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ABSTRACT 

Most differential drive platforms are equipped with two independent actuators and casters. The positions of the gravity 
center and the rotation center often do not coincide. This position difference, combined with the effect of unbalanced 
actuator dynamics on the motion, makes it difficult to properly control the platform. We propose an adaptive nonlinear 
controller system based on the Lyapunov stability theory that greatly improves the trajectory tracking performance of 
such platforms. The asymptotically stable kinematic controller takes into account the position difference and the effect 
of the unbalanced actuator dynamics. The dynamic controller has the desirable property that it requires minimal knowl- 
edge of the platform physical parameters. Validation was performed through simulation and several experiments con- 
ducted on a rear driven powered wheelchair. Comparative experimental studies suggested that the proposed adaptive 
control system performs better than a similar method presented in the literature for linear as well as curvilinear trajec- 
tory tracking. Furthermore, the control system exhibits good tracking performance on inclined plans and non smooth 
surfaces. 
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1. Introduction 

Stable trajectory tracking is one of the most important 
problems of underactuated mobile platforms with non- 
holonomic constraints [1]. Over the passed decades, 
wheeled mobile platforms actuated by means of two dif- 
ferent motors have been among the most studied mobile 
systems [2-5]. The potentially wide range of applications 
justifies this intense research effort. Reference trajectory 
tracking involves the design of stable control law that 
allows the platform to follow a given reference path. 
However, according to Brockett’s theorem [6], a non- 
holonomic mobile platform cannot be asymptotically 
stabilized to an equilibrium point with the use of a 
smooth continuous state feedback control law. To over- 
come this condition, several approaches have been pro- 

posed in the literature. These approaches fall into three 
main categories, namely kinematic control laws based 
upon the well-known perfect velocity tracking model 
[7,8], kinematic-dynamic control laws [9,10] and adap- 
tive dynamic control laws [5,11-15]. 

The kinematic control law approach assumes that the 
control signals produce the exact motion commanded 
[16]. Chang [17] proposed a kinematically stable solution 
for a nonholonomic platform in polar coordinates. A 
nonlinear state feedback stabilization control law was 
presented and validated through simulation study. Ka- 
nayama [8] proposed a stabilizing control law using the 
Lyapunov design approach with a cartesian coordinate 
formulation of the tracking problem. In [18], a feedback 
control using nonlinear oscillators is presented and the 
theoretical kinematic stability is established. While the 
perfect velocity tracking assumption simplifies the kine-
matic controller design, it totally ignores the important 
dynamic aspects of the platform [13]. 

*This work has been supported by the Natural Science and Engineering 
Research Council of Canada (Grant No CRD 349481-06 Scholarship 
No BESC D3-348674-2007). The collaboration and support of Robo-
vic Inc., Sunrise Medical Canada are as well gratefully acknowledged. 
The authors wish to thank Hai Nguyen, Patrice Boucher, Vincent Zal-
zal, Raphael Gava and Alexandre Fortin from the Perception and Ro-
botics Laboratory of Ecole Polytechnique for their contributions on 
implementation and testing. 

The kinematic-dynamic approach considers the two 
aspects (kinematic and dynamic) of the mobile platform 
control and assumes that the actuator inputs signals are 
torques instead of velocities [19]. Accordingly, Astolfi 
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[10] used the polar representation of the mobile platform 
and proposed a discontinuous control law that provides 
an exponential stabilization. Other papers report the de- 
sign of stabilizing control laws with platform cartesian 
representations [20]. While this type of approach ac- 
counts for dynamic aspects, it may be sensitive to distur- 
bances that affect the platform motion in real applica- 
tions. 

The third category is related to the robust and adaptive 
dynamic design approaches. Their main objective is to 
overcome the weakness of the previous approaches by 
taking into account the unavoidable disturbances caused 
by the navigation environment [12,21]. Most recent pub- 
lications on the reference trajectory tracking with non- 
holonomic platforms use adaptive dynamic approaches. 
[22] studied the effect of wheel skidding on platform 
stability when a Lyapunov based kinematic controller is 
used. The system is shown to be stable under certain 
conditions. The sliding mode control provides fast re- 
sponse and good robustness in presence of platform 
model uncertainties [23,24]. In [13], an adaptive sliding 
mode design approach using a self recurrent wavelet 
neural network is described and validated through simu- 
lation. In [5], an adaptive dynamic control scheme using 
the nonlinear stochastic control is proposed. This scheme 
is mainly based upon the dual control principle originally 
proposed by Fel’Dbaum [25]. The advantage of this 
method seems to be its ability to achieve at the same time 
the control of the platform and parameter estimations. 
Although successfully extensive simulations were pro- 
vided, no experimental validation was shown. Adaptive 
fuzzy control can be used to approximate nonlinear func- 
tions. This method has been extensively studied in con- 
trol theory. Hou [11] designed an adaptive controller 
based on the backstepping [26] and fuzzy logic ap- 
proaches. It takes into account the uncertainty in the 
platform kinematic and simulation results suggest good 
performance. In [27], the backstepping technique is also 
used to design a stable dynamic controller for car-like 
platform and the reference trajectory tracking perform- 
ance is evaluated in simulation. However, the perform- 
ance of backstepping control is dependent upon knowl- 
edge of the exact platform model. Hence, it applications 
on real mobile platforms may be limited [14]. Venelinov 
[14] proposed another adaptive fuzzy approach using a 
kinematic controller. This method was able to reduce in 
simulation the effect of unmodeled disturbances. In [28], 
a dynamic Petri recurrent fuzzy neural network was pro- 
posed and its performance for the reference trajectory 
tracking were compared with other similar methods. The 
tracking error was demonstrated to convergence to an 
equilibrium point through different learning rates ob- 
tained by applying Lyapunov stability theory to the sys- 
tem. In [29], a robust control of a nonholonomic mobile 

robot is presented using the backstepping of the kine- 
matics into the dynamics. The adaptive controller was 
based on a neural network, and the overall control system 
was testing in simulation. Whilst this approach is shown 
to be stable in presence of unmodeled bounded perturba- 
tions, the size of this neural network as well as the time 
convergence property of the whole system is difficult to 
assess. Moreover, in practice, it is not simple to get a 
real-time implementation of the adaptive neural network 
controller. 

Although most these works were successfully tested in 
simulations, few experimental studies have been pre- 
sented to help assess controller behavior. Furthermore, 
the studies considered simple disturbance models that 
may not be encountered in real mobile platform applica- 
tions. Experimental validation under different operation 
conditions should provide a better understanding of the 
practical strengths and weaknesses of each proposed 
controller design. 

Besides the lack of experimental validation, most con- 
troller design approaches assume that the two actuators 
dynamics are fully compensated or matched. The full 
compensation assumes that the actuators behave in the 
same way under the same operation conditions. 

When the above assumptions are not verified on real 
navigation platforms, the reference trajectory tracking 
performance decreases. Indeed, it was mentioned in [10] 
that the difference between wheel radius is one the most 
common modeling error. In [12,30], it was shown that in 
practice, ensuring that two different actuators behave 
identically, even when working under similar operating 
conditions, is far from trivial. Some authors considered 
such mismodeling as model uncertainty and, therefore, 
rely on the adaptive control laws to reduce their impact 
on the platform trajectory tracking process [13,5]. 

The goal of this work is to propose a straightforward 
controller design approach for a class of nonholonomic 
mobile platform that improves the reference trajectory 
tracking performance. The controller accounts for:  
 the positional difference between the rotation center 

and the gravity center of the platform;  
 the effect of the unmatched actuator dynamics on the 

platform motion;  
 external disturbances during the trajectory tracking.  

To achieve this goal, we propose an adaptive control- 
ler with two components: a stable kinematic controller 
and a stable dynamic controller. The kinematic controller 
provides the required velocities to track the reference 
path. These velocities may not be properly transformed 
into motion by the platform actuators due to the presence 
of various disturbances such as caster orientations, vari- 
able load and variable friction conditions between wheels 
and the navigation environment. In addition to these ex- 
ternal disturbances, the platform model is affected by 
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parameter estimation uncertainties related to the center of 
gravity position, the center of gyration position, the sys- 
tem mass and inertia, etc. An adaptive control approach 
is adopted since this approach does not require the 
knowledge of the complete system model. The merits of 
the approach presented here may be enumerated as fol- 
lows: 
 a stabilizing kinematic control law that tolerates un- 

balanced actuators dynamics;  
 a stabilizing control law for the dynamic controller, 

based upon the model reference adaptive approach, 
that reduces significantly the effects of external dis- 
turbances and model parameter estimation uncertain- 
ties;  

 validation experiments of the proposed control system 
on a real mobile platform under different operation 
conditions;  

 an experimental comparative study between the pro- 
posed approach and similar approaches found in lit- 
erature.  

The rest of the paper is organized into four sections. 
Section II presents the differential drive platform model. 
Based upon this model, we present in section III the de- 
sign of new nonlinear kinematic and dynamic controllers. 
The validation of the proposed approach is presented in 
section IV and the conclusion is presented in section IV. 

2. Differential-Drive Mobile Platform Model 

We propose a dynamic and kinematic model for a mo- 
bile platform actuated by two independent electrical mo- 
tors as illustrated in Figure 1. The related nomenclature 
description used throughout this paper is as follow: 
 

 

Figure 1. Representation of the Navigation Environment: C 
is the midpoint of the axis that joined the two driving 
wheels. G is the gravity center position in the platform ref- 
erence frame. 

 C: the midpoint of the axis that joined the two driving 
wheels. It is the origin of the platform reference 
frame;  

 X and Y are respectively the abscissa axis and the or- 
dinate axis of the global reference;  

 G: the gravity center position in the platform refer- 
ence frame  , ,C x y ;  

 a: the positional difference between C and G;  
 m: platform and the load total mass;  
 i: the platform and the load inertia about C;  

The following assumptions are made: 
Assumption 2.1 Each wheel mass is negligible com- 

pared to the total mass of the platform and the load (m).  
Assumption 2.1 The wheels roll without slippage and, 

therefore, no velocity component perpendicular to the 
wheel planes is present.  

Assumption 2.1 The actuators are fully compensated, 
i.e. all their electromechanical parameters are perfectly 
matched. This assumption is only used to formulate the 
ideal dynamic state equations.  

Based on the well-known Newton-Euler equations [31] 
and by taking into account assumptions 2.1, 2.1 and 2.1, 
the state equations are represented by the following 
equations [5,32]: 

 cosCX v                  (1) 

 sinCY v                   (2) 

                     (3) 

where  and v   are the measures at  of the linear 
and angular velocities respectively. C

C
X  and C  are 

the position of  in the global reference frame. Accord- 
ing to assumption 2.1 the following constraint is for- 
mulated: 

Y
C

   sin cos 0C CX Y               (4) 

Expressions (1), (2) and (3) represent the platform 
kinematic model. 

In real applications, assumption 2.1 is not always true 
and bias velocities are added to  and v  . Hence, 

Tv v vb                     (5) 

and 

T b                     (6) 

where T  and Tv   are nominal linear and angular 
velocities respectively when the actuator dynamics are 
perfectly balanced. b  and bv   represents the linear 
and angular bias velocities induced by the propulsion 
force mismatch, respectively. Kinematic expressions (1), 
(2) and (3) become: 

   cosC T bX v v               (7) 
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   sinC T bY v v               (8) 

T b                   (9) 

Most existing controllers neglected parameters b  
and b

v
  in their kinematic model, therefore negatively 

affecting the tracking ability. 

3. Non-Linear Controller Design 

3.1. Preliminaries 

At each instant t , a virtual platform kinematically 
identical to the real platform is moving along the 
reference trajectory illustrated in Figure 1. The tracking 
problem consists of designing a controller that minimizes 
the tracking error represented by the following ex- 
pression [8]: 

   
   

cos sin 0

sin cos 0

0 0 1

e R

e R

e R

G

G

x X X

y Y

 
  Y

  

    
        
        


     (10) 

where the reference configuration (the configuration of 
the virtual platform) and the real configuration at a given 
time are designated by  and   T, ,R R R RQ X Y 

 T, ,G G GQ X Y  . 
Unlike most approaches in the literature, the error is 

expressed relative to CX , the configuration error re- 
presented by expression (0.10) is related to G . With 
the proposed configuration error formulation, the dis- 
tance between  and G  can be taken into account in 
the controller design. 

Q

C

We adopt the control architecture illustrated in Figure 
2. Given the reference configuration RQ

v

 and the refer- 
ence velocities , the role of the kinematic 
controller is to propose target velocities  based 
on assumptions 2.1 and the perfect velocity tracking 
assumption. The dynamic controller is designed in order 
to compensate for unmodeled dynamic behavior and help 
the overall controller to better track the reference tra- 
jectory. Since most DC motors are torque driven, the 
dynamic controller will generate the required acceler- 
ations 

 T
,R Rv  

 T
,T T

 T,v   for actuators. 

3.2. Kinematic Controller Design 

The following assumptions are made:  
Assumption 3.1 The kinematic control law is based 

upon the assumption of perfect velocity tracking which 
assumes that the control signals   exactly 
produces the desired motion.  



 and

T
,T Tv 

Assumption 3.1 a b  b, v    ar wn. Further- 
more, a  is a strictly positive constant.  

e kno

Given  and v   relatively to C , the expression of  

 

Figure 2. Platform Control Bloc Architecture. 
 
the velocities at  are: G

   
   

cos sin 0

sin cos 0

0 0 1

G

G

X v

Y a

 
  

 

     
          
        





       (11) 

Proposition 3.1 It can be shown (see appendix A) that 
the derivative of the configuration error is given by: 

   
   
cos sin

sin cos
e e R e R e

e e R e R e

e R

x y v v a

y x v a a

   
    

  

    
         
      





   (12) 

where Rv  and R  represent the reference linear and 
angular velocities, respectively. 

To build the kinematic controller, let us consider the 
following nonlinear control laws: 

   

   

cos sin

cos sin

R e R e x e
T

R
T

b

R e e y e

v a K xv
v

K y
a

  


b

v

   

  
 


          

   (13) 

where xK  and yK  are bounded positive constant 
values. 

Proposition 3.1 When kinematic control laws (13) are 
used, it can be shown (see appendix B) that the errors 
 T

,e e x y  converge asymptotically toward  .  T0,0
In the following proposition, we demonstrate that 

under certain conditions, the configuration error  
 , ,e e ex y   converge locally to .  T0,0,0
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Proposition 3.1 Assume that  and 0Rv  R  are 
continuous and bounded and their derivative are small. It 
can be shown (see appendix C) that the system using 
control laws (13) is locally asymptotically stable.  

For practical application, the assumption 3.1 may not 
be true. In the following section, we propose an adaptive 
dynamic controller that is an extension of the kinematic 
controller. 

3.3. Dynamic Controller Design 

The exact values of the system mass , the system 
inertia , the distance between the center of gravity and 
the center of rotation  and the bias velocities 

m
i

a  ,b bv   
are not trivial to obtain. Moreover, the friction conditions 
between the wheels and the navigation surface as well as 
the caster orientations are some of the usual sources of 
perturbations that can seriously degrade the trajectory 
tracking performance. 

Differents approaches have been studied in order to 
reduce the negative effects of some of these perturbations 
on the platform motion [10,22,13,25,11,27,14]. In prac- 
tice, it is desirable to have a dynamic controller that does 
not require the knowledge of the complete system model. 
The adaptive control approach based upon the model 
reference principle is a good candidate for designing the 
dynamic controller [33]. Moreover, this approach is 
straightforward. 

The role of the dynamic controller illustrated in Fig- 
ure 3 is to generate the required accelerations  T,v 

,T Tv 

,M Mv 

 so 
that the platform will move at velocities    
suggested by the nonlinear kinematic controller, regard- 
less of the presence of the aforementioned disturbances. 
More formally, two reference models for linear and an- 
gular velocities  are given (refer to Figure 3) 
with inputs and outputs as are  and   , 
respectively. The platform, whose parameters are un- 
known, has 

T

T
 T

,M Mv 

T,


 T

,T Tv 

v   as inputs and  ,v T  as outputs. 
The goal of the dynamic controller is to provide  T,v   
so that  ,v T  asymptotically tracks   . 

T
,M Mv

In order to guarantee the stability of the overall control 
system, we adopt the adaptive controller design approach 
based on the Lyapunov method [33]. Therefore, a dyna- 
mic controller is designed for the linear velocity  and 
another one is designed for the angular velocity 

Tv
T . 

3.3.1. Linear Velocity Dynamic Controller 
The design requires two steps, namely the selection of 
the reference model that should be tracked by the system 
and the design of a stabilization control law. 

3.3.2. Linear Velocity Reference Model 
In the absence of disturbances and when the perfect 
velocity tracking assumption is used, the accelerations  

 

Figure 3. Model Reference Adaptive Control. 
 

T  and v Mv  should be identical. Any presence of dis- 
turbance will lead to a deviation between the platform 
velocity  and the model velocity 



v Mv . So we propose 
the following velocity reference model: 

M T v T Mv v v v                 (14) 

where Mv  is the linear acceleration. 0v   is a 
parameter that is linked to the desired dynamic per- 
formance. 

3.3.3. Linear Velocity Reference Model Tracking 
To allow  to track v Mv  asymptotically, we propose 
the following expression: 

1 2
v T v Tv v v v                 (15) 

where 1
v  and 2

v  are control parameters that must be 
adapted. The proposed control law has an anticipative 
component  T  and a corrective part v v Tv v   si- 
milarly to the reference model (refer to expression (14)). 
Perfect linear trajectory tracking is obtained when 

Tv v  and v
1 1 . To find the adaptive law for the two 

control parameters 1
v  and 2

v , we propose the fol- 
lowing definition of the tracking error: 

ve v vM                   (16) 

Proposition 3.1 Assume that T  and  are 
bounded. Consider the following adaptive laws: 

v Tv

1

0
d

t

v v v Te v                   (17) 

 2

0
d

t

v v v Te v v               (18) 

where 0v   is a constant. 
If the control law (15) is used with the adaptive laws 

(17) and (18), it can be shown (see appendix D) that the 
tracking error v  converges asymptotically to 0. Further- 
more, the global tracking error e

e
x , e  and ey   are 

bounded and we showed that it is possible to let these 
errors to be as small as possible (see appendix D). 
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3.3.4. Angular Velocity Dynamic Controller 
The angular velocity dynamic controller design follows 
the approach presented in section %d.0.3.3. The refer- 
ence model is represented by: 

 M T T M                    (19) 

where M  is the angular acceleration and 0   is a 
parameter that is linked to the desired dynamic perfor- 
mance. 

The control law is given by: 

1 2= T T                       (20) 

where 1
  and 2

  are parameters to be adapted. The 
angular velocity error is: 

Me                     (21) 

By using the Lyapunov function represented by the 
expression (22), we obtained the adaptive laws (23) and 
(24). 

 1 2 2 2 2
3

1 1 1
, ,

2 v

V e e    


4   
 

 
   

 
      (22) 

where  1
3 1     and  2

4     
t

. 

1

0
dTe                        (23) 

 2

0
d

t

Te                    (24) 

3.4. Discussion 

1) From expression (30) (refer to Appendix B), it is 
clear that the stability condition is not dependent upon 
velocity biases  ,b bv  . Although the positional dif- 
ference between the center of gravity and the center of 
rotation is part of the Lyapunov derivative function, it 
contributes to the kinematic stability.  

2) The platform motion smoothness is an important 
factor for real applications [8]. A smooth motion can be 
obtained if the following conditions are satisfied [8]: 
 the reference trajectory is continuous;  
 the reference trajectory curvature is also continuous;  
 the reference control signals  ,R Rv   and their 

derivatives  ,R Rv   are bounded.  
 the control coefficients  ,x yK K  should be set in 

order to satisfy predefined maximum acceleration and 
deceleration. Indeed, large values tend to make the 
system to converge faster, but they may cause motion 
oscillations. 

3) The proposed dynamic controllers do not require 
knowledge of platform parameters. It can therefore be 
used with little effort on actual platforms. Furthermore, it 
can handle bounded perturbations, regardless of their 
sources.  

4) In order to accelerate the convergence of 1
v , 2

v , 
1
  and 2

  estimations, their initial values  0t   
can be set different to 0. 

4. Simulation and Experimental Validations 

The performance of the proposed approach has been 
analysed by simulation and experimentally through 
comparative studies with a similar method presented 
originally by Kanayama [8] and recently used by Bugeja 
[5]. The Kanayama kinematic controller was designed 
without taking into account the difference in positions 
between the gravity and the rotation centers and by as- 
suming perfect velocity tracking. In order to use this 
controller in our comparisons, we used the dynamic con- 
troller of Section 3.3 as its natural extension [30]. In the 
remainder of this paper, we call it the Kanayama Track- 
ing Controller (KTC) while the kinematic and dynamic 
controllers are designated as Improved Tracking Con- 
troller (ITC). The main result presented by Kanayama is 
the two following stabilizing kinematic control laws: 

 
 

cos

sin

K
K R e x e

K
K

K
R R e R y

v v K x

v K v K y


   e

  
         

     (25) 

where Kv  and K  are the Kanayama linear and 
angular velocities respectively; K

xK , K
yK  and KK  are 

positive constant values. 

4.1. Validation through Simulation 

The simulation aims at assessing the proposed controller 
before conducting experimenting on a real mobile plat- 
form. Specifically, this study will show that ITC per- 
forms comparatively better than KTC on linear and 
curvilinear trajectories, even when the bias velocities b  
and b

v
  are not exactly known. Matlab software and a 

specific robotic middleware software called Acropolis 
[34] were used for the simulation. 

4.1.1. Simulation Scenario 
We consider a platform with a center positional dif- 
ference 0.25 ma  . The bias velocities  and bv b  
are represented by random variables:  

 0 m s,0.1 m sbv N  and  
 0.1 rad s ,0.1 rad sb N   where  ,N     

represents a gaussian process with mean   and va- 
riance 2 . The value of velocities used in the kinematic 
controller are represented by the random variable means: 
0 m s  and 0.1 rad s . The dynamic controller para- 
meters v ,  , v  and   are set to 1. 

From its rest configuration , the 

platform must follow a straight-line trajectory with a ve- 
locity of 

   T
0 0,0,0X  

0.4 m s . It must then follow a curvilinear tra- 

jectory of  of radius with 1 m 0.4 m sRv   and  
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0.4 rad sR  . All variables are discretized. The track- 

ing mean squared error (MSE) is used as a comparison 
measure, as expressed by the three measures:  

    21

0

1 M

x Ri
MSE X i X i

M



  ,  

    21

0

1 M

y Ri
MSE Y i Y i

M



  ,  

    21

0

1 M

Ri MSE i i
M  


   where M is the number 

of discrete values of the configuration during one run of 
the simulation. 

The following parameter values are used: 
 KTC approach: 1K

xK  , 1K
yK   and 1KK  . The 

initial values of the dynamic controller are:  
 1 0 1  ,  2 0 1  , v v  1 0 1   and  2 0 1   .  

 ITC approach: 1xK   and 1K
yK  . The initial values 

of the dynamic controller are:  1 0 1v  ,  2 0 0v  , 
 1 0 1   and  2 0 0  . 

4.1.2. Simulation Results 
Figure 4 shows the trajectories obtained from simulation. 
Both the ITC approach and the KTC approach generate 
stable trajectories. Despite the presence of noise on the 
bias velocities, the trajectory produced by ITC (solid 
black curve) is very close to the reference trajectory 
(solid gray curve). The ITC performs better than the 
KTC as shown in the Table 1. This performance is 
mainly due to the kinematic controller proposed in this 
paper. Recall that the common part between the ITC and 
KTC is the dynamic controller. The four parameters 1

v , 

2
v , 1

  and 2
  had similar values regardless of the 

kinematic controller involved. Thus, the only way to 
explain the difference in performance lies in the 
kinematic controller behaviors. In Figure 5, the tracking 
errors ex , e  and ey   obtained with ITC are lower in 
the average than the tracking errors obtained with KTC. 

4.2. Experimental Validation 

4.2.1. Experiment Setup 
Electric power wheelchairs actuated by two independent 
motors have been widely used to study tracking 
controllers and various navigation tasks [35,36,12]. Since 
the proposed tracking approach takes into account the 
positional difference between the rotation and the gravity 
centers, we selected a rear driven powered wheelchair (as 
illustrated in the Figure 6. To demonstrate the practical 
aspects of the proposed reference configuration tracking 
system, we conducted several experiments of rectilinear 
and curvilinear trajectory tracking. The platform model 
parameters as well as the controller parameters are 
summarized in Table 2. During all experiments, a load of 
77 kg (corresponding to the user) was on the wheelchair 
and the front casters were always positioned perpen- 
dicularly to the motion direction at the beginning. This 
pose of casters adds a maximum disturbance to the 
motion. To determine the bias velocities, the wheelchair 
was lifted off the ground to avoid any contact between 
the wheels and the ground. No close loop controller was 
used. In order to find b , the angular velocity was set to 
0 and different values of linear velocities were used. An 

 

 

Figure 4. Tracking Ability Comparison Between Open-loop, KTC and ITC Controllers. 
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Figure 5. Comparative Tracking Error Between KTC and ITC Controllers. 
 

Table 1. Mean-Square Error Obtained from Simulation. 

 KTC ITC 

xMSE  0.0135 45.53 10  

yMSE  0.0190 41.30 10  

MSE  0.0061 41.93 10  

 
Table 2. Experimental Parameters. 

Parameter Value 

a 0.25 

xK  0.5 

yK  0.5 

K

xK  1 

K

yK  1 

KK  1 

 ,v v   [1,1] 

,      [1,1] 

 
angular bias velocity 0.11 rad sb   was then observed. 
Similarly, by setting the linear velocity to 0 and using 
several values of angular velocities, a bias velocity 

0.01 m sbv   was obtained. 

 

Figure 6. Rear Driven Powered Wheelchair Model Quickie 
646 by Sunrise Medical. 

4.2.2. Linear Trajectory Tracking 
The objective of the first experiment is to demonstrate 
the convergence of the proposed controllers and to 
compare the performance of the ITC and the KTC 
approaches in rectilinear trajectory tracking. To test the 
convergence, the platform was given different initial 
configurations: ,   T1 m,1 m, 1 rad
 T0.5 rad 0.250.5 m,0.5 m,

 1 m, 1 m,0.75 rad 
,  

and . From one of these initial 
configurations, the proposed controllers must drive the 

 Tm,0.25 m, 0.25 rad
T
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platform to the configuration   with the refer- 
ence velocities 

T0,0,0
0.45 m sRv   and 0 rad sR  . Fig- 

ure 7 shows the time evolution of the three tracking 
errors: ex , e  and ey  . These errors approach zero, even 
if the reference angular velocity is set to 0. 

In order to compare the ITC and KTC approaches in 
rectilinear trajectory tracking, the platform must track a 
linear trajectory of  with the reference velocities 7 m

0.45 m sRv   and 0 rad sR 
0

. The initial configu- 
ration was set to  . Ten trials were conducted. 
Figure 8 illustrates typical trajectories obtained without 
the controllers, using the KTC and the ITC controllers. 
These trajectories suggest that the ITC is able to maintain 
a deviation on the Y-axis less than  while the 
KTC deviation if four times larger after . Tracking 
mean-square errors for the ITC and KTC are presented in 
Table 3. 

T0,0,

0.2 m
6 m

4.2.3. Curvilinear Trajectory Tracking 
The purpose of the second experiment is to compare the 
ITC and KTC controller tracking performances in the 
case of curvilinear trajectories. From its rest configu-  

ration at  , the platform must track a 
trajectory generated by using the reference velocities 

T0 m,0 m,0 rad

0.45 m sRv   and 0.30 rad sR  . Figure 9 illustrates 
typical trajectories obtained without controller, with the 
KTC and the ITC controllers. 

These trajectories show that the ITC is able to 
maintain a deviation on the X-axis and Y-axis less than 
0.4 m. Deviations produced by the KTC are substantially 
larger most of the time as shown in Figure 10. Tracking 
mean-square errors are presented in Table 4. 

4.2.4. Linear Trajectory Tracking on Inclined  
Surfaces 

Natural navigation environments include incline plans. 
We investigated the behavior of the ITC controller in the 
case of trajectory tracking on inclined plans as shown in 
Figure 11. Experiments consisted of starting from 

 and following a rectilinear path of 10  
length, climbing over a 2.5 cm denivellation at 
approximately 2.5 m, ascending a first  incline of 
1.25 m, rolling on a horizontal plane for approximately 
1.2 m and descending a 

 T
0,0,0 m

10%

10%  incline of 1.25 m and  
 

 

Figure 7. Tracking Error for Different Initial Platform Configurations: Test 1, Test 2, Test 3 and Test 4 correspond to initial 

configurations , ,  and , 

respectively. 

 T
1 m , 1 rad,1 m  T

0.5 m,0.5 m, 0.5 rad  T
0.25 m,0.25 m, 0.25 rad  T

1 m, 1 m,0.75 rad 
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Figure 8. Linear Trajectory Tracking with the Rear Driven Wheelchair. 
 

 

Figure 9. Curvilinear Trajectory Tracking with the Rear Driven Wheelchair. 
 
Table 3. Tracking Mean-Square Errors with Rectilinear 
Trajectories. 

 KTC ITC 

xMSE  0.3133 0.3096 

yMSE  0.4251 0.0215 

MSE  0.0240 0.0016 

Table 4. Tracking Mean-Square Errors with Curvilinear 
Trajectories. 

 KTC ITC 

xMSE  0.2723 0.12564 

yMSE  0.5460 0.0887 

MSE  0.0576 0.0557 
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Figure 10. Curvilinear Trajectory Tracking Error with the Rear Driven Wheelchair. 
 

 

Figure 11. Navigating on inclined surfaces. 
 
rolling horizontally for 3.75 m (see Figure 11). Distur- 
bances come from the front caster orientations, the 2.5 
cm denivellation, the two inclines and the uneven navi- 

gation surfaces. 
We were unable to perform this test with the KTC 

approach. Indeed, due to the bias velocities and due to 
insufficient compensation of perturbations, the wheel- 
chair was unable to remain on the first incline. Figure 12 
presents the result obtained with the ITC approach only. 
The platform successfully completed the test with a 
maximum deviation of on the Y-axis despite disturbances, 
with the following tracking mean-square errors: 

0.0552xMSE  , 0.0488yMSE   and 0.0020MSE  . 

5. Conclusion 

The design of adaptive nonlinear kinematic and dynamic 
controllers have been presented. The kinematic controller 
takes into account the positional difference between the 
platform rotation center and its gravity center. Further- 
more, it accounts for bias velocities induced by uncom- 
pensated actuator dynamics. For smooth and bounded 
elocities, the global stability and the convergence of the  v 
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Figure 12. Trajectory Tracking on Inclined Surfaces. 
 
kinematic controller have been d

ability theory and the conditions for the local stability 

[1] M. Deng, A. d L. Jiang, “Two- 
Wheeled Mob ol in Dynamic En-

erived using Lyapunov 
st
and convergence were provided. The dynamic controller, 
based on the reference model approach, has the desirable 
property of not requiring the knowledge of the platform 
physical parameters (mass and inertia). Its stability has 
been established through Barbalat’s lemma. The control- 
ler’s design approach presented in this paper greatly in- 
creases the trajectory tracking performance. Simulation 
as well as comparative experiments performed on a rear 
driven wheelchair have demonstrated the stability and the 
effectiveness of the proposed approach. 
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2. Global Asymptotical Convergence of the  
Kinematic Controller 
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oposition 5.1 The errors  T,e ex y  converge
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