o535 Scientific
#3% Research

Journal of Applied Mathematics and Physics, 2013, 1, 56-62
http://dx.doi.org/10.4236/jamp.2013.14011 Published Online October 2013 (http://www.scirp.org/journal/jamp)

EPFIA: Extensible P2P Flows Identification Architecture

Bo Xu, Bing Li, Chao Hu, Guomin Zhang
Institute of Command Information System PLA University of Science and Technology, Nanjing, China
Email: xubo820@163.com, Libing781@163.com, Huchao1007@163.com, zhang gmwn@163.com

Received August 2013

ABSTRACT

The fundament of managing P2P traffic is identifying various P2P flows accurately. Although many P2P flows identi-
fication methods are presented nowadays, there are no ideas for either integrating these independent methods together
or being extended fast to support new method. In this work, an extensible P2P flows identification architecture (EPFIA
for short) is proposed. In order to identify many specific P2P flows, EPFIA uses many different identification methods
simultaneously, and obtains the highest efficiency via adjusting their identification sequence. An online mechanism of
renewing identification methods is designed, which can extend new identification method without compiling the whole
program. Applying policy mechanism, identification methods can be updated, started and halted remotely. The experi-
ment results of running the prototype system show us that EPFIA could effectively promote the performance of system

and support online renew P2P identification methods and manage them remotely.

Keywords: P2P; Flow Identification; Architecture; Policy Schedule

1. Introduction

P2P technology is one of the most exciting areas of Inter-
net, which uses the idle resources in network edge, and
makes Internet computing pattern from centralized to
edge. Recent studies show that more than 60% of Internet
traffic is attributed to P2P applications, of which BitTor-
rent and eDonkey traffic is of 80% of the total P2P traffic
[1].

In this paper we define flow as bidirectional flow de-
termined by S-tuple (source and destination address,
source and destination port, and transport layer protocol)
and 64 seconds timeout is adopted [2]. Generally P2P
traffic identification methods can be divided into 4 types:
transport layer port based identification method (fyor for
short), application layer signature based identification
method (fg for short), transport layer behavior based heu-
ristic identification method (fyepavior for short), and ma-
chine learning based identification method (fy for short).
After the invalidation of fye [3], researchers pay more
attention to fg,, which uses the packet payload signature
to identify the application accurately [3-6]. Tpenavior USES
flow attributes, statistics and behavior feature to identify
P2P application[7,8]. fy. constructs classifier with the
flow characteristics of different protocol, and then use the
classifier to identify the applications of unknown flows
[9,10]. Besides, there are also crawlers based identifica-
tion methods, etc. As the development of new P2P appli-
cations, new identification methods will keep on emerg-
ing. Thus, current P2P flow identification methods have

Copyright © 2013 SciRes.

the following problems: firstly, identifying one kind of
P2P applications need one kind of device, this will be too
hard to deploy system that can identify many kinds of
P2P applications; secondly, the structure of identification
system is inflexible, and it needs recompile the system
software (even redesign system architecture) to extend or
modify some new identification methods; thirdly, updat-
ing or maintaining identification system is very difficult.

We propose EPFIA to assemble many P2P traffic iden-
tification methods. EPFIA has the following features:
improving identification efficiency via optimizing the
sequence of identifying different P2P applications; de-
signing a mechanism to update identification methods
online, which can extend the P2P flow identification
function without recompile the software; using policy
mechanism, the update, start, and stop identification me-
thod can be carried out remotely.

Moore and Papagiannaki used port numbers and appli-
cation layer payload to identify P2P flow [6]. They sorted
the nine identification methods based on the ascending
order of implementation complexity so as to identify the
application of each flow, and pay no attention to the im-
pact of the component of traffic on identification system
performance. Most of current works focus on P2P appli-
cation features, and studied the accuracy and efficiency of
identification methods, they cannot extend new identifica-
tion method under existing architecture, and cannot iden-
tify unknown traffic.

The remainder of this paper is organized as follows:
Section 2 proposes the architecture of EPFIA and dis-

JAMP

B. XU

cusses the impact of identification methods running se-
quence on system performance. Section 3 presents an
online identification methods updating mechanism. Sec-
tion 4 studies the method of using policy mechanism to
maintain and update identification system. Section 5 va-
lidates the feasibility of EPFIA and tests its performance.
Finally, Section 6 summarizes the whole paper.

2. Design of EPFIA
2.1. Design Principle

The main work process of EPFIA is as follows. Firstly,
the packet capturer module is deployed at the bottom of
EPFIA, which captures packets from the physical link,
and filters packets that do not use TCP/UDP (Since P2P
application usually using TCP/UDP transport protocol),
and then submits packets to system identification modules
in uniform format and style. In the paper, we use identifi-
cation module denote the concrete implement of identifi-
cation method. Using the uniform format so that it has
packet information needed by any identification module,
and using the uniform style because some identification
methods only need one packet in a flow while others need
a sequence of successive packets. Besides, the uniform
format also makes all identification modules can work
with the same packet capturer module. Since capturing
packets from physical link consumes a large amount of
system resources, it is of great important to use a uniform
packet capturer module.

EPFIA handles packet based on flow state, which can
be classified into two kinds: known and unknown. Known
means a flow belongs to a kind of P2P or non-P2P appli-
cation that has been identified, and it is of no need to
identify it any more. While unknown means we need the
identification module to handle the packet. Suppose A is
the packet information, and its format is shown in Figure
1.

The flow identifier Agowip is calculated using function
CreateHash based on the first 5 field in Figure 1, which
can be used to determine which flow the packet belongs
to, and then determine whether the packet belongs to un-
known.

Finally, the unknown packet should be handled by
many P2P identification modules, and change the flow
state to be known. During this process, we can use fpor to
identify non-P2P flow based on Agcporr and Aggpor, and
use fg, to identify P2P flow that has application layer sig-

source IP address | source port | destination IP address | destination port

srcIP srcPort dstlP dstPort
transport protocol packet size arrive time flow identifier
proto size time flowID

application layer payload: payload

Figure 1. Format of packet information.

Copyright © 2013 SciRes.

ET AL. 57

nature. For other unknown flows, we should design cor-

responding identification method to identify them.

To achieve the goal of identifying many P2P applica-
tions in a system, we need to run many P2P identification
modules simultaneously, update these modules frequently,
and manage these modules remotely. As an extensible
architecture for identifying P2P applications, we should
focus on the following questions when designing EPFIA:
1. Whether these P2P flow identification modules should

be run randomly or in some fixed sequence? If there
are some relationships between efficiency and identi-
fication sequence, what are the relationships?

2. Since new identification methods keep on emerging,
can we extend some new identification methods con-
veniently without recompile the existing program?

3. If we want to remotely update, start or stop a P2P
identification module running at somewhere in the
network, is there a good implementation mechanism?

2.2. Best Running Sequence of Identification
Modules

EPFIA should call many specific identification modules
so as to implement the identification of unknown flow.
By changing the running sequence of many different
identification modules, we can improve the whole work-
ing efficiency.

Suppose p(x) represents the computation cost of iden-
tification module x when identifying a flow, and fpo.¢ cost
is p(X1), Tsig cost is p(X2), Thehavior COSt is p(X3), fmL cost is
p(x4). Based on the identification principle we know the
following inequation hold on:

P(x1) < p(x2) <p(x3) <Pp(X4) (1)

During time T, if there are F flows, and the percentage
of flows that identified by identification module x is f,,
we give the following definitions:

Definition 1: Identification Module Running Sequence
(Identification Sequence in short). Identification Se-
quence represents the set of identification modules and
their running sequence. If we use R, to represent the
Identification Sequence of n different modules, then
R={r;—...—r—...—r,}, in which r; represents the ith
running modules.

Definition 2: System Identification Cost (Cost in
short): The cost of identification sequence R, when iden-
tifying F flows in time T. We use POWER(R,))t represent
Cost.

Definition 3: Priority Relationship P of Identification
Modules (Priority for short). For any two identification
modules in R,, P represents the running sequence that
makes the Cost smaller. Suppose the Identification Se-
quence

R={r—...ox—...oy—...—r},

R, ={r/—...oy—...>x—..—>r,},

JAMP

58 B.XU ET AL.

if and only if POWER(R,)1 < POWER(R,)r, we say y
and x have Priority P, and note it as yPx.

Definition 4: Running Efficiency of Identification
Module x (Running Efficiency for short). The ratio be-
tween the number of flows identified by x and the com-
putation cost of x in time T is defined as Running Effi-
ciency of x, which is represented as E(x) = f,*F/p(x).

Suppose F flows belong to m applications, and there
are n identification modules that can identify each flow
accurately. These modules have Priority P and we can
adjust their running sequence randomly, then we have the
following lemma.

Lemma 1: There is a best Identification Sequence R,
that makes the POWER(R,)r minimum.

Proof: For the n identification modules, there is a se-
quence R, that VxVy(x,y R, —>xPy). If we ex-
change any two identification modules in R, and form
R”n, from definition 3 we know POWER(R”H)T >
POWER(R,)r. That is, there is a best Identification
Sequence R,, in which any two identification modules
have Priority P, so that POWER(R,)t is minimized.

Theorem 1: Identification modules that have high
Running Efficiency have high Priority, that is
VxVy(x,ye R AE(x)>E(y)— xPy).

Proof: Suppose E(x) < E(y), x and y have the Priority
P. Since the Running Efficiency of y is higher than that
of x, by running y first we can reduce the number of un-
known flows, and thus reduce the system identification
cost, which conflicts with the assumption that the Prior-
ity of x is higher than that of y. Thus, when running more
than one identification module, we should adjust their
running sequence according to their Running Efficiency
so as to reduce Cost.

2.3. Architecture of EPFIA

Suppose p(x;) = myp(X1), p(X3) = mzp(x,), p(X4) = mgp(X,),
then

I <mp <m3 < my (2)

Non-P2P traffic accounts for about 30% of the total
Internet traffic, and most of them use fixed ports to
communicate with each other [1], thus we can use port
number to identify them. The traffic of BitTorrent and
eDonkey takes about 80% of total P2P traffic, and more
than 73% and 83% of them do not encrypt their payload,
thus we can use application layer signature to identify
them. Other types of P2P application flow have no port
and application layer payload feature, and thus we should
design specific identification methods for them. Take the
former discussion into consideration, the efficiency of
foort 18 E(x1) = 0.3*F/ p(x,), and the efficiency of fgg is

E(x) = 0.41*F/p(xo)= LA
mZ X p(x1)

and the efficiency of

Copyright © 2013 SciRes.

Toenavior + TamL is E(x3+ x4)= 0.29x F N 0.29x F .

p(x)+p(x,) myx p(x)
Each identification module identifies the application of
flow according to A, and we can use the number of
packet to estimate the computation cost of a special iden-
tification module. Based on the principle of different
identification methods, we know m, > m; > 3, and thus

E(x1) > E(x2) > E(x3 + x4) 3

As a result, we can get the best efficiency by using the
following Identification Sequence: firstly using fyor to
identify non-P2P flows, and then using fg, to identify
un-encrypted P2P flows, finally using other special me-
thods to identify the remainder P2P flows.

Observed that the identification is based on flow, and
as the process of identification, the percentage of identi-
fied flows will keep on increase. If there are M packets in
a new flow f,.,, and an identification module can identify
the application of f, based on the first n packets, thus
the remainder M-n packets will need not to be identified
any more. Generally M >> n, we can increase the identi-
fication efficiency by identifying which flow the M-n
packets belong to. Thus we design a flow differentiation
module, which identifies whether a coming packet be-
longs to a known or an unknown flow, and we only han-
dle packets that belong to unknown flows. Experiment
results show that this method can filter about 98% pack-
ets, and thus decreasing the identification cost effective-
ly.

Based on the upper discussion, we designed an ex-
tensible P2P flow identification architecture, which is
shown in Figure 2.

EPFIA uses flow identifier Agowip as the address of
Hash-Table item, and this address is also used as the first
address of storing active flow information flow-key.
flow-key = {source IP address srcIP, source port srcPort,
destination IP address dstIP, destination port dstPort,

Analysig system Policy system

Communication module }4 - /|
/i
Py s
Identification Sequence R, F - — // !
VA
N " " " Ql y |
Signature identification module }4 -—— 8 Y *'
S Config
R - - = >
Port identification module ‘4 -—— & file
‘ Flow differentiation module ‘4 - —
Hash
‘ Packet capturer F- —— table
Packet traffic —<——»

100/1000Mb/s Network link

Figure 2. Extensible P2P flow identification architecture.

JAMP

B. XU

transport protocol Proto, flow state State }, in which
State € {—1, 0, P2P_ID }, and “—1” represents unknown
flow, “0” represents non-P2P flow, and “P2P ID”
represents the P2P application code defined by us. In
addition, each flow has a counter, which is used to record
the number of packets identified for unknown flows.
When counter is larger than a threshold @, we change the
state of that corresponding flow to be a non-P2P flow.
We also use [PORT]qq to represent standard network
service ports, and use [SIG]pp to represent the set of
specific P2P application signatures.

3. Identification Program Online Updating
Mechanism

In order to add new identification module, maintain and
update current module and adjust the running sequence
of different modules conveniently, EPFIA uses the form
of plug-in to manage different identification modules.
EPFIA stores all identification modules in a plug-in da-
tabase, and stores the running sequence R, in a policy
database. Figure 3 shows the format of plug-in stored in
policy database.

In which “Priority” is a number that defines the plug-
in’s running sequence; and “P2P application code” de-
notes the P2P application that this plug-in can identify;
and controller uses “Store path” and “Plug-in name” to
locate the plug-in, and use “Main control function” to run
this identification module. Figure 4 shows the online
updating mechanism of EPFIA.

During the initialization phase, the main control mod-
ule accesses the policy database to get R,,, and then stores
all plug-in information in the memory using list structure,
which is sorted by priority. During the identification
phase, the controller calls different identification mod-
ules to handle each packet according to the priority se-
quence.

EPFIA updates identification module by maintaining
the plug-in database, and adds new identification module

Plug-in name | Store path | Main control function | P2P application code | Priority
g p

Figure 3. Format of plug-in stored in policy database.

...... ..-----.-----.----.
A 4 _ H
Identification Sequence R, I(--- 5 | Plug-in Update
Q database
Signature identification < 2
module 2
% Policy Update
Port identification module l(--- > database [
nnnnnn T \/\

Figure 4. Online updating mechanism of EPFIA.

Copyright © 2013 SciRes.

ET AL 59

as well as adjusts the running sequence of different iden-
tification modules by handling the list, thus it avoids re-
compiling the program to implements such functions.

4. Policy Mechanism

EPFIA uses policy mechanism to support updating,
starting and stopping identification modules remotely.
The policy is divided into two kinds: manually and au-
tomatically. The manual policies are setup by adminis-
trator, which include identification modules running se-
quence R, and parameters; automatic policies are gener-
ated using policy control language by EPFIA during the
system running time, and they optimize the system effi-
ciency by adjusting R, dynamically. Figure 5 shows the
EPFIA policy mechanism.

In EPFIA, the controller provides two access interfac-
es: one is the plug-in database access interface FAP, and
the other is the policy database access interface PAP.
Administrators can access FAP and PAP through control
center. The controller stores the received plug-in in the
plug-in database, and stores the received policy in the
policy database, and then updates R, according to the
new policy.

According to Lemma 1 and Theorem 1, the running
sequence of P2P flow identification modules can affect
the efficiency of EPFIA. Though administrators can se-
tup the running sequence of identification modules, it is
very difficult to estimate the Running Efficiency of each
identification module accurately and adjust their Priority
immediately. EPFIA uses automatic policy and adjusts
the module Priority dynamically. EPFIA determines the
relative computation cost m, of program x according to
the number of packets x needs to handle. F(x)r represents
the number of flows x identified during time T, and we
use E(x)r = F(x)1/my to represent the efficiency of x dur-
ing time T. The automatic control policy computes the
current identification efficiency E(X)eurent Of X based on
E(x)r and the old identification efficiency E(X),q.

E(®)eurren = (1 = &) B(Or + & E(X)ota “

In Equation (4), € is a decimal fraction between 0 and
1, which is used to control the sensitivity of efficiency

...... Plug-in
| Identification sequence R, database

Automatic policy \ s e

\ DS Plug-in 8

Signature identification |, - /% ontroller Policy o

module / 3

a

) f K .

/ -
Port identification module F dPOII;Cy
...... atabase

Figure 5. EPFIA policy mechanism.

JAMP

60 B. XU

variation. The automatic control policy calculates the
current identification efficiency E(X;)curene 0f module x;(1
< I < n) periodically, and determines the Priority ac-
cording to E(X;j)current. Our experiment results show that
the automatic control policy in EPFIA can adapt to the
network traffic variation and increase the whole identifi-
cation efficiency.

5. Experiments and Analysis

To validate the upper analysis, we developed the proto-
type system of EPFIA named P2P-Analyzer, which in-
cludes two P2P flow identification programs: one for
UDP based Skype voice flow (Skype Detection, SD),
and the other for PPLive video flow (PPLive Detection,
PD). We test the performance of P2P-Analyzer for a long
while in the campus network of PLAUST, and following
is the typical experiment result and its analysis.

5.1. Experiment Environment and Method

The experiment environment of P2P-Analyzer is shown
in Figure 6. The campus network connects to the CER-
NET through 100 Mbps fiber, and the experimental hosts
have Intel Core2 CPU with 2.33 GHz frequency, and 2
GB memory. In the campus network we install Skype,
PPLive and BitTorrent client, which run randomly during
the experiment. The running information such as com-
munication begin time, number of communications and
download file size are also recorded manually. The
Tepdump is running at the mirror port of the switch so as
to capture the packet information with 50 bytes applica-
tion layer payload. The P2P-Analyzer is also run to iden-
tify P2P flow automatically, and send the identified P2P
flow information flow-keys to P2P-Looker to handle.
P2P-Looker is the software that can analyze multi-type
P2P flow information, so we can decrease the influence
of analyzing on P2P-Analyzer performance. Besides, we
also setup a control center so as to manage P2P-Analyzer
remotely.

In order to compare and analyze the performance of

Tepdump

P2P-Looker l P2P-Analyzer
Hub
& % D

Port mirror

Switch

Skype PPLive BitTorrent,

Campus network

Figure 6. Experiment environment of P2P-Analyzer.

Copyright © 2013 SciRes.

ET AL.

P2P-Analyzer, we firstly analyze the P2P flow informa-
tion manually using data captured by Tcpdump, and use
this result as the ground truth. Then compare it with the
results identified by P2P-Analyzer. The counter is set in
each module of P2P-Analyzer to record packets handled.
For every 5 minutes the CPU usage of each module is
calculated.

5.2. Experiment Results and Analysis

We analyze two typical experiment results carried out at
different time. The packet information collected by
Tepdump is stored in two trace files, and the manual
analysis result is shown in Table 1. Others include HTTP,
FTP, DNS, Flash, FTP, ICMP, IMAP, MSN, POP, QQ,
SMTP as well as unknown traffic, of which HTTP and
Flash is more than 85%.

In the first experiment, SD runs in the first two hours,
and PD is called by policy in the last two hours. We se-
tup ® = 10 (the maximum number of packet that SD
needs to identify Skype). The counter is outputted every
hour so as to examine the performance of EPFIA. The
result is shown in Table 2, from which we can see that
the packet capturer filters 1% non TCP/UDP traffic, and
the flow differentiation module filters 98% of the total
packet, which decrease the load of identification modules
dramatically. The number of unknown packet is de-
creased after calling PD. In addition, PD can identify
PPLive flow before the number of packet reaches @, and
thus decreases the load of other identification modules
further.

Figure 7 shows the CPU usage during the first expe-
riment. In the first two hours when running SD, the av-
erage CPU usage is 11.3%, and in the last two hours
when running SD and PD together, the average CPU
usage is 10.1%. From this we see that when adding new
module, the usage of CPU can decrease because of the
Running Efficiency of identification modules.

In the second experiment, we setup the relative com-
putation load of PD and SD according to the number of

100

O~ -
T T T B
T - o B
60~ — -
5O~ -
BOF - oo B

CPU Usage (%)

0~ -

e ——— .

1 6 11 16 21 26 31 36 41 4648
Figure 7. CPU usage information during the first experiment.

JAMP

B.XU ET AL 61

Table 1. Manual analysis result of two traces.

Flows Packets
Traces Start Dur
Total Skype BT PPLive Others Total Skype BT PPLive Others
T1 D(;lgroz(()) 4h 99.3K 03K 51K 30K 18K 89M 6.2M 48.6M 20.2M 13.9M
T2 l\l/Ijr(fOl 5h 129.7K 0.7K 62K 44K 23K 113.6M 13.7M 51.7M 29.8M 18.3M
Table 2. Number of packets disposed by different modules in P2P-analyzer.
First two hours Last two hours
Module name packet ercentage packet ercentage
number P 9 number P 9
Packet capturer 43 M - 46 M -
Flow differentiation module 42.6 M 99% 45.6 M 99.1%
Port identification module 379K 0.86% 215K 0.46%
Signature identification module 371K 0.84% 207K 0.44%
PPLive_Detection(PD) - - 185K 0.39%
Skype Detection(SD) 351K 0.8% 170K 0.36%
Unknown packets 350 K 0.79% 169 K 0.35%

packets needed to identify a flow. That is mpp = 4, mgp =
10. Using Equation (4) to calculate the identification ef-
ficiency of each module, and set € = 0.5, E (PD)yq =
E(SD),g = 0. We use policy mechanism to call SD and
PD one after the other, so as to test the impact of auto-
matic policy on system efficiency.

By analyzing the traffic data further, we see that there
are 174 Skype flows in the first hour, and 11264 PPLive
flows. According to automatic policy mechanism, in the
second hour, the sequence of SD and PD should be ad-
justed. Figure 8 shows the number of packets SD and PD
handled per hour, which includes Skype, PPLive and
other unknown application packets. From Figure 8 we
can see that in the first hour the number of packets han-
dled by SD is a little larger than that of PD. This pheno-
menon demonstrates that by adjusting the running se-
quence of SD and PD according to their identification
efficiency, the number of packets handled by SD de-
creased dramatically, and the identification efficiency of
P2P-Analyzer increased.

6. Conclusion

Taking the problems of identifying large number of P2P
flows into consideration, in this paper we propose an
extensible P2P flows identification architecture (EPFIA).
In order to obtain the highest efficiency of EPFIA, many
identification methods should be arranged following the
optimizing sequence. An online mechanism of renewing
identification methods is designed, which can extend
new P2P identification method without recompiling the

Copyright © 2013 SciRes.

[ISkype Detection
90 R .
I PPLive Detection

60

501 - - Rl = -
401 | ___ S -
30

20

10 - - - -
¢ 2 3

i
4

Packets(K)

Time (hour)

Figure 8. Number of packets SD and PD handled per hour.

whole program. Applying policy mechanism, identifica-
tion modules can be updated, started and halted with
policy remotely. The experiment results of running the
prototype system show us that EPFIA could effectively
promote the performance of system and support online
renew P2P identification methods and manage them re-
motely. In the further works, we will focus on deploying
the system in large scale, and develop application sys-
tems based on P2P traffic analysis.

REFERENCES

[1] H. Schulze and K. Mochalski, “Internet Study 2008/2009,”
Technical Report, Ipoque GmbH, 2009.

[2] K. C. Clafty, “Internet Traffic Characterization,” Univer-
sity of California, San Diego, 1994.

[3] T. Karagiannis and A. Broido, “Is P2P Dying or Just

JAMP

62

B. XU

Hiding?” IEEE GLOBECOM 2004, Dallas, Texas, 29
November-3 December 2004, pp. 1532-1538.

S. Sen and O. Spatscheck, “Accurate, Scalable In-Network
Identification of P2P Traffic Using Application Signa-

tures,” WWW2005, New York, USA, 17-22 May 2004, pp.

512-521.

M. Roughan and S. Sen, “Class-of-Service Mapping for
QoS: A Statistical Signature-Based Approach to IP Traf-
fic Classification,” IMC 2004, Taormina, Italy, 25-27
October 2004, pp. 135-148.

A. Moore and K. Papagiannaki, “Toward the Accurate
Identification of Network Applications,” PAM 2005,
Boston, USA, 31 March-1 April 2005.

T. Karagiannis and A. Broido, “Transport Layer Identifi-

Copyright © 2013 SciRes.

ET AL.

[10]

cation of P2P Traffic,” In IMC’04, Taormina, Italy, 25-27
October 2004, 14p.

T. Karagiannis and K. Papagiannaki, “BLINK: Multilevel
Traffic Classification in the Dark,” SIGCOMM’05, Phil-
adelphia, USA, 21-26 August 2005, 12p.

L. Bernaille and R. Teixeira, “Early Application Identifi-
cation,” The 2nd ADETTI/ISCTE CoNEXT Conference,
Lisboa, Portugal, December 2006.

M. Crotti and M. Dusi, “Traffic Classification through
Simple Statistical Fingerprinting,” SIGCOMM Computer
Communication Review, Vol. 37, No. 1, 2007, pp. 5-16.
http://dx.doi.org/10.1145/1198255.1198257

JAMP

