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ABSTRACT 
In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expecta-
tion efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis and research. 
Through analyzing the study of 30 groups of 0-1 knapsack problem from discrete coefficient of the data, we can find 
that dynamic expectation model can solve the following two types of knapsack problem. Compared to artificial glow-
worm swam algorithm, the convergence speed of this algorithm is ten times as fast as that of artificial glowworm swam 
algorithm, and the storage space of this algorithm is one quarter that of artificial glowworm swam algorithm. To sum up, 
it can be widely used in practical problems. 
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1. Introduction 
In recent years, many experts and scholars have carried 
on the thorough research. These existing methods include: 
greedy algorithm, bound algorithm, backtracking algo-
rithm, dynamic programming algorithm, e-approximation 
algorithm [1-4] and improved swarm algorithm, ant co-
lony algorithm, fireflies swarm algorithm [5-7]. These 
algorithms are based on mathematical principles, since 
different algorithm uses different mathematical model, 
the complexity and the convergence speed of these algo-
rithms are different. Thus, it has great significance to 
improve the convergence speed. Now 0-1 knapsack 
problem can be described with more details as follows: 

For 0-1 knapsack problem, the object is loaded into 
backpack or not. The value determines whether the ob-
ject i is in the backpack or not. If 1ix = , the object is in 
the backpack, otherwise, it is not. There are the following 
constraint equation and objective function through analy-
sis of 0-1 knapsack problem. 
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Among them, M is deadweight of backpack, iw  is 
weight of object, and ic  is price of object. The ultimate 
goal is to look for the solution vector 1 2( , , , )nX x x x=   
which meets constraint Equation (1) and makes the ob-

jective function value reach its maximum. 

2. Decision Algorithm 
2.1. Ideas Origin of Algorithm  
In the general algorithm for solving the knapsack prob-
lem, these objects are arranged by their price-perfor- 
mance ratio in descending order. If these objects of high-
er price-performance ratio are loaded into the backpack 
in advance, the residual deadweight of backpack can 
converge to 0 quickly and the value of objects loaded 
into backpack can achieve maximum as far as possible, 
which is the basic idea of greedy algorithm. Solution 
achieved by greedy algorithm is optimal in local situation, 
but not optimal in global situation. It suggests that when 
the number of objects loaded into backpack in a certain 
range—before the residual deadweight of backpack is 
0—the solution is optimal in local backpack situation. 
This paper continues using greedy strategy. 

Expectation efficiency [8] has a wide range of applica-
tions in commodity economy and stock exchange, it 
means that when the event occurs normally, we can ex-
pect to get revenue efficiencies. In the process of expec-
tation, deadweight of backpack, the number of objects, 
weight of individual object, price of individual object and 
price-performance ratio of individual object all involve in 
arithmetic. For the same 0-1 knapsack problem, if any of 
four factors remain unchanged and the other factor 
changes, all these objects that will be loaded backpack 
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and the optimal solution basically change. An abstract 
expectation model which is closely related into 5 factors 
is given through the above analysis, as follows: 

( , , , , ) , , , ,f M n w c r M n w c r∞  (3) 

Those objects of higher price-performance ratio are 
loaded into backpack in advance, the others do expecta-
tion efficiency operation according to the model (3). 
These objects that have higher expectation efficiency 
value are loaded backpack in advance, and the lower is 
abandoned or delayed. The embodiment of model (3) is 
the key link, it decides directly the quality of algorithm. 

Algorithm ideas as follows: 
(a) Greedy algorithm is very good and can attain the 

optimal solution in solving the local problem. These first 
n/2 objects are loaded into backpack in advance, if the 
total weight of n/2 objects is beyond M, first n/4 objects 
are selected to load into backpack in advance, according 
to dichotomy like this way until the total weight of n/2i (i 
is the frequency of dichotomy) objects is no more than M. 
And then, for these remaining objects, calculate the ex-
pectation efficiency. 

(b) After using greedy strategy, the residual dead-
weight of backpack and the total value of objects loaded 
into backpack need to focus on. The purpose of expecta-
tion is to ensure the residual deadweight of backpack can 
converge to 0 quickly and the value of objects loaded 
backpack reach the bigger as much as possible. 

2.2. Establishment of Mathematical Model 
It is necessary to balance the five key factors when 
modifying this model. Referred to the theory of median 
and average, we design a mathematical model and 
show in Formula (4): 
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Among them, ( )optp i  is equal everywhere, so model 
(4) is a static model. If model (4) is taken as a dynamic 
expectation efficiency model, ( )optp i can’t be set equal 
everywhere. After modifying model (4), a dynamic mod-
el is given in Formula (5): 
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Some analyses are provided to illustrate model (5) in 

next three respects. 
(a) Ending condition of dynamic model. Generally, 

when 
/2

1 1
1 /2 1

0
n i

j j j
j j n

M w w x
  

− −
= = +  

− − =∑ ∑  

the residual deadweight of backpack is 0, namely, it is 
ending condition of dynamic. 

(b) Ending condition of algorithm. For these existing 
( , , , , )if M n w c r , arrange them by their values in des-

cending order, and then to accumulate the price of the 
corresponding object one by one, until the backpack fails 
to hold on one more object. 

(c) Special rule of algorithm. The average of value 
according to greedy expectation is always greater than 
the price of current object, in order to avoid the pheno-
menon, the algorithm has a rule: the symbol of absolute 
value should be added to model (5) in case the expecta-
tion efficiency values of some objects are minus. These 
objects, whose expectation efficiency values are minus 
should be removed in advance. Namely, their corres-
ponding prices don’t accumulate any more. 

2.3. Dispersion Coefficient 
Given these individual data, they are 1 2, , ny y y , their 
dispersion coefficient is shown in Formula (6). 
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In this paper, we compute three kinds of dispersion 
coefficient by Formula (6). Among them, vσ  is disper-
sion coefficient, n  is the number of objects. 

3. Description and Analysis of Algorithm 
An optimization algorithm of 0-1 knapsack based on 
dynamic expectation efficiency can be descripted as fol-
lows: 

Step 1: Initially, the residual deadweight of backpack 
is M and is 0. 

Step 2: Arrange these objects by their price-perfor- 
mance ratio in descending order. 

Step 3: Modify the residual deadweight of backpack 
and optp according to algorithm idea (a). 

Step 4: Calculate ( , , , , )if M n w c r  of the correspond-
ing object, if the condition of model 5 (c) is satisfied, 

0ix = ; otherwise, to step 5. 
Step 5: If the condition of model 5 (a) is satisfied, to 

step 6; otherwise, to step 4. 
Step 6: If the condition of model 5 (b) is satisfied, to 

step 7; otherwise, to continue loading the object which 
has the higher ( , , , , )if M n w c r . 
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Step 7: Accumulate the price of the corresponding 
object, and then modify the residual deadweight of 
backpack and optp . 

Step 8: End the algorithm. 
The flowchart of DEE algorithm is shown in Figure 1. 

4. Simulation Experiment 
We present simulation experiments by writing C++ pro-
grams with VC6.0, and the experimental environment is 
Windows7 of Intel Core2 Q8400 2.66GHZ CPU, 4.00GB 
Memory. Two simulation experiments are given, one is 
individual experiment of algorithm and analyzes optimal 
solution by three kinds of dispersion coefficient, and the 
other is comparison experiment with the artificial glow-
worm swarm optimization (GSO). 

4.1. Individual Experiment 
Given examples A and B, two kinds of dispersion coeffi-
cient are in the same level with example A, and any kind 
of dispersion coefficient is not in the same level with 
example B. Among them, three kinds of dispersion coef-
ficient are the weight dispersion coefficient (WDC), the 
price dispersion coefficient (PDC) and the price-perfor- 
mance ratio dispersion coefficient (RDC). 

A. n = 20, M = 550, w = {45, 27, 58, 25, 33, 42, 55, 62, 
19, 72, 80, 24, 59, 35, 14, 66, 45, 83, 71, 40}, v = {93, 38, 
90, 30, 56, 43, 49, 77, 36, 99, 120, 70, 48, 70, 38, 89, 29, 
94, 62, 80}. The values of three kinds of dispersion coef-
ficient are 0.4239, 0.3943 and 0.3955, it’ obvious that 
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Figure 1. Process flow diagram based on DEE. 

PDC and RDC are in the same level. The objective func-
tion values are equal before the 15th iteration in compar-
ison with dynamic expectation model and static expecta-
tion model. The objective function value remains un-
changed from the 15th iteration to the 20th iteration by 
dynamic expectation model. 

B. n = 50, M = 1500, w = {10, 25, 30, 68, 74, 55, 36, 
120, 80, 95, 35, 45, 70, 85, 105, 48, 24, 15, 40, 50, 66, 58, 
28, 11, 20, 18, 38, 42, 28, 22, 32, 49, 60, 8, 78, 44, 52, 23, 
39, 19, 68, 99, 92, 77, 110, 69, 59, 43, 135, 136}, v = {20, 
48, 54, 118, 125, 92, 69, 185, 120, 140, 50, 60, 88, 105, 
128, 58, 29, 18, 46, 57, 74, 65, 31, 12, 21, 18, 36, 39, 26, 
20, 29, 43, 51, 6, 59, 32, 34, 22, 10, 34, 40, 28, 18, 16, 10, 
7, 5, 13, 12}. The objective function values are equal 
before the 49th iteration in comparison with dynamic 
expectation model and static expectation model.  

Two experiment results show in Figure 2. 

4.2. Algorithm Proving 
In order to do further research on the adaptive scope of 
DEE algorithm, this paper gives 30 0-1 knapsack prob-
lems [9]. Set the number of objects is 20, and the dead-
weight of backpack is in [500,950] . After executing 
DEE algorithm, the experiment results show in Table 1 
in the latter. 

As can be seen from Table 1, the adaptive scope of 
DEE algorithm is as follows: all the condition that any 
two kinds of dispersion coefficient are in the same level; 
the partial condition that all the three kinds of dispersion 
coefficient are less than 1 and any two kinds of disper-
sion coefficient are not in the same level. However, the 
condition that one kind of dispersion coefficient is great-
er than 1 and the other two kinds of dispersion coeffi-
cient are less than 1 and not in the same level is dead 
zone of DEE algorithm. 

4.3. Comparison Experiment with GSO  
Algorithm 

This part of experimental data is got by example 1 and 3 
of reference [9]. The experiment results of comparison 
on DEE algorithm and GSO algorithm at iteration num-
ber, the optimal solution and the spaces/the number of 
fireflies are shown in Table 2. 
 

  
Figure 2. Experiment diagram on example A and B. 
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Table 1. Effect on the optimal solution by WDC, PDC, and RDC. 

NO. 1 2 3 4 5 6 7 8 9 10 

Dispersion  
coefficient 

w 0.6238 0.3362 0.7938 0.4437 0.7253 0.7264 0.5436 0.6215 0.3544 0.4293 

c 0.6254 0.3526 0.7847 0.3675 0.6381 0.5298 0.4849 0.6358 0.3570 0.4586 

r 0.5360 0.4759 0.6264 0.3528 0.5124 1.0017 0.4633 0.7241 1.0211 0.8315 

Objective solution 1205 869 1082 1134 788 1035 824 998 1336 1154 

Optimal solution 1205 869 1082 1134 788 1047 824 998 1336 1154 

Difference 0 0 0 0 0 12 0 0 0 0 

NO. 11 12 13 14 15 16 17 18 19 20 

Dispersion  
coefficient 

w 0.7325 0.8576 0.7765 0.4901 0.7379 0.5348 0.5391 0.5149 0.3426 0.4993 

c 0.6552 0.6371 0.6082 0.4391 0.4683 0.4655 0.5296 0.5239 0.3245 0.4779 

r 0.7925 0.7096 0.4367 0.3562 0.3328 0.5219 0.5417 0.3373 0.3313 0.0557 

Objective solution 1045 1282 1420 1059 1395 1198 790 613 848 632 

Optimal solution 1045 1284 1420 1059 1407 1198 790 613 848 632 

Difference 0 2 0 0 12 0 0 0 0 0 

NO. 21 22 23 24 25 26 27 28 29 30 

Dispersion  
coefficient 

w 0.5148 0.5424 0.6374 0.5403 0.6232 0.4842 0.6068 0.6315 0.4239 0.5427 

c 0.4672 0.4952 0.5319 0.4453 0.5259 0.4552 0.4618 0.6065 0.3943 0.4810 

r 0.4254 0.3523 1.4796 0.4697 0.7305 0.5169 0.4744 1.0589 0.3955 1.0118 

Objective solution 973 843 783 1062 709 833 969 848 909 1009 

Optimal solution 973 843 821 1062 709 833 969 848 909 1024 

Difference 0 0 38 0 0 0 0 0 0 15 

 
Table 2. The comparison results of GSO algorithm and DEE algorithm. 

Algorithm/ 
examples 

Example 1 Example 3 

The max iteration 
number Optimal solution Number of fireflies/Spaces The max iteration 

number Optimal solution Number of  
fireflies/Spaces 

GSO 100 295 30 400 3103 100 

DEE 11 295 7 42 3103 27 

 
After the comparison of GSO algorithm and DEE al-

gorithm, the relation of objective function value and ite-
ration number can be described as Figures 3 and 4. 

For DEE algorithm in Figures 3 and 4, the part that 
red line rises perpendicularly is greedy strategy and the 
other part that red line grows steady is dynamic expecta-
tion efficiency. The objective function value by GSO 
algorithm changes steady and slowly. To sum up, the 
average convergence speed of DEE algorithm is as 10 
times fast as GSO algorithm’s; the number of storage 
space of DEE algorithm is a quarter of GSO algorithm’s. 

5. Conclusion 
Two groups of experiments show that the proposed algo- 

  
Figure 3. The convergence of GSO and DEE on example 1. 

 
rithm can solve 0-1 knapsack problems better than greedy 
algorithm, backtracking algorithm, dynamic program-
ming algorithm and bound algorithm. These 0-1 knap-
sack problems of any two kinds of dispersion coefficient 
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Figure 4. The convergence of GSO and DEE on example 3. 

 
were in the same level, and all the three kinds of disper-
sion coefficient were less than 1 and any two kinds of 
dispersion coefficient were not in the same level. The 
research on discrete coefficient of data, which is a new 
idea this article explores, is the essence of this algorithm 
for verification. 
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