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ABSTRACT 

This paper describes a new approach to finite-impulse (FIR) system identification. The method differs from the tradi-
tional stochastic approximation method as used in the traditional least-mean squares (LMS) family of algorithms, in 
which we use deconvolution as a means of separating the impulse-response from the system input data. The technique 
can be used as a substitute for ordinary LMS but it has the added advantages that can be used for constant input data (i.e. 
data which are not persistently exciting) and the stability limit is far simpler to calculate. Furthermore, the convergence 
properties are much faster than LMS under certain types of noise input. 
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1. Introduction 

Recursive parameter (or weight) estimation has been 
used since the early days of least-mean squares (LMS) 
[1]. Along with its variants such as Normalised-LMS 
(NLMS) [2], it has become the adaptive algorithm of 
choice due both to its simplicity, good tracking ability 
and the fact that it applies to finite-impulse-response 
(FIR) filters which are always stable. There have been 
many attempts at adaptive infinite-impulse-response (IIR) 
[3,4] filters using algorithms such as recursive-least- 
squares (RLS) [2,5], but they are less popular due to sta-
bility problems. Besides this, the tracking ability of RLS 
is rather ad-hoc in nature using a forgetting factor and 
the algorithm complexity for L weights is  2O L  op-
erations rather than for LMS [6]. Adaptive 
filters are proven successful in a wide range of signal 
processing applications such as noise-cancellation [7,8], 
adaptive arrays [9], time-delay estimation [10], echo can-
cellation [11] and channel equalization [12].  

2 1O L  



Despite the popularity of LMS it has a few drawbacks. 
To name a few, LMS will only give unbiased estimates 
when the driving signal is rich in harmonics (a persis-
tently exciting input signal [13]) and when this driving 
signal is not white, the convergence of the algorithm is 
affected depending on the eigen-value spread of the cor-
relation matrix [2,14,15]. Usually many ad-hoc approa- 
ches that employ variable step-size have been used to try 
and overcome this problem [16]. Gradient based algo-

rithms such as LMS are based on steepest-descent and do 
not have as fast convergence as RLS. The literature is 
quite old for many of these approaches indicating that 
little has changed in many respects though there have 
been some more recent approaches to the same problem 
[17]. This paper addresses these problems by introducing 
a new concept in weight estimation which is not based on 
minimisation of any form of least-squares criterion, re-
cursive or otherwise. Instead the paper uses classical 
control-theory to separate the convolution of weights to 
system input by the use of high-gain and integrators. Al-
though LMS also use high-gain and integrators with 
feedback, the LMS approach is always geared towards 
correlation and the solution of the Wiener-Hopf equation. 
This is in fact the reason for some of its limitations on 
special cases. The approach used here is entirely deter-
ministic in nature and instead based on purely control 
theory. The control-loop used results in deconvolution, or 
the separation of the two convolved signals (the impulse 
response and the driving signal). The novelty in the solu-
tion is the fact that a special lower-triangular convolu-
tion matrix is used in the feedback path of this control 
system. 

2. Feedback Deconvolution Loop 1 

Consider an unknown system  driven by a 
known input signal  which can be either random or 
deterministic 

 1W z

ku
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 1
k ks W q u             (1) 

Although the system to be identified is single-input 
single-output, the method here works on a vector of out-
puts consisting of n + 1 consecutive outputs.  

We define here  as the z-transform operator and 
 is the backwards shift operator defined for a scalar 

discrete signal at sample instant k as 

1z
1q

1
k 1 k=y q y
  or for 

a vector k 1 . A vector output is obtained from 
the block convolution “* ” of the system input and the 
impulse response vector thus 

1
k= q

x x

k



k

k  s W u                 (2) 

where the weight and input vectors are defined respectively 
as: ,  and 
are of order n + 1 each giving 

 T0 1, , , nw w w W  T

1, , ,k k k k nu u u  u

1
0

k

k j
j

w u 


  W u             (3) 

From the convolution Equation (3), we consider only 
the first n + 1 terms. k  becomes a vector of dimension 
n + 1 written in terms of past values of k as  

. 

s

T

n, 1

A matrix format of convolution now follows accord-
ingly: 

, ,k k k ks s s    s

 k ks T u Wk

0 









k

             (4) 

Here  is an n + 1 square lower-triangular Toe-
plitz matrix given by 

 kT u

 

   

1

2 1

3 2 1

1 2
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0 0 0
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0

k

k k

k k k

k
k k k k

k

k n kk n k n

u

u u

u u u

u u u u

u

u u u u



 

  

    




 

 





   
 

T u   (5) 

This will be known as a convolution matrix. This is 
distinct from a correlation matrix which is met in least- 
squares problems. 

Now consider a time-variant multivariable control- 
system as shown in Figure 1. The control-loop forward- 
path consists of a matrix of integrators with gain K. Its 
error vector is defined as 

  ˆ
k k k k k   e s y s T u W          (6) 

The  vector represents the estimate of the true 
weight vector k . Assume that the closed-loop multi-
variable system is stable. Then the error for large gain K 
becomes (via the usual action of negative feedback) 

 so that k  and hence  
as . If we initially assume the closed-loop system 
can be made always stable then for a time-varying sys-
tem, the control-loop output must track any such changes.  

ˆ
kW



W

0k e
k

  ˆ
k k T u W s ˆ
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Figure 1. Multivariable System 1. 
 
In algorithm form, the method is quite simple. 

Furthermore, if k  and k  are reversed as inputs to 
the control-system, then the inverse of the system im-
pulse response will be estimated instead, provided of 
course enough weights are allocated. The above algo-
rithm is not optimal in any least-squares sense since no 
cost function is minimised. In fact this is an approach to 
deconvolution using feedback. Note that in Figure 1 in-
tegrators are chosen since they have infinite gain at dc 
(giving zero steady-state error to step inputs of weight- 
vector), but other types of controller are possible. Al-
though not explored here, it is possible to include loop- 
shaping to the control-loop by adding extra integrators 
and phase-lead compensation. This was explored else-
where for the ordinary LMS algorithm [18]. 

s u

3. Stability and Convergence of the Loop 

For a given batch of n + 1 samples it is fairly straight-
forward to determine the stability of the system of Sec-
tion 2. 

Figure 1 is a time-variant multivariable system, but 
for a given constant vector k  we can treat the closed- 
loop system as time-invariant. (A more complete expla-
nation is shown in Appendix when the input vector is 
time-varying). Calculating an expression for the error 
vector in the z-domain 

u

       1 1 1 ˆ
kz z z z   e s T u W 1       (7) 

and 

   
1

1
1

ˆ
1

Kz
z

z







W 1ze          (8) 

Substitute (8) into (7) and re-arrange 

     
1

1
11k

Kz
z z

z






 
   

I T u e s 1      (9) 

Simplifying further 

         1 1 1 11 1kz Kz z z        I T u e s 1z (10) 

The roots for z of the determinant of the return-dif- 
ference matrix are the closed-loop poles of the system 
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satisfying[19]: 

    det 0c kz z K     I I T u       (11) 

That is, the closed-loop characteristic polynomial of 
the matrix  must have roots (eigen-values) 
which lie within the unit-circle on the z-plane. Now since 

 is a lower-triangular Toeplitz matrix, it follows 

 kI T u

 kT u
 k KI T

 

u

c z z

 is also a lower-triangular Toeplitz matrix. 
Furthermore, it is well established that the eigen-values 
of such a matrix are just the its diagonal elements which 
in this case are the n + 1 repeated roots according to 

 giving  1n
u K

  
 
1 0k 
1 ,z u 1, 2, ,i k K i n  1       (12) 

For stability all roots must lie within the unit circle in 
the z-plane. This gives us 

1 ku K 1

2

               (13) 

Excluding the special case when , the gain K 
must satisfy: 

0ku 

0 ku K                (14) 

Equation (15) clearly poses no problem provided  
and K are always positive. Then 

ku

2
0

k

K
u

                 (15) 

However, if k  is negative then K (from 14) must 
also be negative for stability. This will require a time- 
varying K whose sign tracks the same sign as k . It is 
interesting to see that the stability is only dependant on 
the single input k  and is also independent of the sys-
tem order. This is different from the LMS case where the 
step-size depends on the variance of the input signal and 
the number of weights. Of course k  is renewed with 
every new buffer of data and so it is not just one value 
which the stability is dependent on.  

u

u

u

u

Now we assume that the true weight vector has a con-
stant but unknown set of weights, say . This is mod-  0W

elled by a step z-transform 0 1

1

1 z
W .  

From Figure 1, the weight vector estimate is found 
from the multivariable system according to, 

   1
1

ˆ
1

K
z

z





W 1ze

1

1z

           (16) 

and the error vector is found from 

       1 1 1 ˆ
kz z z z   e s T u W       (17) 

Substitute (17) into (16) and re-arranging, gives the 
multivariable transfer function matrix relating the esti-
mated vector with signal vector. 

      11 1ˆ
kz K z K

     W I I T u s   (18) 

which as previously, requires all the eigen-values of the 
matrix  k KI T u  to lie within the unit-circle on the 
z-plane. With stability satisfied via (15), we can now 
examine the convergence by applying the step input vec-  

tor in the z-domain thus:  1
0 1

1

1
z

z





W W   

We can write in (18) that 

     1 1
kz z s T u W  

and by applying a step input vector in the z-domain thus:  

 1
0 1

1

1
z

z





W W  

So that (18) becomes 

      
11 1

0 1

1ˆ
1k kz K z K

z

 


     
W I I T u T u W  

(19) 

By applying the z-transform final-value theorem to (19) 
we get 

  1

1

ˆ ˆlim lim 1k
k z

z z

 
W W 1      (20) 

0
ˆ

k W W               (21) 

So that the weights converge to the true values pro-
vided the closed-loop system is stable. 

Algorithm 3.1: Deconvolution Loop 1. Select magni-
tude of the loop gain 0K . 

Loop: {Fetch recent input and output data vectors k , 
 using at least n + 1 samples. Monitor the first sample 

k  within the vector  and make 

u

ks
u ku  0 sgn kK K

  1k ku W
u , 1) 

Update vector error: , 2) Update 
Weight Vector:  

k k e s T

1
ˆ ˆ

k k kK W W e } 

where in the above  kT u  is formed by Equation (5). 
For L weights, the algorithm has  operations.  2O L

4. Feedback Deconvolution Loop 2 

The problem with the control loop discussed in section 2 
is that the stability satisfies (15) which makes the loop 
gain dependent on the sign of k , the first sample of 
each vector of input data fed to the unknown system. 
This means that the input sign must be monitored and K 
switched in sign. A slight modification can overcome this 
problem. Consider Figure 2. 

u

It can be seen that the convolution matrix  kT u  has 
now been added to the forward path as well as the feed-
back path. We now have  

     1 1
1

ˆ
1 k

K
z z

z
 




W T u e      (22) 

and 
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Figure 2. Multivariable System 2. 
 

       1 1 1 ˆ
kz z z z   e s T u W 1

1z

1z

     (23) 

Substituting the error vector (23) into (22) and follow-
ing a similar approach to Section 2, we find the relation-
ship 

        11 1ˆ
k kz K z K

     W I I T u T u s  

(24) 

and using the z-transform of (4) 

        1
1 2 1 2ˆ

k kz K z K


     W I I T u T u W  

(25) 

The stability becomes the solution of the roots of the 
polynomial found from the return-difference matrix 

. Here however we have the 
product of two lower-triangular matrices . The 
product of two such identical lower-triangular matrices is 
a matrix of the form 

  2 1 0kK z  I I T u
 2

kT u

 
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k

u

x u

x x u

x x x u

u

x x x x u






 





   


T u











     (26) 

(where the x represents cross-terms) which is another 
lower-triangular matrix with diagonal elements . Fol-
lowing the same arguments as section (2) we can easily 
show that the condition for stability of the multivariable 
loop is now 

2
ku

2

2
0

k

K
u

                (27)  

which makes the gain always positive. Furthermore from 
(25), for constant weights we can also show that the 
weights converge to their true values asymptotically 

.  0

LMS algorithm which has a condition for convergence 
in the mean-square equivalent to  

ˆ
k W W

  2

2
0

1n



 


 

where 2  is the variance of the input driving noise and 
  is the step-size. Clearly (27) when taken over a large 
number of batches of data and the input driving signal is 
random, becomes  

2

2
0 


  , 

which is not dependent on the system order n.  
Algorithm 4.1: Deconvolution Loop 2; Select magni-

tude of loop gain  .  
Loop: {Fetch recent input and output data vectors k , 
 using at least n + 1 samples. Monitor the first sample 
 within the vector  and make 

u

ks

ku ku K   where 

2

2
0

ku
   

1) Update vector error: , 2) Update 
Weight Vector:  

  1k k k k e s T u W

 1
ˆ ˆ

k k kK W W T u ek } 

where in the above  kT u  is formed by Equation (5). 
For L weights the algorithm also has  operations.  2O L

5. Illustrative Examples 

Example 1: Consider an FIR system with three unknown 
weights:  

 1 1 2 1
0 1 2 1 1.5 0.5W z b b z b z z z 2           

Let the system be driven by unity-variance white noise 
which is dc-free. Select a forward path gain (and LMS 
step-size) of K = 0.2. 

Figures 3-5 show the weight convergence of Algo-
rithms 3.1, 4.1 and LMS respectively for zero additive 
measurement noise. 

It can be seen that the new algorithms have overshoot 
but the convergence time is very similar. Algorithm 4.2 
has around 90% overshoot than Algorithm 3.1. If we 
compare a norm of the weight-error 1 1

ˆ
k k k  W W  

for each case we see the comparison in Figure 6. 
LMS gives the fastest performance of the three algo-  

 

 

Figure 3. Weight convergence for Algorithm 3.1. No meas-
urement noise. 
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Figure 4. Weight convergence for Algorithm 4.1. No meas-
urement noise. 
 

 

Figure 5. Weight convergence for LMS algorithm. No meas-
urement noise. 
 

 

Figure 6. Comparison of weight-error norm for zero meas-
urement noise. 
 
rithms. The norm is taken rather than mean-square error 
because the new algorithms have vector-based errors as 
opposed to LMS which has a scalar error. 

If we add zero-mean uncorrelated white measurement 
noise for a SNR of 12dB and repeat the above simulation 
we get some interesting results. In Figures 7-9 it is seen 
that the LMS estimates are not as smooth as the new al-
gorithms. 

The smooth convergence is illustrated in Figure 10 by 
comparing the weight-error norms. There are large error 
fluctuations as compared with the feedback algorithms 
which give similar much smoother performance. Of 
course the LMS case can be much improved by lowering  

 

Figure 7. Weight convergence for Algorithm 3.1. 12dB SNR. 
 

 

Figure 8. Weight convergence for Algorithm 4.1. 12dB SNR. 
 

 

Figure 9. Weight convergence for LMS algorithm. 12dB 
SNR. 
 

 

Figure 10. Comparison of error norm for 12dB measure-
ment noise and K = 0.2. 
 
the step-size at the expense of a much slower conver-
gence rate. Figure 11 shows a comparison of the weight-  
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Figure 11. Comparison of weight-error error norm for 
12dB measurement noise and gain reduction K = 0.05. 
 
error norms for a gain K = 0.05. 

LMS is the superior of the three if convergence rate is 
sacrificed but still has noisy fluctuations in the weight- 
error norm.  

We can conclude from this example that the new algo-
rithms give smoother weight estimates than LMS but 
LMS can outperform the new algorithms when the 
measurement noise is zero provided the loop gain is not 
too high. 

Example 2: It is well established that ordinary LMS 
has problems when the eigen-value spread of the correla-
tion matrix is large [2]. This leads to slow convergence 
and no amount of increasing the step-size will help since 
instability will result. Consider a system with zero meas-
urement noise and with two weights to be estimated  

 1 1
0 1 1 0.5W z b b z z    

u

1  

which is driven by filtered noise k  by passing a white- 
noise signal k  of variance 0.003025 through an 
autogressive filter of order two. 

1 1 2 2k k ku a u a u k      

The parameters of the autoregressive model are chosen 
as 1  and 2  to make the eigenvalue 
spread of the correlation matrix  [2]. (For 
the previous example we can say that 

1.9114a  0.95a  
  100uu R

 uu 1R ) The 
driving white noise k  is suitably scaled so that the 
filtered variance of k  is unity. The step-size (gain) of 
the loop was set initially to K = 0.2, which was the 
maximum step-size that the LMS algorithm could toler-
ate without becoming unstable. Figure 12 shows the 
LMS estimates when the step-size is at its maximum that 
it can tolerate without instability. 

u

The LMS algorithm takes about 1000 steps to con-
verge. If the step-size increases further then the LMS 
algorithm becomes unstable. Whereas if we look at Fig-
ure 13 we can see that Algorithm 3.1 is perfectly stable 
with gain to spare. 

The weight-error norms are compared for the same 
step-size in Figure 14. In order to make a fair compari- 

 

Figure 12. Weight convergence for LMS algorithm and 

  uuR 100 . 

 

 

Figure 13. Weight convergence for Algorithm 3.1 and 

  uuR 100 , K = 0.2. 

 

 

Figure 14. Comparison of weight-error norm for  

  uuR 100 , K = 0.2. 

 
son with LMS, it should be pointed out that Algorithm 
3.1 in Figure 14 does not use the maximum step-size 
(gain). 

A comparison of Algorithm 3.1 and 4.1 is shown in 
Figure 15 for this example when the gain (step-size) of 
the loop is increased to K = 10. 

The LMS case is not shown in Figure 15 since it be-
comes unstable. Although Algorithm 4.1 has a much 
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slower convergence rate than Algorithm 3.1, it is still at 
least five times as fast as the fastest achievable LMS (by 
comparison with Figure 12). The reason for the signifi-
cant increase in convergence rate is because the new 
methods do not use a correlation matrix at all and hence 
there is no equivalent inversion of such a matrix as in 
ordinary least-squares problems. Algorithm 3.1 is around 
100 times faster than LMS. For the large eigen-value 
spread case. 

It is worth comparing with the RLS algorithm for this 
case (Figure 16). An initial error covariance matrix was 
set up to be diag {1000, 1000} (for two parameters) in 
order to get a fast convergence. Unlike LMS, RLS is 
known not to be sensitive to correlation matrix eigen- 
value spread [2]. 

Algorithm 4.1 and LMS (not shown) are much slower 
than RLS but Algorithm 3.1 is about twice as fast as RLS 
as shown in Figure 16. The gain was adjusted on Algo-
rithm 3.1 in order to achieve the fastest convergence. 

Example 3: The problem of an input signal which is 
not persistently exciting. 

Consider the non-minimum phase system 
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1
1 2

1 2

1 1.5 0.5

z
W z

z z




 




 
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Figure 15. Weight-error norm for Algorithm 4.1 and Algo-
rithm 3.1, K = 10 and .   uuR 100

 

 

Figure 16. Weight-error norm for Algorithm 3.1 and RLS, 
K = 15 and .   uuR 100

The system has an FIR equivalent system by using a 
Taylor series expansion. Hence we find that (to six 
weights of approximation):  

 1 1 2 3 4 51 1.5 0.25 0.25W z z z z z z             

A steady dc (unit step) signal is fed to the input of the 
system and in steady-state a comparison of various re-
cursive estimation schemes was made. Note that the in-
put here is essentially a step input and not dc per se, but 
nevertheless some algorithms have difficulty with this 
type of driving signal. 

It was found for 4 weights that the new methods of 
Algorithm 3.1 and 4.1 both converged to the exact values  

 3.1
ˆ 1, 1, 1.5, 1, 0.25 0.25W       , 

 4.1 1, 1, 1.5, 1, 0.25 0.25W      ˆ  in around 6 itera-  
tions. Conversly the LMS algorithm converged to  

 LMS
ˆ 0.378, 0.418, 1.416, 0.355, 0.261 0.172W        . 

Clearly LMS gives the complete wrong answer. However, 
RLS converges very close and as fast as algorithms 3.1 
and 4.1 to the values 

 RLS
ˆ 0.999, 0.999, 1.499, 0.999, 0.25,0.249W      . 

6. Conclusion 

Two new algorithms have been demonstrated which use 
feedback instead of correlation methods to estimate the 
weights of an unknown FIR system. It has been shown 
that the new algorithms give much smoother estimates of 
the weights than ordinary LMS. Other than that there is 
little difference until a driving signal is used whose cor-
relation matrix has widely dispersed eigen-values. Under 
such conditions the Algorithm 4.1 has at least five times 
faster convergence and Algorithm 3.1 has about one hun-
dred times faster than ordinary LMS. The disadvantage 
of Algorithm 3.1 is that the gain needs to be switched in 
sign as the sign of the first input sample changes. Both of 
the new algorithms have the property that the gain is not 
dependent on the number of estimated weights. 
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Appendix. State-Space Description 

We can look at the more general problem when the input is time-varying but the weights are constant by writing the 
algorithm in state-space format. For Algorithm 3.1 we have 

 1 1
ˆ ˆ ˆ

k k k k kK 
    W W s T u W     (1) 

which becomes 

  1
ˆ ˆ

k k k kK K    W I T u W s      (2) 

The time-varying matrix  must have roots (eigen-values) which lie within the unit-circle on the z-plane. 
This gives us the same as (13) for the stability limit on the gain K. 

 kKI T u

1 ku K 1                                          (3) 

Equation (3) clearly poses no problem provided  and K are always positive. Then ku

2
0

k

K
u

                                           (4) 

but when  becomes negative we must change the sign of K making ku  0 sgn kK K u  where 0K  is always positive. 
If the true weights are constant  and there is zero measurement noise then we can write (2) as 0k W W

   1
ˆ ˆ

k k kK K    W I T u W T u W0k

1

                         (5) 

Now define the weight-error vector 0  and 1 0
ˆ

k k W W ˆ
k k  W W  with   0k ks T u W , and we can write (1) 

in weight-error format as the homogeneous vector difference equation 

  1 0k k kK    I T u                                (6) 

Now for some initial condition error 0 , (6) has solution  

  0

k

k kK I T u                                      (7) 

Now write the lower triangular matrix  

     1k kK Ku   I T u I V uk                              (8) 

where the diagonal elements  1 kKu I


 of the lower triangular matrix have been separated leaving a square matrix 
 of dimension   with zeros in its diagonal  kV u 1n 

 

   

1

2 1

3 2 1

11 2

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0

0

k

k k

k
k k k

k n kk n k n

u

u u
K

u u u

u u u u



 

  

    

 
  
  

  
   
 
 
     

   


V u

0

0

0
 

Due to its sparsity, such a matrix when raised to the same power as its dimension will always be zero i.e.  1n
k

 V u 0 . 
Therefore from (7), by using the Binomial theorem 

     1
k

k kK Ku       I T u I V u
k

k                          (9) 

which, provided (3) holds dies out for large k, taking the weight-error with it. Hence 

0
ˆ 0 ask k k   W W                             (10) 

For example for 3 weights at time k = 6 

            6 6 5 4 21 1 1 15 1k k k k k kKu Ku Ku Ku        I V u I + 6 V u V u k

k

 

         6 5 4 2
6 01 1 15 1k k k kKu Ku Ku      I + 6 V u V u  . 

Algorithm 4.1 follows in a similar manner with   1k kK 2
k   I T u  .  
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