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ABSTRACT 

The paper consists in the use of some logical functions decomposition algorithms with application in the implementa-
tion of classical circuits like SSI, MSI and PLD. The decomposition methods use the Boolean matrix calculation. It is 
calculated the implementation costs emphasizing the most economical solutions. One important aspect of serial de- 
composition is the task of selecting “best candidate” variables for the G function. Decomposition is essentially a pro- 
cess of substituting two or more input variables with a lesser number of new variables. This substitutes results in the 
reduction of the number of rows in the truth table. Hence, we look for variables which are most likely to reduce the nu- 
mber of rows in the truth table as a result of decomposition. Let us consider an input variable purposely avoiding all in- 
ter-relationships among the input variables. The only available parameter to evaluate its activity is the number of “l”s or 
“O”s that it has in the truth table. If the variable has only “1” s or “0” s, it is the “best candidate” for decomposition, as 
it is practically redundant. 
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1. Introduction 

In the implementation of logical functions we are looking 
to optimize some parameters such as the propagation 
time, cost, areas, power, etc. The decomposition problem 
is old, and well understood when the function to be de- 
composed is specified by a truth table, or has one output 
only. However, modern design tools handle functions 
with many outputs and represent them by cubes, for rea- 
sons of efficiency. We develop a comprehensive theory 
of serial decompositions for multiple-output, partially 
specified, Boolean functions. A function  1, , n f x x

 1, , ru

 
has a serial decomposition if it can be expressed as 

s , where  and  1 1, , , , ,rh u u g v v 
 1, ,

 U u
sV v v   are subsets of the set  1, , nX x x   

of input variables, and g and h have fewer inputvariables 
than f. 

It is sometimes the case that a set of Boolean functions 
cannot be made to fit into any single module intended for 
its implementation. The only solution is to decompose 
the problem in such a way that the requirement can be 
met by a network of two or more components each im- 
plementing a part of the functions. The general pro- 

blem can be stated as follows. The set of functions to be 
implemented quires a logic block with N inputs and M 
outputs. The decomposition task is to design a network 
which will implement the function using blocks with a 
maximum of n inputs and m outputs, where n < N or m < 
M. 

(A) Initially, we will consider a decomposition algo-
rithm of logical functions [1]. 

1.1. Given a Boolean function  1 1 0, , ,nf x x x   and 
p Boolean functions denoted by 

  1 1 1 0 0 1 1 0, , , , , , , ,p i i y y y y y y     

1 0, ,p

, it is possi-
ble to decompose the function f depending on 
   ? In other words, there is a function F so that 
   1 0 1 1 0, , ; , , , ,p n i nF z z f x x      , where 
 1 0, ,iY y y   1, ,n i and Z z z   are disjoint 

subsets of the set  1 0, ,nX x x  , that means  

X Y Z   and Y Z   (1.1) (the empty set). 

We will call this proceeding, Type I problem. 
1.2. Given a Boolean function  1 1 0, , ,nf x x x   

there are q functions denoted by 
   0,1 1 1 0q i 0 1 1, , , , , , ,iy y y y y      y  and a 

function F so that 
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   1 0 1 1 0, , ; , , , ,q n i nF z z f x x     
 1 0, ,iY y y   1, ,n i

, where 
 and Z z z 

  2 1 0 1, , 0,1,3,f x x x R

 dec.echiv. 2

 have the same 
meaning as in 1.1. We will call this proceeding, the type 
II problem. 

(B) Matrices related to Boolean functions. The image 
of a logical function [1] 

It defines the image of a logical function the Boolean 
row array that represents the values of this function, or- 
dered by truth table. 

For example,  has the 
following truth table: 

5,7

 

 x  1x  0x  f  

0 0 0 0 1 

1 0 0 1 1 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 0 

7 1 1 1 1 

 
Considering the above, we can write 

11010101f            (1.2) 

We can verify the following properties: 

     
    

1 2 1 2

1 2 1 2

f f f f

f f f

     
      f

        (1.3) 

To a function can be attached a Veitch matrix, for the 
previous case being: 

2 1 0\

1101

0101

x x x

E


  
 

               (1.4) 

2. The Representation of a Boolean Function 
Using Subfunctions. The RJI Matrix 

Let’s consider a function G of two subfunctions f1 and f0 
that depend on the Boolean variables 2 1 0, ,x x x  and on 
the two variables 4 3,x x : 

 4 3 1 0 0 4 3 1 4 3 1 0 4, , ,G x x f f f x x f x x f f x          (2.1) 

After a simple calculation is deduced the image of 
function G. 

0000010111000100G           (2.2) 

We suppose that the images of the two subfunctions 
are: 

1

0

01110100

01010011

f

f

 
 

          (2.3) 

that means: 

1 2 1 1 0

0 2 0 2 1

f x x x x

f x x x x

   

   
           (2.4) 

Starting from the expressions of G, f1 and f0 can be 
calculated: 

 
    

4 3 2 1 0

4 3 1 2 1 0 0 2 1 0

4 3 2 0 4 3 2 1

4 3 2 0 4 3 1 0 4 2

, , , ,

, , , , , , ,

F x x x x x

G x x f x x x f x x x

x x x x x x x x

1x x x x x x x x x x x



       

          

    (2.5) 

The image of function F is calculated below: 

00000000010100111000101100000011F   (2.6) 

The Veitch tables 
4 3 1 0:x x f fE  and 

4 3 2 1 0:x x x x xE  relating to 
the G and F functions are: 

4 3 1 0 4 3 2 1 0\ \

0000 00000000

0101 01010011
,

1100 10001011

0100 00000011

x x f f x x x x x

E E

   
   
     
   
   
   

       (2.7) 

Note that the E  matrix has only four distinct columns 
that are found in E matrix. 

In [1], it demonstrates that for the function F it can be 
attached a pseudo-unitary matrix denoted by RJI in which 
in each column the logic digit 1 corresponds to the E  
column’s order number, therefore: 

2 1 0\

10001000

00000011

00100100

01010000

JI

x x x

R

 


 
 
 




        (2.8) 

In [1] is also demonstrated the relation: 

JIE E R   (—the matrix multiplication)  (2.9) 

Therefore, the decomposition of a function in subfu- 
nctions is reduced to solving the following Boolean equa- 
tions: 

X A B   (2.10) (the type I problem, where the E 
and RJI matrices are known) or A X B   (2.11) (the 
type II problem, where only the B matrix is known, 
B E ).  

Considering that the columns of matrix E' are found in 
matrix E it deduces the matrix A E , and then the ma- 
trix RJI. 

Next, we present the solutions of the equations (2.10) 
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and (2.11), demonstrated in [1]. 
A. The solution of the equation A X B   [1] 
a) Let’s consider X a some matrix. It is valid the 

relation (2.12), [1]. 

AX t B  (tA-the transpose of the matrix A) (2.12)  

b) Let’s consider X a pseudo-unitary matrix. It is valid 
the relation (2.13) [1]. 

A A
X t B t B            (2.13) 

B. The solution of the equation X A B   [1] 
a) Let’s consider A a some matrix. It is assumed [1]: 

AX B t             (2.14) 

b) Let’s consider A a pseudo-unitary matrix. It is 

denoted by c AX B t   and a AX B t  . The suffi- 

cient condition of existence of the solution [1] is: 

  and  c A a A c aX B t X B t X X X        (2.15) 

If c aX X  or c aX X , there is no solution for the 

matrix X. In this case it is trying to solve the following 
equations: 

 
 
 

4 0

1 4 3 1 0

1 4 3 2 1 0

, ,

, , ,

, , , ,

F x x

G x x f f

H x x x x x







 (2.16)  

(the previous solution) or 

 
 
 

4 0

2 4 3 1 0

2 4 3 2 1 0

, ,

, , ,

, , , ,

F x x

G x x f f

H x x x x x







   (2.17)  

(the consequence solution). We will return to these prob-
lems in a future paper. 

3. Examples 

(A) Let’s consider the function defined by 

 
 
4 3 2 1 0

1

, , , ,

0,3,5,6,9,10,12,14,15,16,17,18,19, 21,22,30

F x x x x x

R
(3.1) 

Applying the Veitch-Karnaugh method [2], a minimal 
form is given by the expression: 

 4 3 2 1 0 4 3 2 1 0

3 2 1 0 3 2 1 0 4 3 1 0

4 3 2 0 4 3 2 1 4 3 2

2 1 0 3 2 1 0

, , , ,F x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x

    

           

          

      

  (3.2) 

We define the cost of implementation as the number of 

the inputs in the basic circuits, components [3]. In the 
previous case, by implementing with AND-OR circuits, 
results:    1 5 6 4 2 3 9 44C F        . (It is consi- 

dering that the input variables are provided inverted and 

non-inverted, i.e. ,i ix x .) 

Let’s consider the following possible decomposition: 

  4 3 1 0 4 3 2 1 0, , , , , , ,G x x f f F x x x x x   

where  1 1 2 1 0, ,f f x x x ,  0 0 2 1 0, ,f f x x x . 
For the function F corresponds the following Veitch 

matrix, denoted by E: 

10010110

01101011

11110110

00000010

E

 
 
 
 
 
 

         (3.3) 

Matrix E having four distinct columns, a solution for 
E  is: 

4 3 1 0\

1001

0111

1101

0001

x x f f

E

 
 
  
 
 
 

               (3.4) 

Therefore, the matrix RJI, solution of the equation 

JIE R E  , is: 

10010100

01100000

00001001

00000010

JI E E
R t E t E 

 
 
    

 
 




   (3.5) 

From where we obtain: 

1

0

00001011

01100010

f

f

 

 
            (3.6) 

or after an elementary calculation: 

 1 2 1 0

0 1 0 2 1

f x x x

0f x x x x x

  

    
          (3.7) 

Using E' matrix we obtain: 

1 0 3 1 0 4 3 0

4 3 0 1 4 3

G f f x f f x x f

x x f f x x

       

     
       (3.8) 

with a possible implementation as in Figure 1. 
So, we will have: 

   1 07C f C f 8              (3.9) 

   4 3 2 5 19C G      , so that   34C F  . 
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Figure 1. The implementation of the function F, using sub-
functions. 
 

(B) Implementation using programmable logic devices 
(PLD) 

We will consider a circuit PAL10L8 [4], which has 10 
inputs, 8 outputs and having an AND-OR configuration, 
each NOR having 2 inputs, with the structure illustrated 
in Figure 2. 

Let’s consider the previous function: 
8

0 ii
F m


  , 

where 

0 4 3 2 1 0

1 3 2 1 0

2 3 2 1 0

3 3 2 1 0

4 4 3 1 0

5 4 3 2 0

6 4 3 2 1

7 4 3 2

8 2 1 0

m x x x x x

m x x x x

m x x x x

m x x x x

m x x x x

m x x x x

m x x x x

m x x x

m x x x

    

   

   

   

   

   

   

  

  

      (3.10) 

 

Figure 2. The circuit PAL10L8. 
 

We will use the following algorithm: 

0 0 1

1 0 2

7 6 8

Q m m

Q Q m

Q Q m F

 

 

  


       (3.11) 

Therefore, 1i i iQ Q m 1    with , 1 0Q m 
0 7i  . 

Will be needed: 9—product terms ,   0 8m m
7 — iQ  terms  0 6i  , 
so it will be used 16 product terms from maximum 20. 
But the number of inputs is insufficient (see Figure 3). 

Classic, we should also use two circuits (PAL10L8), or 
a single circuit with greater capacity. 

Let go back to the same function that uses the 
subfunctions f1, f0, which have the expressions: 

1 2 1 2 0

0 1 0 2 1

f x x x x

0f x x x x x

   

    
 

and 

 
 
4 3 2 1 0

4 3 1 0

1 0 3 1 0 1 3 0

4 3 0 1 4 3

, , , ,

, , ,

F x x x x x

G x x f f

f f x f f x x f

x x f f x x



       

     

(3.12) 

Therefore, after a preliminary evaluation we have: 4 
product terms  1 0,f f  and 5 product terms for function 
G. 

Let’s consider    0 1 2 3 4G a a a a a     , where ai 
are the terms of the decomposed function. A PAL im-
plementation is like in Figures 3 and 4. 
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Figure 3. PAL implementation. 
 

 

Figure 4. A possible implementation of PAL10L8 circuit. 
 

A possible implementation would be (see Figure 4): 

4. Decomposition into EMB Blocks 

The single step of the functional decomposition replaces 
function F with two subfunctions [5]. This process is 
recursively applied to both the G and H blocks until a 
network is constructed where each block can be directly 
implemented in single logic cell of target FPGA archi-
tecture. 

Logic cell can implement any function of limited input 
variables (typically 4 or 5). Thus the main effort of logic 
synthesis methods based on decomposition is to find 
such partition of input variables into free set and bound 
set that allows creating decomposition with block G not 

exceeding the size of logic cell. Various methods are 
used, including exhaustive search since the size of logic 
cell is small. It should be noted that the main constraint is 
the number of inputs to block G and not the number of 
outputs. This is because block G with more outputs than 
in logic cell can be implemented with use of few logic 
cells used in parallel. Since EMB blocks can be config-
ured to work as logic cell of many different sizes [6], 
approach known from methods targeted for logic cells is 
not efficient. The main reason is that the method must 
check decomposition for many different sizes of block G. 
The second factor is that in case of EMB the efficiency 
of utilization of these blocks depends on carefully se-
lected size of block G. For example M512 RAM block of 
Stratix device can be configured among others as 8 input 
and 2 output logic cell or 7 input and 4 output logic cell. 
Let assume that in decomposition search following solu-
tions are possible: block G with 8 inputs and 1 output or 
block G with 7 inputs and 3 outputs. From the EMB 
utilization point of view the second solution is better, 
since it utilizes 384 bits of total 512 bits available, while 
the first solution utilizes only 256 bits. R-admissibility is 
used to evaluate serial decomposition possibilities for 
different sizes of G block according to possible configu-
ration of EMB blocks. Since EMB can be configured as a 
block of many different sizes the possible solution space 
is large. Using Property 1 the search can be drastically 
reduced. This will be explained in the following exam-
ple. 

Example.  
R-admissibility application to serial decomposition 

evaluation. For function from Example 1 we have that 
the admissibility of single input variables 1 6, ,x x  is 
accordingly 4, 4, 4, 3, 3 and 4. This means that only for 

 4U x ,  1 2 3 5 6, , , ,V x x x x x  and U ,  5x
 , ,x x x x1 2 3 4 6  decomposition with 2 outputs 

from block G may exist. 
, ,V x

When considering solutions with 4 inputs to block G, 
according to Property 1, [7,8] only solution with 

 4 5,U x x ,  1 2 3 6, , ,V x x x x  should be evaluated. 
We have: 

 
              
      

4 5

4 5 4 5 2

  or 4 8 ; 1 6 ; 2 3 ; 5 7

2   or 2 log 2 3

x x F

x x x x Fr e

  

    

 

      
 

(4.1) 

This means that for such variable partitioning decom-
position may exist with block G having 1 output. With 
this approach to serial decomposition, there is no differ-
ence between disjoint and non-disjoint decomposition in 
their calculation. Particularly, it can be concluded that for 
finding blanket G we can simply apply the method of 
calculating compatible classes of βV blocks [7] which 
was recently improved in [8]. 
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5. Conclusions 

The paper represents the “rediscovery” of some decom- 
position algorithms of Boolean logic functions, using sub- 
functions [1]. 

After a brief exposure of the decomposition methods 
of Boolean logical functions, the authors, through the 
proposed example, shows the reduction of the implemen- 
tation cost using standard logical circuits. 

The authors show that when using PLD circuits, the 
use of Boolean functions decomposition method reduces 
the number of circuits necessary for the implementation 
(see PAL10L8). 

Balanced decomposition proved to be very useful in 
implementation of combinational functions using logic 
cell resources of FPGA architectures. However, results 
presented in this paper show that functional decomposi- 
tion can be efficiently and effectively applied also to im- 
plement digital systems in embedded memory blocks. 
Application of r-admissibility concept makes possible fast 
evaluation of decompositions for different sizes of block 
G. This allows selecting best possible decomposition stra- 
tegy. 

The paper showed that the use of Boolean functions 
decomposition method reduces the number of circuits ne- 
cessary for the implementation. However, this substitu- 
tion process reduces the circuits cost by increasing the 
circuit complexity, which also enhances the likelihood of 
errors in the circuit design. 

Balanced decomposition proved to be very useful in 
implementation of combinational functions using logic 

cell resources of FPGA architectures. However, results 
presented in this paper show that functional decomposi-
tion can be efficiently and effectively applied also to im-
plement digital systems in embedded memory blocks. 
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