 
results, see for example [18] p. 49. This concludes the 
proof. 

Note that a result similar to (37) is valid also for 

, ,M N mI  . In fact it is sufficient to choose in (37) 

= 0,m  = 0,     , , =N m k kf t f t  and to replace 

1, ,
( )M

Nj N
t


  with 1,jL   = , 1, , 1j M M    . 

It is worthwhile to note that usually the convergence 
properties of general quadrature rules, such as the one 
presented here, depend on the smoothness of the inte- 
grand (i.e. discontinuities of the integrand or of any of its 
derivatives may disturb the convergence properties of the 
quadrature rules), when non smooth functions, such as, 
for example, piecewise smooth functions are involved in 
integrals like (23), it is convenient to split the integration 
interval (0,1)  into subintervals corresponding to the 
smooth parts of the integrands and to apply a low order 
quadrature rule on each subinterval. Ad hoc quadrature 
rules for the computation of wavelet coefficients have 
been developed by several authors, see for example 
[19-23]. It could be interesting to extend the work of 
these authors to the wavelet bases presented here. 

The explicit computation of the integrals 
, , ,

,M
Nk j N

d


 

= , 1, ,0,1, ,j M M       1 1,N M   = 0,1, , ,k n  
has been done easily with the help of the Symbolic Math 
Toolbox of MATLAB. More in detail, in the numerical 
experiments of the next section we use coefficients 

, , ,
,M

Nk j N
d


  = , 1, ,0,1, , 1 1,j M M N M      =k  

0,1, , ,n calculated with composite quadrature formulae 
choosing in each interval = 0n  and the node 0t  given 
by the middle point of each subinterval. This choice 
corresponds to a one-point quadrature formula in each 

subinterval for the evaluation of the wavelet coefficients, 
is motivated by the fact that in Subsection 4.2 we 
manipulate digital images and, due to the usual pixel 
structure of the digital images, a digital image can be 
regarded as a piecewise constant real function defined on 
a rectangular region of the two- dimensional Euclidean 
space 2R . So that if we consider bidimensional 
composite quadrature formulae with as many intervals as 
the pixels of the image in each dimension, with the 
intervals coinciding with the pixel edges, and in each 
interval we calculate (33) and (35) with the choice 

= 0,n  at the price of very simple calculations exact 
wavelet coefficients can be obtained. Moreover these 
quadrature formulae turn out to be useful for the rapid 
evaluation of the wavelet coefficients in the 
approximation of integral kernels. 

It is worthwhile to note that composite quadrature 
formulae with > 0n  can be obtained with no substan- 
tial modifications of the procedure described above. 

 
4. Applications: Kernel Sparsification and 

Image Compression 
 
4.1. Wavelet Bases, Decay Estimates and Kernel 

Sparsification 
 
We present some interesting properties of the wavelet 
bases introduced in Section 2. In particular we show how 
the representation in these wavelet bases of certain 
classes of linear operators acting on   2 0,1L  may be 
viewed as a first step for their “compression”, that is as a 
step to approximate them with sparse matrices. After 
being compressed these operators can be applied to 
arbitrary functions belonging to   2 0,1L  in a “fast” 
manner and linear equations involving these operators 
can be approximated in high dimensional spaces with 
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sparse systems of linear equations and solved at an 
affordable computational cost. In particular we show 
how the orthogonality of the wavelet functions to the 
polynomials up to a given degree (the vanishing mo- 
ments property) plays a crucial role in producing these 
sparse approximations. 

Let  0,1  be the closure of  0,1  and   be a 
non-negative integer, we denote with     0,1 0,1C   
the space of the real continuous functions defined on 

   0,1 0,1   -times continuously differentiable on 

   0,1 0,1 . We have: 
Theorem 4.1. Let 1,M   2N   be two integers, 

 = 1J N M , 
 , 1 ,

M
NN N M

W


   0,1  be the set of func- 

tions given in (5), and let  , ,K x y       , 0,1 0,1x y    
be a real function such that: 

    0,1 0,1 , .K C M             (39) 

Moreover let , , , , , ,m j m j      = 0,1, ,m   = 0,1, ,m   

= 0,1, , 1,mN   = 0,1, , 1,mN     

 , = 1, 2, , 1 ,j j N M   be the following quantities: 

 

   

1

, , , , , 0 , , , ,

1

0 , , , ,

=

, ,

= 0,1, , = 0,1, , = 0,1, , 1,

= 0,1, , 1, , = 1, 2, , ( 1) ,.

M
m j m j Nj m N

M
Nj m N

m

m

dx x

dy y K x y

m m N

N j j N M

   

 

 







  

  



 

  




  
 

  (40) 

then there exists a positive constant MD  such that we 
have: 

  
, , , , , 1

,
,

= 0,1, , = 0,1, , = 0,1, , 1,

= 0,1, , 1, , = 1,2, , ( 1)

M
m j m j M

max m m

m

m

D

N

m m N

N j j N M

 





   





 

  

  
 

   (41) 

Proof. The proof is analogous to the proof of Pro- 
position 4.1 in [19]. In fact from (39) it follows that there 
exists a positive constant MC  such that: 

         , , , , 0,1 0,1 .
M M

MM M
K x y K x y C x y

x y

 
   

 
(42) 

That is let ,N  ,j  ,j  ,  ,   ,m  m  be as above 

and  * *,x y  be the center of mass of the set  

     , 1 , 1m m m mN N N N            using the 

Taylor polynomial of degree 1M   of   =y   

 , ,K x y  0,1 ,y  and base point *=y y  when 
<m m  or the Taylor polynomial of degree 1M   of 

 ( ) = ( , ), 0,1 ,x K x y x  with base point *= ,x x  when 

> ,m m  Equation (15), the inequality (42) and using the 

fact that the functions 
, , , ,

M
Nj m N 

  and 
, , , ,

M
Nj m N 


  

 

have support in the sets   , 1m mN N    and 

  , 1m mN N       respectively from the remainder 
formula of the Taylor polynomial it follows that the esti- 
mate (41) for , , , , ,m j m j      holds. Note that the constant 

MD  depends on ,M  ,N  ,N  MC . This concludes the 
proof. 

For the wavelet basis function having extra vanishing 
moments, the previous theorem can be improved. That is  

let   , , , , N
M

j m v N x  and   , , , , ,N
M

j m v N y     0,1, ,m    

= 0,1, ,m   = 0,1, , 1,mN   = 0,1, , 1,mN    
 , = 1, 2, , 1 ,j j N M   be as above, we have: 

Theorem 4.2. Let 1,M   2N   be two integers, 

 = 1J N M and let  *
=1,2, ,( 1)= 0j N M jmax    

where the constants ,j   = 1, 2, , 1 ,j N M  are those 
appearing in (9) and are such that the Equations (6), (7), 
(9) (and (3)) are compatible. Let  , ,K x y   ,x y   
   0,1 0,1  be a real function such that: 

     *0,1 0,1 , .K C M           (43) 

Moreover let      , , 0,1N
M
N N I MW   be the set of func-  

tions defined in Section 2 and  , , . , , ,m j m j      = 0,1,m  , 
= 0,1, ,m   = 0,1, , 1,mN   = 0,1, , 1,mN    

 , = 1, 2, , 1 ,j j N M   be the following quantities: 

   
    

1
, , , , , , , , ,0

1

, , , ,0

=

, ,

= 0,1, , = 0,1, , = 0,1, , 1,

= 0,1, , 1, , = 1,2, , ( 1) ,

M
Nm j m j j m N

M
Nj m N

m

m

dx x

dy y K x y

m m N

N j j N M

   

 

 







  

  



 

  




  
 

   (44) 

where  , , , , N
M

j m v N   and  , , , , N
M

j m v N      have, respectively 

jM M  and jM M   vanishing moments. Then there 

exists a positive constant , ,M Mj j
F


 such that we have: 


    

,
, , , , ,

max 1 , 1

= 0,1, , = 0,1, , = 0,1, , 1,

= 0,1, , 1, , = 1, 2, , ( 1) ,

j j

j j

M M
m v j m v j

m M m M

m

m

F

N

m m N

N j j N M










  

 





 

  

  
 

   (45) 

Proof. The proof follows the lines of the proof of 
Theorem 4.1. Going into details, condition (43) implies 
that there exists a positive constant *

ME  such that: 

         *, , , , 0,1 0,1 ,
M M

MM M
K x y K x y E x y

x y

 

 

 

 

 
   

 

 

 

(46) 

where  = , ,j jmax      , = 1, 2, , 1j j N M  . Let 
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,N  ,j  ,j  ,  ,   ,m  m  be as above and  * *,x y  

be the center of mass of the set   , 1m mN N     

  , 1m mN N      . Initially let us consider the case 

<j jM M  .When m m  (and therefore  1jm M    

 1jm M   ) we can use the Taylor polynomial of 

   = , ,y K x y  0,1 ,y  of degree 1jM    and base 

point *=y y . Because of Equation (17) and assumption 
(46) mimicking the proof of Theorem 4.1, we can obtain 
the estimate (45) for  , , , , ,m j m j      with N  raised to the 
power ( 1)jm M    in the denominator. On the other 

hand if >m m  when ( 1)jm M  < ( 1)jm M    it is 

convenient to proceed as done previously, when 
( 1) ( 1)j jm M m M     it is better to use the Taylor 

polynomial of degree 1jM   of    = , ,x K x y  

 0,1 ,x  with base point *=x x  obtaining with a simi- 

lar procedure the estimate (45) for  , , , , ,m j m j      with N  

raised to the power  1jm M   in the denominator. The 

other estimates contained in (45) for  , , , , ,m j m j      when 
>j jM M   or =j jM M   can be obtained in a similar 

way. Note that the constant ,M Mj j
F


 depends on ,jM  

,jM   ,N  ,Nη  *
ME . This concludes the proof. 

The estimates (41) and (45) are the basic properties 
that together with a simple truncation procedure make 
the wavelet bases introduced previously useful to appro- 
ximate with sparse matrices linear operators. Let   be 
an integral operator acting on   2 0,1L  of the form: 

           1 2

0
= , , 0,1 , 0,1 ,f x dyK x y f y x f L  

 (47) 

where the kernel K  is a real function of two variables. 
The compression algorithms we are interested in are based 
on the following observation. Generalizing what done in 
Section 2 for a function   2 0,1f L , when   is 
represented on a wavelet basis, i.e. when the kernel K  
is expanded as a function of two variables on the wavelet 
basis (20), the calculation of the entries of the (infinite) 
matrix that represents the operator in the wavelet basis 
involves the evaluation of the integrals (40) or (44). If 
the wavelet basis considered has several vanishing mo- 
ments and we look at truncated wavelet expansions, that 
is to an expansion on a truncated wavelet basis, when the 
kernel K  is sufficiently regular, thanks to the estimates 
(41) or (45), the fraction of the entries whose absolute 
value is smaller than a chosen threshold approaches one 

when the truncated expansion approaches the true expan- 
sion. The entries whose absolute value is smaller than a 
suitable threshold can be set to zero committing a “small” 
error. This property makes possible the approximation of 
the integral operator (47) with sparse matrices and makes 
possible to solve numerically integral equations very 
efficiently. 

Note that when two different wavelet bases with the 
same number of vanishing moments are used to represent 
the operator   the estimates (41) and (45) show that 
the wavelets with the smaller between the constants MD   
or ,M Mj j

F

 will have expansion coefficients that decay 

faster to zero. 
Similar arguments can be made in the discrete case, 

where we consider a piecewise constant function defined 
on a bounded rectangular domain of the form: 

   
     

, ,, = , , ,

, = 1, 2 , , , 0,1 0,1 ,

i j i jx y x y A

i j r x y

  

 
      (48) 

where r  is a positive integer and > 0h  is such that 
= 1h r  and where ,i jA  is the “pixel” of indices , ,i j  

i.e.      , = , 0,1 0,1 | = , = ,i j

x y
A x y int i int j

h h

         
    

 

, = 1, 2 , .i j r  Note that ( )int   denotes the integer part 

of  . 
Some applications of these estimates to specific exam- 

ples are shown below. We use the Wavelet Bases 1, 2, 3, 
4 of the Appendix to test the performances of the integral 
operators compression algorithm described previously. 
We apply the algorithm to a number of operators. The 
direct and inverse wavelet transforms used in the numeri- 
cal experience associated to these wavelet bases have been 
implemented in FORTRAN 90. Briefly we remind that 
the Wavelet Bases 1 and 3 of the Appendix are done with 
piecewise polynomial functions made of polynomials of 
degree zero, while the Wavelet Bases 2 and 4 of the 
Appendix are done with piecewise polynomial functions 
made of polynomials of degree one. Moreover the Wave- 
let Bases 1 and 2 are obtained using the regularity cri- 
terion (i.e. criterion 1)), while the Wavelet Bases 3 and 4 
are obtained using the “extra vanishing moments” cri- 
terion (i.e. criterion 2)). 

The choice of reporting here and in Subsection 4.2 the 
numerical results obtained with the Wavelet Bases 1, 2, 3, 
4 of the Appendix is motivated by the fact that these are 
the simplest bases among the bases introduced in Section 
2 that it is possible to construct and manipulate. Mo- 
reover the Bases 1 and 3 made of piecewise constant 
functions are particularly well suited to deal with piece- 
wise constant functions. This type of functions is very 
important since it can be identified with digital signals 
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and images. 
In particular we represent a linear operator in a wave- 

let basis, compress it by setting entries of its represen- 
tation on the wavelet basis whose absolute value is below 
a chosen threshold to zero, and reconstruct the “com- 
pressed” operator using the inverse wavelet transform. 
The comparison between the original and the recons- 
tructed “compressed” operator is made evaluating the re- 
lative 2L -difference between the original and the recon- 
structed compressed kernels and is very satisfactory. 
Moreover comparing our results with those obtained by 
Beylkin, Coifman and Rokhlin in [19] and by Keinert in 
[24], we observe that the wavelet bases studied here 
show similar or better compression properties of the 
wavelet bases used in [19,24] even when we use a 
smaller number of vanishing moments than that used in 
[19] and in [24]. The results of two experiments are pre- 
sented in this section and are summarized in Tables 1-3 
and illustrated in Figures 1-4. In these tables dim  indi- 
cates the dimension of the vector space generated by the 
truncated wavelet basis and compC  is the compre- ssion 
coefficient obtained with our algorithm when the 
truncation threshold > 0  is used. The compression 
coefficient compC  is defined as the ratio between 2dim  
and the number of matrix elements whose absolute value 
exceeds a threshold > 0 . 

Example 1. In this example we consider the kernel: 

       1
, = , , 0,1 0,1 ,

| | 1
K x y x y

x y
 

 
   (49) 

and we expand it in the Wavelet Bases 1, 2, 3, 4 of the 
Appendix. We set to zero the entries of the resulting 
matrix whose absolute value is smaller than a threshold 
  and we obtain the results shown in Tables 1 and 2. In 
particular in Table 1 we show the compression coef- 
ficients compC  for three different values of the threshold 
  and in Table 2 we report the relative error in 

2L -norm made substituting the original operator with the 
reconstructed “compressed” operator after the trun- 
cation procedure when 6= 10  . 

Note that in Tables 1, 2 and in the tables that follow, 
the symbol \  indicates that using all the elements of the 
specified basis up to a certain “resolution level” m  it is 
impossible to reach the dimension dim  specified in the 
corresponding second column of the tables. 

The structures of the non-zero entries after the trunca- 
tion procedure in the matrices obtained using the Wave- 
let Bases 2 and 4 of the Appendix when 6= 10   are 
shown in black in Figures 1 and 2 respectively. In parti- 
cular in Figures 1 and 2 the matrices shown have 

= 512,dim  that is they are matrices of 512  rows and 
columns. 

Table 1. Example 1: The compression coefficient ε
compC  

versus ε  and dim . 

  compC 
compC 

 compC 

 compC 

 dim Basis 1 Basis 2 Basis 3 Basis 4 

 64 1.00 2.83 1.61 \ 

10-7 128 1.03 5.52 \ 4.59 

 256 1.76 10.67 4.80 \ 

 512 4.39 23.08 \ 18.73 

 64 1.05 3.76 2.48 \ 

10-6 128 1.92 7.35 \ 6.84 

 256 4.81 16.47 8.90 \ 

 512 12.96 47.01 \ 44.25 

 64 2.14 4.92 3.23 \ 

10-5 128 5.13 12.22 \ 11.17 

 256 12.96 43.69 23.37 \ 

 512 38.95 174.76 \ 159.65 

 
Table 2. Example 1: Relative difference in 2L -norm be- 
tween the original and the reconstructed operator when 

-6= 10ε . 

dim  Basis 1 Basis 2 Basis 3 Basis 4 

64 2.22・10-3 1.48・10-4 2.11・10-3 \ 

128 1.12・10-3 6.38・10-5 \ 8.68・10-5

256 5.34・10-4 5.29・10-5 5.35・10-4 \ 

512 2.77・10-4 5.64・10-5 \ 8.21・10-5

 

 
Figure 1. Example 1: Sparsity structure of the matrix ob- 
tained with the Wavelet Basis 2 of the Appendix for dim =  

512 The entries above the threshold -6= 10ε  in absolute 
value are shown in black. 
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Figure 2. Example 1: Sparsity structure of the matrix ob- 
tained with the Wavelet Basis 4 of the Appendix for 

512dim = . The entries above the threshold -6= 10ε  in 
absolute value are shown in black. 
 

Example 2. In this example we compress the following 
piecewise constant function: 

 

       

,

,

1
, ,

, = =

0, = ,

, , , = 1, 2, , , , 0,1 0,1 .

i j

i j

i j
i jH x y H

i j

x y A i j dim x y

  


  

(50) 

where ,i jA  is the “pixel” of index , ,i j  defined pre- 
viously. Remind that = 1h dim . 

We use the Wavelet Bases 1, 2, 3, 4 of the Appendix 
and three different values of the threshold  . Table 3 
and Figures 3 and 4 describe the results of these experi- 
ments. The entries above the threshold 7= 10   in ab- 
solute value of the matrices relative to the matrix (50) 
obtained using the Wavelet Bases 1 and 3 of the Appen- 
dix when = 256dim  are shown in black in Figures 3 
and 4 respectively. 

From Tables 1-3 and Figures 1-4 the following ob- 
servations can be made. As far as the compression pro- 
perty is concerned we have a really impressive improve- 
ment going from the Wavelet Basis 1 to the Wavelet Basis 
3 of the Appendix, that is there is a real advantage in 
using the “extra vanishing moments” criterion. This fact 
is more evident in Example 1 where a continuous kernel 
is considered (in this case the compression coefficient is 
approximately multiplied by two). There is not the same 
improvement going from the Wavelet Basis 2 to the 
Wavelet Basis 4 of the Appendix, however using these 
two bases we obtain much higher compression coeffi- 

cients than those obtained with the Wavelet Bases 1 and 
3 of the Appendix. Moreover the 2L -relative errors ob- 
tained comparing the original and the reconstructed 
“compressed” operators are always at least one order of 
magnitude smaller when the Wavelet Bases 2, 4 of the 
Appendix are used instead than the Wavelet Bases 1, 3 of 
the Appendix. 
 
Table 3. Example 2: The compression coefficient compC  
versus ε  and dim . 

  compC 
compC 

 compC 

 compC 

  dim  Basis 1 Basis 2 Basis 3 Basis 4

 64 1.01 1.48 1.21 \ 

10-8 128 1.07 2.02 \ 2.00 

 256 1.35 2.85 2.33 \ 

 512 5.40 5.18 \ 3.43 

 64 1.10 1.78 1.48 \ 

10-7 128 1.41 2.75 \ 2.56 

 256 2.12 4.19 3.43 \ 

 512 8.50 8.39 \ 5.38 

 64 1.49 2.36 1.99 \ 

10-6 128 2.25 3.87 \ 3.19 

 256 3.77 6.16 5.44 \ 

 512 15.08 13.02 \ 8.14 

 

 

Figure 3. Example 2: Sparsity structure of the matrix ob- 
tained with the Wavelet Basis 1 of the Appendix for 

256dim = . The entries above the threshold -7= 10ε  in ab- 
solute value are shown in black. 
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Figure 4. Example 2: Sparsity structure of the matrix ob- 
tained with the Wavelet Basis 3 of the Appendix for 

256dim = . The entries above the threshold -7= 10ε  in ab- 
solute value are shown in black. 
 
4.2. Image Compression and Wavelets 

 
Let us present some results about digital image compre- 
ssion and reconstruction. 

With the growth of technology in the last decades and 
the entrance into the so-called “Digital-Age”, a vast 
amount of digital information has become available for 
storage and/or exchange, and the efficient treatment of 
this enormous amount of data often present difficulties. 
Wavelet analysis is one way to deal with this problem. It 
produces several important benefits, particularly in image 
compression. Compression is a way of encoding data 
more concisely or efficiently. It relies on two main stra- 
tegies: getting rid of redundant information (“redun- 
dancy reduction”) and getting rid of irrelevant informa- 
tion (“irrelevancy reduction”). Redundancy reduction 
concentrates on more efficient ways of encoding the 
image. It looks for patterns and repetitions that can be 
expressed more efficiently. Irrelevancy reduction aims to 
remove or alter information without compromising the 
quality of the image. These two strategies conduct to two 
kinds of compression schemes: lossless and lossy ones. 
Lossless compression is generally based on redundancy 
reduction and the key point is that no information is 
irreversibly lost in the process. Once decompressed, a 
lossless compressed image will always appear exactly 
the same as the original, uncompressed, image. Lossy 
compression is based on both irrelevancy and redun- 
dancy reductions. It transforms and simplifies the image 
in a way that a much greater compression than the com- 

pression obtained with lossless approaches can be achi- 
eved, but this process is by definition irreversible, that is 
it permanently loses information. The lossy compressions 
are suitable for situations where size is more crucial than 
quality, such as downloading via Internet. The JPEG 
compression is the best known lossy compression me- 
thodology, and the JPEG compression is based on the 
use of wavelets [25]. 

From the theoretical point of view wavelet compression 
is capable of both lossless and lossy compression. In fact 
the wavelet transform furnishes simplified versions of 
the image together with all the information necessary to 
reconstruct the complete original image. All the infor- 
mation can be kept and encoded as a lossless compressed 
image. Alternatively, only the most significant details 
can be added back into the image producing a simplified 
version of the image. As you might expect, this second 
application has a much larger area of interest. 

We consider here some applications of the wavelet 
bases constructed in the previous sections in image com- 
pression. In particular we show some reconstructions of 
images and we focus on a lossy compression procedure. 
We limit our attention to grayscales images. Despite the 
appearance, compressing grayscale images is more di- 
fficult than compressing colour images. In fact human 
visual perception can distinguish more easily brightness 
(luminance) than colour (chrominance). 

Going into details the key steps of our image com- 
pression and reconstruction scheme are the following: 

1) digitize the original image, 
2) apply the wavelet transform to represent the image 

through a set of wavelet coefficients, 
3) only for lossy compression: manipulate (i.e. set to 

zero) some of the wavelet coefficients, 
4) reconstruct the image with the inverse wavelet tran- 

sform. 
The first step, that is the digitization of the image, 

consists in transforming the image in a matrix of num- 
bers. Since we consider black and white images, the 
digitized image can be characterized by its intensity 
levels, or scales of gray which range from 0 (black) to 
255 (white), and its resolution, that is the number of 
pixels per square inch. The second step is to decompose 
the digitized image into a sequence of wavelet coeffi- 
cients. The lossy compression step is based on the fact 
that many of the wavelet coefficients are small in abso- 
lute value, so that they can be set to zero with little da- 
mage to the image. This procedure is called thresholding. 
In practice the most simple thresholding procedure 
consists in choosing a fixed tolerance and in doing the 
following truncation procedure: the wavelet coefficients 
whose absolute value falls below the tolerance are put to 
zero. The goal is to introduce as many zeros as possible 
without losing a great amount of details. The crucial 
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issue consists in the choice of the threshold. There is not 
a straightforward way to choose it, although the larger 
the threshold is chosen, the larger is the error introduced 
into the process. In the lossy compression scheme only 
the wavelet coefficients that are non zero after the thre- 
sholding procedure are used to build the so called com- 
pressed image that may be stored and transferred electro- 
nically using much less storage space than the space 
needed to store the original image. Obviously this type of 
compression is a lossy compression since it introduces 
error into the process. If all the wavelet coefficients are 
used in the inverse wavelet transform (or equivalently, if 
we take the threshold equal to zero) and an exact arith- 
metic is used the original image can be reconstructed 
exactly. 

Mimiking what done in Subsection 4.1, we compress each 
test image by taking its wavelet matrix representation 
and setting to zero the entries of the matrix wavelet re- 
presentation whose absolute value is smaller than a fixed 
threshold. After this truncation procedure we perform an 
inverse wavelet transform on the resulting “compressed” 
matrix representation and we compare the resulting ima- 
ge with the original image both from the qualitative and 
the quantitative point of view. As done in Subsection 4.1 
we compute the resulting compression coefficient compC  
as a function of the truncation threshold   and we 
show how the vanishing moments property plays a cru- 
cial role in producing compressed images. 

Let us note that sometimes in the scientific literature 
the compression coefficient is not defined as done in 
Subsection 4.1 but it is defined dividing the original number 
of bytes needed to represent the image by the number of 
bytes needed to store the compressed image. However, 
for example, Wikipedia defines the compression ratio as 
the size of the compressed image compared to that of the 
uncompressed image leaving undetermined how to mea- 
sure the size of an image. In [26] DeVore, Jawerth and 
Lucier have shown that between these two definitions of 
compression coefficient (i.e. number of non zero coeffi- 
cients and number of bytes needed to represent these co- 
efficients) there is a very high “correlation” (i.e. 0.998). 
The compression coefficient (ratio) is one of the com- 
mon performance indices of image compression level. 

Example 3. In this example we consider the image of 
Figure 5 which is the famous Lena image. This image 
has 256256 pixels. In Table 4 we report the com- 
pression coefficients compC  obtained using the Wavelet 
Bases 1, 2, 3, 4 of the Appendix and two different values 
of the threshold  . The relative 2L -errors made sub- 
stituting the original image with the compressed image 
range between 310  and 210 . 

Figures 6-8 show the compressed Lena images 
obtained with the Wavelet Basis 3 of the Appendix for 

= 64,dim  1= 10   (see Figure 6) and = 256,dim  
1= 10   (see Figure 7) and with the Wavelet Basis 4 of 

the Appendix for = 512,dim  1= 10   (see Figure 8). 
 
Table 4. Example 3: The compression coefficient compC  
versus ε  and dim . 

  compC 
compC 

 compC 

 compC 

  dim  Basis 1 Basis 2 Basis 3 Basis 4

 64 1.12 1.12 1.12 \ 

10-2 128 1.34 1.36 \ 1.32 

 256 1.83 2.02 1.89 \ 

 512 7.32 5.14 \ 4.28 

 64 1.91 1.88 1.97 \ 

10-1 128 3.63 3.91 \ 3.62 

 256 9.36 11.73 10.09 \ 

 512 37.46 43.36 \ 41.94 

 

 

Figure 5. Lena: Original image. 
 

 

Figure 6. Lena: Compressed image with the Wavelet Basis 
3 of the Appendix when 64dim =  and -1= 10ε . 
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Figure 7. Lena: Compressed image with the Wavelet Basis 
3 of the Appendix when 256dim =  and -1= 10ε . 
 

 
Figure 8. Lena: Compressed image with the Wavelet Basis 
4 of the Appendix when 512dim =  and -1= 10ε . 
 

Example 4. We consider the image of Figure 9. In this 
image are evident three different types of objects: a 
shape (the black star), a number (‘2025’) and an inscri- 
ption (‘black’). This image has 278268 pixels. Table 5 
shows the compression coefficients compC  obtained 
using the Wavelet Bases 1, 2, 3, 4 of the Appendix and 
two different values of the threshold  . The relative 

2L -errors made substituting the original image with the 
compressed image range between 310  and 210 . 

Figures 10-12 show the compressed images of Figure 
9 obtained for = 128,dim  1= 5 10   and the Wavelet 
Bases 1, 2, 4 of the Appendix respectively. Figures 
13-15 show the compressed images of Figure 9 obtained 
for = 256,dim  1= 10   and the Wavelet Bases 1, 2, 3 
of the Appendix respectively. 

The comparisons between Tables 4-5 and Figures 
5-15 suggest the following observations and comments. 
With respect to the compression property there is a 

different behaviour of the Wavelet Bases 1, 2, 3, 4 of the 
Appendix between operator compression and image  

 
Table 5. Example 4: The compression coefficient ε

compC  
versus ε  and dim . 

  compC 
compC 

 compC 

 compC 

  dim  Basis 1 Basis 2 Basis 3 Basis 4

 64 2.42 2.30 2.48 \ 

10-1 128 4.55 4.75 \ 4.23 

 256 11.73 13.29 12.67 \ 

 512 38.53 46.56 \ 42.50 

 64 4.77 5.23 5.09 \ 

5 10-1 128 14.14 15.18 \ 14.38 

 256 52.68 56.69 53.63 \ 

 512 208.05 226.38 \ 217.73 

 

 

Figure 9. Example 4: Original image. 

 

 

Figure 10. Example 4: Compressed image with the Wavelet 
Basis 1 of the Appendix when 128dim =  and  -1= 5 10ε . 
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Figure 11. Example 4: Compressed image with the Wavelet 
Basis 2 of the Appendix when 128dim =  and  -1= 5 10ε . 
 

 
Figure 12. Example 4: Compressed image with the Wavelet 
Basis 4 of the Appendix when 128dim =  and  -1= 5 10ε . 
 

 

Figure 13. Example 4: Compressed image with the Wavelet 
Basis 1 of the Appendix when 256dim =  and -1= 10ε . 

 

Figure 14. Example 4: Compressed image with the Wavelet 
Basis 2 of the Appendix when 256dim =  and -1= 10ε . 
 

 
Figure 15. Example 4: Compressed image with the Wavelet 
Basis 3 of the Appendix when 256dim =  and -1= 10ε . 
 
compression. In fact in this last case the use of the Wave- 
let Bases 1 and 3 (made of piecewise polynomial func- 
tions made of polynomials of degree zero and obtained 
with the two different criteria proposed in Section 2) and 
the use of Wavelet Bases 2 and 4 (made of piecewise 
polynomial functions made of polynomials of degree one 
and obtained with the two different criteria proposed in 
Section 2) furnish similar compression coefficients. This 
is not really surprising since the images have a natural 
discontinuity structure given by the pixels. Nevertheless 
the compression coefficients obtained with the Wavelet 
Basis 3 are always higher than those obtained using the 
Wavelet Basis 1 and the Wavelet Bases 2 and 4 give 
compression coefficients higher than those obtained with 
the Wavelet Bases 1 and 3. Furthermore the use of the 
Wavelet Bases 2 and 4 seems to have a regularizing effe- 
ct on the images, that is the images reconstructed with 
these two bases appear to have a smaller number of 
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edges and less contrast than those obtained using the Wa- 
velet Bases 1 and 3. 

As far as the reconstruction of the images is concerned, 
we can say that very satisfactory reconstructions are ob- 
tained when the dimension of the vector space generated 
by the truncated wavelet basis raised to the power two is 
about the same than the number of pixels of the image 
considered. Furthermore the relative 2L -errors made 
substituting the original image with the reconstructed 
image have approximately the same order of magnitude 
independently from the basis used. 

Finally the following conclusions can be made. In 
order to manipulate correctly operators and images it is 
sufficient to construct the wavelet bases with piecewise 
polynomial functions made of polynomials of very low 
degree. Really for the images seems to be adequate choo- 
sing piecewise polynomial functions made of polynomi- 
als of degree zero. As already observed this might be due 
to the way we calculate the wavelet coefficients and to 
the fact that the operators and the images are represented 
by piecewise constant functions. Moreover it seems to be 
very promising the idea of increasing the number of va- 
nishing moments keeping low the degree of the polyno- 
mials used. Actually the bases that have a large number 
of extra vanishing moments, that is those constructed 
with the second criterion proposed in Section 2, show 
better compression and reconstruction properties, and in 
general work better than the wavelet bases constructed 
with the first criterion proposed in Section 2. 
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Appendix: Symbolic Calculus and Some 
Wavelet Bases 

 
The wavelet mother functions used in the numerical 
experiments of Section 4 have been obtained using the 
Symbolic Math Toolbox of MATLAB to implement the 
procedure described in Section 2. In particular some of 
the input parameters used to determine the wavelet 
mother functions are: the minimum number M  of va- 
nishing moments that the wavelet basis considered must 
have, the number N  of subintervals of the interval (0,1) 
employed and the points = ,i i N  = 1, 2, , 1,i N   
where the subdivision of (0,1)  in subintervals takes 
place. The corresponding symbolic non linear system 
arising from Equations (3), (6), (7) and (8), or from 
Equations (3), (6), (7) and (9), having as unknowns the 
coefficients of the wavelet mother functions, has been 
solved with the command solve of MATLAB. Let us 
note that all the wavelet bases we present are uniquely 
determined up to a “sign permutation”. 

Below we show the mother functions of the wavelet 
bases used in the numerical experience presented in 

Section 4. We begin showing some functions  , , N
M
j N   

 = 1, 2, , 1 ,j N M  solution of (3), (6), (7) and (8), 
that is some wavelet basis functions obtained using as 
extra condition criterion 1), the regularity criterion. 
 Wavelet Basis 1: when = = 1,J M  = 2N  and 

1 = 1/ 2  we obtain the mother function of the 
Haar’s basis: 

1

1,2,1 2
1, 0 1 2,

1, 1 2 1,

x

x

  
    

 

 Wavelet Basis 2: when = = 2,J M  = 2N  and 

1 = 1/ 2  we obtain: 

 2

1,2,1 2
6 1, 0 1 2,

6 5, 1 2 1,

x x

x x

  
     

 

and 

  
 

2

2,2,1 2

3 4 1 , 0 1 2,

3 4 3 , 1 2 1,

x x

x x

      
  

 

Note that the function  2

2,2,1 2  is continuous in 

1 = 1/ 2 . 

The Wavelet Basis 2 is one of the multi-wavelets 
bases introduced by Alpert in [9]. 

Let us show now some functions 
, , N

M

j N 
  

 = 1, 2, , 1 ,j N M  that are instead solution of (3), 

(6), (7) and (9), that is they are obtained using as extra 
condition criterion 2), the “extra vanishing moments” 
criterion. 
 Wavelet Basis 3: when = 3,J  = 1,M  = 4N  and 

 4 = 1 4,1 2,3 4
T  we obtain: 


4

1

1,4,

0.81649658092773, 0 1 4,

1.63299316185545, 1 4 1 2,

0.81649658092773, 1 2 3 4,

0, 3 4 1,

x

x

x

x



  
      
  

 


4

1

2,4,

0.73029674334022, 0 1 4,

0.36514837167011, 1 4 1 2,

1.46059348668044, 1 2 3 4,

1.09544511501033 3 4 1,

x

x

x

x



 
      
  

 


4

1

3,4,

1.34164078649987, 0 1 4,

0.44721359549996, 1 4 1 2,

0.44721359549996, 1 2 3 4,

1.34164078649987 3 4 1,

x

x

x

x



  
      
  

 

Let us note that  4

1

1,4,
  and  4

1

2,4,
  have two 

vanishing moments while  4

1

3,4,
  has only one 

vanishing moment. 
 Wavelet Basis 4: when = 6,J  = 2,M  = 4N  and 

 4 = 1/ 4,1/ 2,3 / 4
T  we obtain: 


4

2

1,4,

3.90434404721515 , 0 1 4,

3.59199652343794 , 1 4 1 2,

2.03025890455188 , 1 2 3 4,

0.46852128566582 3 4 1,

x x

x x

x x

x x



 
      
  

 


4

2

2,4,

25.00016680560250 2.65184816330695, 0 1 4,

0.38283512610523 , 1 4 1 2,

1.01345755518432 , 1 2 3 4,

0.34720166501292 3 4 1,

x x

x x

x x

x x



  
      
  

 


4

2

3,4,

0.95135815044919 0.46608681860864, 0 1 4,

27.03228641971935 10.38247153476852, 1 4 1 2,

0.01590201009748 , 1 2 3 4,

0.10498761842034 3 4 1,

x x

x x

x x

x x



  
       
  
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
4

2

4,4,

1.61797243531195 0.16710561430746, 0 1 4,

0.29209217945666 0.16436444965636, 1 4 1 2,

27.156981771974861 17.02684965971920, 1 2 3 4,

0.29177589122770 3 4 1,

x x

x x

x x

x x



   
        
  

 


4

2

5,4,

3.25235011916643 0.55747233480183, 0 1 4,

0.90942491483800 0.02825896628028, 1 4 1 2,

1.43350028949041 1.19972156844449, 1 2 3 4,

25.57179548671617 22.89746967782813, 3 4 1,

x x

x x

x x

x x



   
        
   

 


4

2

6,4,

10.08201660500166 2.10042012604201, 0 1 4,

3.36067220166723 0.42008402520840, 1 4 1 2,

3.36067220166720 2.94058817645881, 1 2 3 4,

10.08201660500172 7.98159647895970, 3 4 1,

x x

x x

x x

x x



  
        
   

Let us note that  4

2

,4,j 
 , = 1, 2,3, 4,5j  have three 

vanishing moments while  4

2

6,4,
  has only two vanish- 

ing moments. 
We underline that taking the number N  of subin- 

tervals of the interval (0,1)  used big enough, wavelet 
mother functions of piecewise polynomial functions 
made of polynomials of fixed degree with an arbitrary 
high number of vanishing moments can be constructed. 

 


