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ABSTRACT 

This study presents an extended version of a single site daily weather generator after Richardson. The model is driven 
by daily precipitation series derived by a first-order two-state Markov chain and considers the annual cycle of each me- 
teorological variable. The evaluation of its performance was done by deploying its synthetic time series into the physi- 
cal based hydrological model BROOK90. The weather generator was applied and tested for data from the Anchor Sta- 
tion at the Tharandt Forest, Germany. Additionally its results were compared to the output of another weather generator 
with spell-length approach for the precipitation series (LARS-WG). The comparison was distinguished into a meteoro- 
logical and a hydrological part in terms of extremes, monthly and annual sums and averages. Extreme events could be 
preserved adequately by both models. Nevertheless a general underestimation of rare events was observed. Natural cor- 
relations between vapour pressure and minimum temperature could be conserved as well as annual cycles of the hydro- 
logical and meteorological regime. But the simulated spectrums of extremes, especially, of precipitation and tempera- 
ture, are more limited than the observed spectrums. While LARS-WG already finds application in practice, the results 
show that the data derived from the presented weather generator is as useful and reliable as those from the established 
model for the simulation of the water balance. 
 
Keywords: Richardson Model; Weather Generator; BROOK90; Synthetic Time Series; LARS-WG; Forest Water  

Balance; Taylor Diagram; Cumulative Periodogram 

1. Introduction 

The planning, construction and management of precipita- 
tion related infrastructure like sewer systems, retention 
areas or dams highly depend on the occurrence and sta- 
tistical return period of extreme rainfall events [1,2]. In 
practise, robust and long time series for simulation and 
extrapolation of these events are needed to identify and 
consider such extremes. Hence, the lag of satisfactory 
long term observations leads to the development of sto- 
chastic models which are able to simulate rainfall with- 
out the recognition of atmospheric driven processes [3,4]. 
Their outcomes, long synthetic rainfall series, fulfil the 
requirements of the engineers. Thus, these models were 
extended with other meteorological variables and soon 
the first weather generators were presented [5]. These 
can be classified into Markov chain, spell length and 

non-parametric models [6,7]. The main disadvantage of 
these approaches is their limited capacity to model un- 
observed states as well as the incomplete preservation of 
statistical properties. They all depend on historical time 
series, which by definition can not include unobserved 
extremes of weather variables. In particular, they are not 
able to model non-stationary processes. But the transition 
from stochastic weather generators to stochastic nesting 
approaches or weather state models is possible. There- 
fore even changes of the climate can be recognized by 
integrating different scenarios [8,9] or by including a cer- 
tain expected trend [10].  

The great advantage of these generators is their speed 
unmatched by any other tool to simulate locally consis- 
tent future time series. They are very fast algorithms to 
produce long time series, which find a vast extent of ap- 
plications as input in hydrological, hydrodynamic and 
other climate variable driven models [11-16].  *Corresponding author. 
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The main focus in this study lies in the derivation and 
extension of the Richardson model and its application to 
observed data under the strict preservation of diurnal 
variations. More particularly not just the preservation of 
temporal properties was a major goal but also the physi- 
cal consistencies between the considered meteorological 
variables. Here from arise the following motivational 
questions of this paper: 
1. Do the simulated empirical distributions of meteoro- 

logical elements fit the observed ones in terms of rare 
events (i.e. extremes)? 

2. Are physical correlations of the water balance pre- 
served by the weather generators? 

3. Are the approaches able to retain the annual cycles of 
the considered hydrological and meteorological ele- 
ments? 

In the tradition of weather generators two philosophies 
were compared for single site time series in terms of a 
certain location, a Markov chain with a spell length mo- 
del. The physical consistencies were investigated by de- 
ploying the simulated time series into the hydrological 
model BROOK90 [17]. 

2. Data and Study Region 

2.1. Tharandt Forest 

The Tharandt Forest is situated 20 km south west of 
Dresden and forms a part of the north eastern boundary 
of the eastern Ore Mountains. The forest spans a territory 
of 6000 ha [18], whose extent is shown in Figure 1. It is 
the largest contiguous area of forest dominated land use 
in Saxony, Germany. In average the territory is located 
350 to 400 m asl and therefore features just a small relief 
intensity [19]. The highest point is the Tännicht with 461 
m asl and the lowest is located in Coßmannsdorf with 
197 m asl. The area forms a distinct cuesta in the north, 
which is a boundary to the Mulde loess hills and in the 
east a boundary to the eastern foothills of the Ore Moun- 
tains [20-22]. 

Due to its location near the north-eastern ridges of the 
Ore Mountains the study area shows an increased conti- 
nental character of the climate in contrary to the western 
parts. Hence, the observed climate is representative for 
the climatic conditions of the foot hills of the eastern Ore 
Mountains. Though, the dominance of the forested land 
in combination with the local topography lead to signifi- 
cant differences from the regional climate conditions [23]. 
However, the bimodal distribution of the mean annual 
precipitation also can be observed, which is distinctive 
for this region. 

2.2. Meteorological Data 

The meteorological time series were observed at the An- 

 

 

Figure 1. Tharandt Forest with Anchor Station (50˚58'N, 
13˚34'E, 385 m asl) and altitude in m asl; the Wildacker 
Station is nearby located. 
 
chor Station (50˚58'N, 13˚34'E) in the Tharandt Forest, 
Germany. The elements include precipitation, solar ra- 
diation, vapour pressure, average, minimum and maxi- 
mum temperature. They are measured by the Chair of 
Meteorology at Technische Universität Dresden since the 
late 1950s. The time series used here is from 01/01/1997 
until 09/30/2009 in daily resolution; it reflects the start of 
continuous flux measurements of, e.g. evapotranspiration 
at the site [24]. The time series were checked for station- 
arity, homogeneity and data gaps. The quality assessment 
was done considering the measurements at the nearby 
meteorological station Wildacker, which served as refer- 
ence station. Hence, non-stationarities and heterogeneity 
could be excluded and no data gaps were found [25]. 
Further corrections of precipitation measurements were 
omitted [26,27]. The aforementioned bimodal distribu- 
tion of the monthly mean precipitation of the Wildacker 
Station can be seen in Figure 2. It summarizes the cli- 
matic conditions from 1971 to 2010 at the site. 

3. Methods 

Stochastic models often find application in hydrology 
and meteorology as they offer the possibility to generate 
long and persistent time series. 

The main reason for this frequent usage is the short 
availability of sufficient long and complete observed  
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Figure 2. Climate diagram after Walter and Lieth [28] of 
the Wildacker Station nearby the Anchor Station in the 
Tharandt Forest for the period from 1971 until 2010. 
 
time series.  

Stochastic models enable to fill gaps in observed series 
of meteorological variables and to generate synthetic 
time series without actual time reference but unlimited 
length. These kinds of models are commonly called 
“weather generators”. 

On the one hand a type of model, often deployed is the 
aforementioned “spell-length” approach. Time series are 
simulated by the addition of dry and wet periods accord- 
ing to the distribution of such periods in the observed 
data. The daily amount of precipitation is often derived 
by parametric distribution function of precipitation (e.g. 
gamma, log-Gaussian or mixture distributions). On the 
other hand so called Markov chain models are ap- 
proaches which are often applied. It is possible based on 
observation to describe precipitation as stochastic proc- 
ess. These processes are of such a kind that occurrence 
probabilities of precipitation depend on a finite number 
of former days. After the generation of wet or dry days 
the amount of precipitation is similar to the spell-length 
models derived by aforementioned distribution functions. 
Richardson introduced a model which extended the syn- 
thetic precipitation series with other meteorological ele- 
ments. Further the applied extended Richardson model is 
presented for the single site simulation of meteorological 
variables. All used symbols are summarized in Table 1. 

3.1. Extended Richardson 
Model-ERM-Precipitation Estimation 

Precipitation was modelled through a first-order two- 

state Markov chain for a single station. The stochastic 
process model is called first-order because the probabil- 
ity if today is a wet day just depends on yesterday. More 
time lags would increase the order. Likewise it is a two 
state model which means that just wet or dry states are 
considered. The conditional probabilities for wet after 
dry and wet after wet days can be calculated according to 
Equations (1) and (2), which are based on binary coded 
series x of wet and dry days. Therefore the shown sum- 
mations of all j observed days with the defined restriction 
have to be calculated.  
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Random numbers u and v are normally distributed 
with zero mean und standard deviation one. 

 , ~ 0,1u v N                (3) 

After the determination of the conditional probabilities 
they were used in combination with the generated ran- 
dom numbers to simulate new binary series x  of wet 
and dry states. This is done in the following manner. 
First an initial state has to be announced for the first day 
which would be the day’s probable condition cp . Sec- 
ond, according to Equations (4) and (5), cp  changes 
from day to day in dependence of the generated random 
number u. Hence the daily conditions change according 
to the estimate transition probabilities.  

11precipitation 1c cu p x p p           (4) 

01no precipitation 0c cu p x p p         (5) 

Reference [29] used Fourier’s series to simulate day of 
the year (DOY) dependent transition probabilities (i.e. 

 01p t  and  11p t ). This recommendation seemed 
reasonable. Since, like shown in Figure 3, also for the 
presented case an annual cycle of the transition prob- 
abilities can be observed. The Fourier’s series and their 
coefficients are defined in Equations (6) and (7), and in 
Table 2. The equations are already concrete solutions of 
the presented case study. For, the periods are 365 and 
183 days as it can be seen in Figure 3. 

     01 0,01 1,01 01 1,01 01cos sinp t a a t b t         (6) 

     11 0,11 1,11 11 1,11 11cos sinp t a a t b t          (7) 

To fit Fourier’s series Equations (1) and (2) have to be 
solved in dependence of DOY. The resulting conditional 
probabilities are defined as  01p t  and  11p t . These 
are shown in Figure 3 as observed series.    
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Table 1. Symbolism and nomenclature. 

Symbol Unite Description 

,u v  [-] Normally distributed random numbers 

   01 11 01 11, , ,p p p t p t  

   01 11,p t p t   
[-] conditional probabilities 

,x x  [-] 
Binary observed precipitation series,  
binary generated precipitation series 

cp  [-] Probability of today’s condition 

01 11,   [-] Frequency 

,t j  [d] Day of year (DOY), day 

0,01 1,01 1,01, ,a a b  

0,11 1,11 1,11, ,a a b  
[-] Parameter of Fourier function 

,s   Element dependent Maximum-likelihood estimates of shape, of mean 

maxv  [-] Maximum probability for precipitation 

  Element dependent Maximum-likelihood estimate of standard deviation 

,k K  [-] Meteorological element, number 

,Z z  [-] Observed, estimated standardized series 

,X X  Element dependent Observed, estimated series 

   *,t t   [-] Residual random error term 

0 1,M M  [-] Correlation matrix 

0 1,   [-] Element of correlation matrix 

,B A  [-] Multivariate matrix 

Se  [hPa] Vapour pressure 

h  [˚C] Minimum daily temperature 

1 2 3, ,C C C  Coefficient dependent Coefficients of Magnus formula 

P  [mm/time] Precipitation 

E  [mm/time] Evapotranspiration 

Q  [mm/time] Discharge 

dS  [mm/time] Storage change 

IRVP  [mm/time] Canopy evaporation of rain 

ISVP  [mm/time] Canopy evaporation of snow 

SNVP  [mm/time] General evaporation from snow masses 

SLVP  [mm/time] Surface evaporation 

TRAN  [mm/time] Transpiration from plants 

 
The coefficients 0,01a  and 0,11a  can be seen there as 

well, for they simply form the arithmetic means of the 
observed series. Thus, they represent the constant series. 
Finally the Fourier’s series resulting from Equations (6) 
and (7) were deployed for the modelling. 

The daily precipitation amount is calculated in de- 
pendence of the binary-coded wet dry series (i.e. x ). As 
in Equation (8) defined an inverse gamma distribution 
was deployed. Its shape parameter s  was derived as 
maximum likelihood estimate for each month. The re- 
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Figure 3. Different series of conditional probabilities in 
dependence of DOY for the deployed data sets of the An- 
chor Station, Tharandt. 
 
Table 2. Frequencies and coefficients of the deployed Fou- 
rier’s series to model in dependence of DOY conditional 
probabilities of wet and dry days. 

Coefficients for  01p t  Coefficients for  11p t  
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sults are concluded in Figure 4 of all estimated monthly 
distributions.  

   maxln mms sP v v x              (8) 

3.2. Extended Richardson Model-ERM-Estimation 
of Other Meteorological Elements 

The other meteorological elements depend on the gener- 
ated precipitation series, precisely on the binary coded 
wet and dry state series x~ . First the observed series kX  
were standardized according to Equation (9) over all va- 
riables k.  

 
1, 2, ,k k

k
k

X
Z k K





        (9) 

The new estimated meteorological series kX  then 
simply depend on the daily conditions (i.e. wet = 1 or dry 
= 0) and the estimated DOY (i.e. t = DOY) dependent 
mean and standard deviation like defined in Equation 
(10). 

 

Figure 4. Empirical and theoretical distribution functions 
(i.e. 1 mm bins) of daily precipitation for the Anchor Sta- 
tion, in bars depicted are the annual empirical distribution 
function (EPDF) of the Anchor Station for the observed 
period. 
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The standardized series  kz t  depend on the state the 
previous day, two multivariate matrices and a residual 
random error term, like shown in Equation (11). 

     1k kz t A z t B t            (11) 

The multivariate matrices A and B are defined in 
Equations (12) and (13). B has to be calculated through 
Cholesky or Q/R decomposition [30].  

T T
0 1BB M A M             (12) 

1
1 0A M M               (13) 

M1 and M0 are lag-zero and lag-one cross correlation 
matrices, with elements defined in Equations (14) and 
(15): 

   0 , , 1, 2, ,k lCorr Z t Z t k l K            (14) 

   1 , 1 , 1,2, ,k lCorr Z t Z t k l K             (15) 

The residual random error term is defined in Equations 
(16) and (17). 

   *t B t             (16) 

   * ~ 0,1t MVN         (17) 
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3.3. LARS-WG 

The stochastic weather generator LARS-WG was devel- 
oped to simulate daily synthetic meteorological time se- 
ries for single site [31]. Its latest version 5.0 enables the 
user to model the actual as well as the future climate. All 
simulations depend on the observed series from which 
the necessary model parameters for probabilities and 
correlations are derived. These were used to simulated 
synthetic series which are simultaneously randomly dis- 
tributed. In contrast to the aforementioned extended 
Richardson approach LARS-WG uses a spell-length ap- 
proach to derive precipitation series [6,12]. Than the 
daily precipitation amount is calculated according to 
semi empiric distribution. Annual cycles of the meteoro- 
logical elements are considered by using Fourier func- 
tions [32]. Unfortunately LARS-WG in its used version 
is only able to model precipitation, evapotranspiration, 
minimum and maximum temperature as well as solar 
radiation. Hence, in contrary to the ERM wind speed and 
vapour pressure are missing variables.   

3.4. BROOK90 

The hydrological model BROOK90 was developed to 
simulate the vertical soil water movement and the evapo- 
transpiration for a certain land surface at a daily resolu- 
tion. The model is process-orientated and its parameters 
hold a physical meaning [17]. 

The model is a complex lumped-parameter model and 
follows a ‘less is more’ philosophy, which is character- 
ized by a strong generalization of stream flow generation 
pathways but enough to compare it to observed time se- 
ries. This generalization even goes further by ignoring 
aspects like hill slope hydrology and spatial distribu- 
tion to focus on factors determining evapotranspira- 
tion. 

For these reasons its design may serve the purpose of 
sensitivity analysis by the possibility to include or ex- 
clude certain soil water sub-models, which can be neces- 
sary to simulate plant growth, biogeography or global 
hydrology.  

In consideration that LARS-WG does not estimate 
wind speed and vapour pressure the authors of 
BROOK90 suggest to work with a constant wind speed 
of 3 m/s and to calculate vapour pressure according to 
saturated vapour pressure. This was done using Magnus 
formula, which is defined in Equation (18). 

 2
1

3

exp hPaS

C h
e C

C h

 
    

          (18) 

with 
over water: C1 = 6.1078 hPa; C2 = 17.08085; 

C3 = 234.175˚C 

over ice: C1 = 6.1078 hPa; C2 = 17.84362; 
C3 = 245.425˚C 

The necessary parameters were chosen according to the 
minimum temperature (i.e. <0˚C the surface was considered 
as ice), which was suggested by the BROOK90 authors.  

The authors state that BROOK90 can fill a wide range 
of needs. It finds application in teaching and study water 
budget, water movement on small plots, evapotranspira- 
tion and soil water process. In addition it might answer 
questions related to land management and for the predic- 
tion of climate change effects. A further one was added 
to these tasks by deploying the model to validate the per- 
formances of weather generators. 

The necessary model parameters of BROOK90 are 
taken from reference [25] (i.e. B2 configuration) which 
were determined for the considered period. 

4. Results and Discussion 

This study focuses on the extension and application of 
weather generators. Therefore the introductorily asked 
questions are of significant importance. The results 
where investigated from two perspectives to answer these 
questions. On the one hand meteorological properties are 
analyzed element wise by considering their correlations, 
periodicity and positive extremes (0.95 quantiles). On the 
other hand their hydrological properties are surveyed 
according to the long-term water balance defined in 
Equation (19). The precipitation (P) is defined as the sum 
of the discharge (Q), the evapotranspiration (E) and the 
storage change (dS). It is the water balance in its most 
common and most simple form [33].  

 mmP Q E dS           (19) 

The results are four data sets, which are named and 
defined in the following manner: the observed (OBS), the 
extended Richardson model (ERM), the extended Richar- 
dson model without wind speed and vapour pressure 
(ERMw) and the LARS-WG data set (LARS). 1000 
years long synthetic time series were simulated by each 
approach. 

4.1. Meteorological Synthetic Time Series 

First the correlations between minimum temperature and 
vapour pressure were investigated. Hence, the differ- 
ences of simulated and calculated vapour pressure are 
outlined. The scatter plots are summarized in Figure 5. 
Figure 5(a) shows the natural correlations between 
minimum temperature and vapour pressure mainly fol- 
lowing the generalization of Equation (18), with a not 
neglected scattering through natural fluctuation. The 
scattering becomes even broader between the simulated 
variables in Figure 5(b). But the physical correlations  
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Figure 5. Correlations between minimum temperature and 
vapour pressure for 5000 randomly selected data points; (a) 
OBS; (b) ERM; (c) LARS; (d) ERMw. 
 
and natural fluctuations could be preserved. Whereas 
Figures 5(c) and (d) show the curve of Equation (18) for 
LARS and ERMw, obviously these curves are the same.  

The results of the investigations of the 0.95 quantiles 
are depicted in Figure 6. Compared are the Quantiles of 
simulated and observed variables. They give an insight 
on how the empirical distributions are located, especially 
the right tails of these distributions and how they match 
with the observed distributions. For all simulations, the 
quantiles of LARS as well as of ERM show a slight un- 
der estimation even independent of the season. With no 
regard on the approach the best fit can be observed in the 
vapour pressure. The wind speed is slightly better simu- 
lated by ERM than by LARS. Tough it must be stated 
that for LARS only a series of 3 m/s wind speed was ge- 
nerated. This unorthodox procedure arises from the rec- 
ommendations of the BROOK90 authors. Nevertheless 
this value nearly represents the stations mean value.  

The advantage of the applications of semi empiric dis- 
tributions becomes obvious looking at the precipitation. 
The extremes of this meteorological element are better 
simulated by LARS than by ERM which just uses a 
gamma distribution. 

The largest difference can be found between the simu- 
lated solar radiations, which so far cannot be explained. 

No differences are observable between minimum and 
maximum temperature. The underestimations of these 
variables confirm the results in Figure 5, where the 
spectrum of possible values from minimum to maximum 
temperature is more limited, in contrast to the observed 

 

Figure 6. 0.95 Quantiles of all modelled variables for LARS 
and ERM simulations of 1000 years time series. 
 
spectrum. Thus the tails of the simulated distributions are 
more limited. 

Reference [34] stated that apart from the test of white 
noise a cumulative periodogram also can be used to ex- 
amine hidden and suspected periodicities. In this context 
the monthly synthetic and partly observed time series of 
the meteorological variables were plotted in Figure 7. So 
a validation of their periodicity is qualitatively possible. 

All variables of the observed and simulated series 
show a jump at a frequency of 0.0833 which is equiva- 
lent to 12 month (i.e. red highlighted in Figure 7). While 
all variables are characterized by a large significant jump 
at this point, precipitation follows more or less the 0.5:1 
line. The simulated series of precipitation even shows 
signs of higher periodicity. These jumps just can be ex- 
plained with the periodicity of months. As obvious also 
simple series of returning months (i.e. {1, 2, 3, …, 12, 
1, ..}) are plotted and show significant steps. 

These steps are also obvious in the monthly series of 
precipitation. There it can be explained by the fitting of 
distributions functions depending on the month (cp. Fig- 
ure 4).  

Figure 7 proves that all simulated variables of ERM 
follow an annual cycle. Even rather artificial inner annual 
periodicities caused by the model parameterisation of 
precipitation are preserved. 

4.2. Long-Term Water Balance 

The Taylor diagram was developed to illustrate the rela- 
tion between correlations, standard deviation and root 
mean square error [36]. It is commonly applied for GCM 
validation. In this case instead of different models the 
water balance components are drawn in Figure 8. The 
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Figure 7. Cumulative periodogram [35] of monthly mete- 
orological variables of OBS and ERM; depicted in bold 
lines is ERM and in thin lines OBS data.  
 

 

Figure 8. Taylor diagram of the monthly mean standard- 
ized values of the long-term water balance elements esti- 
mated for 1000 years periods for each model. 
 
meaning remains the same as in its former usage; the 
closer a point lies to the reference at one on the abscissa 
the better or closer the simulated component behaves to 
the reference state (i.e. observed state). 

The evapotranspiration could achieve the best results, 
consistently gaining a correlation higher than 0.99 with 
no dependence on the model. The LARS lies closest to 

the reference point followed by ERMw and ERM. But 
the differences are very small. Generally it can be stated 
that all models simulated the evapotranspiration really 
close to the observed state.  

These results for ERM could only be achieved because 
of a post processing of the BROOK90 calculations. 
Negative E values in winter could be observed in the 
model runs driven by ERM data. BROOK90 calculates E 
according to Equation (20). The negative E resulted from 
negative values caused by the canopy evaporation of 
snow term (ISVP). 

 IRVP ISVP SNVP SLVP TRAN mmE       (20) 

To solve this contradiction of negative E values, ISVP 
was excluded from its calculation to obtain realistic re- 
sults. Therefore the water balance had to be closed by the 
summation of the excluded term (i.e. ISVP) with Q. This 
post processing occurred to be necessary just for the 
ERM run. Unfortunately plausible reasons for this be- 
haviour could not be figured out, since the physical cor- 
relations between minimum temperature and vapour 
pressure are preserved, as depicted in Figure 5(b). The 
authors of BROOK90 give a vague explanation of this 
particular behaviour by arguing that the canopy evapora- 
tion of snow is still a rather unknown process. Hence, its 
consideration in a hydrological model may lead to the 
observed uncertainties. Nevertheless, this post processing 
lead to reasonable results for ERM as Figures 8 and 9(b) 
conclude. 

The differences at a monthly scale for the precipitation 
are larger. While LARS reaches a correlation of 0.95 
ERM achieved fairly 0.89. However both results are out- 
standing compared to other investigations [37] where 
precipitation, because of its supposed randomness in time 
and space at this scale, is the most defficile element to 
simulate. The significant better performance of LARS 
can be explained by the usage of a semi empiric distribu- 
tion for the modelling of precipitation, which obviously 
estimates the daily amount more precise.   

Referring to the system’s output, the discharges are not 
wide spread in Figure 8. They lie between a correlation 
of 0.9 and 0.95. The best performance to the references is 
shown by ERMw followed by LARS and ERM. 

The results of the residual storage change term, in 
contrast, scatter quite within the diagram, while both ele- 
ments without estimated vapour pressure and wind lie 
closer to each other (i.e. LARS and ERMw) and their 
correlations are about 0.85. ERM lies apart from them, 
but nearer to the reference state. Thus the standard devia- 
tion of ERM is closer to the reference than those of the 
others. ERM is considered as best estimated of the stor- 
age change, even if its percentage of the overall water 
balance is marginal. 
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Figure 9. Monthly mean water balance components of 1000 
years simulated time series of ERM, ERMw, LARS and 
OBS, (a) Precipitation; (b) Evapotranspiration; (c) Storage 
change; (d) Discharge. 
 

The normalized standard deviations for all water com- 
ponents do not differ much from the reference states, 
except the peculiarities observed within the store change 

terms. 
Hence, for each component of the water balance a cer- 

tain model performs best, but in conclusion through the 
help of the diagram the best model could not be identi- 
fied. 

In Figure 9 the mean monthly diurnal variations of 
each component of the water balance are depicted. The 
precipitation shows no significant differences comparing 
the curves of the models. ERM and ERMw have the 
same precipitation curves as they just differ in their wind 
speed and vapour pressure series. LARS seems to be 
closer to the observed precipitation, as Figure 8 already 
indicates. The overestimation of precipitation by each 
model in March and August must be mentioned. In con- 
text of Figure 2, the month with the largest precipitation 
amount is always overestimated by the weather genera- 
tors. The main reason for this may be the occurrence of 
the aforementioned rare extreme event in August 2002, 
which is included in the observed time series [25]. This 
event influences the weather generators to much, which 
lead to the consequent over estimation of summer pre- 
cipitation.   

The curves of the evapotranspiration are very close to 
the observed results, only ERM and ERMw overestimate 
evapotranspiration in the summer months about 5 mm, 
An explanation might be the oversupply of water and 
energy simulated by ERM in these months. 

But the results are still satisfactory taking into account 
the aforementioned post processing for the ERM driven 
BROOK90 run. 

The curves of the storage change are more distin- 
guishable. The simulated results preserve the annual cy- 
cle as clearly depicted in Figure 9(c). The investigation 
of the curves in detail indicates that they have more in 
common among themselves than to the observed curve. 
This curve is characterized by a certain peak in April, 
most likely caused by the annual snow melting, which is 
indicating a certain limitation of the weather generators 
to reproduce these atmospheric conditions. This peak 
arises, with one month latency, from the melting in 
March, which clearly can be seen in Figure 9(d). Of fur- 
ther importance is the peak simulated by LARS in Au- 
gust, which results from the larger precipitation and less 
evapotranspiration in this month. Mainly it is caused by 
the aforementioned disproportional consideration of the 
known rare event in this month. 

The annual water balance shows less significant dif- 
ferences as depicted in Figure 10. LARS and ERM in 
average overestimate all components of the water bal- 
ance, whereby the differences are slightly higher for the 
LARS results. Despite ERMw behaves also as coherent 
as the other results it shows more distinguishable differ- 
ences. The lowest uptake of water trough evapotranspira- 
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Figure 10. Annual mean water balance components of 1000 
years simulated time series of ERM, ERMw, LARS and 12 
years OBS. 
 
tion leads to a larger system output by discharge in the 
catchment. 

The differences are even clearer looking at Table 3. 
As already mentioned the deviations of ERM and LARS 
are neglectable small of <3%. ERM even reaches results 
of <1% deviation from the observed water balance. The 
aforementioned differences of ERMw can also be seen 
clearly. Additionally also the residual storage change 
term is given in Table 3. The observed value is rather 
small as expected, almost zero. According to this small 
absolute value are the differences large. 

5. Conclusions and Outlook 

In this study another extension of a Richardson based 
weather generator is presented. Its application to the hy- 
drological model BROOK90 for the Anchor Station in 
the Tharandt Forest, Germany is discussed. To contextu- 
alize its results, the performance of the model was com- 
pared to another weather generator (i.e. LARS-WG). 

Rare events of any considered meteorological element 
are well maintained. Though, LARS better performed in 
terms of precipitation due to the usage of a semi empiric 
distribution function. For this reason the application of 
mixture distributions or non-parametric distribution func- 
tions most likely will improve the presented weather 
generator [38]. 

Generally, only underestimations could be observed. 
Through the application of a cumulative periodogram it 
is proven that also the annual cycles are preserved. The 
analysis even shows a subtle visible influence of the 
chosen parameterization of monthly fitted distributions 
functions for precipitation. The natural correlations of 
minimum temperature and vapour pressure are suffi- 
ciently considered. Thus, through the underestimation of 

Table 3. Annual mean sums and differences of the water 
balances components of 1000 years long synthetic and 12 
years long observed time series. 

 P Q E dS 

OBS [mm/a] 907.70 489.37 418.36 0.03 

ERM [mm/a] 
Difference [%]

913.22 
0.61 

493.52 
0.85 

419.81 
0.35 

0.11 
266.67 

ERMw [mm/a]
Difference [%]

913.22 
0.61 

525.54 
7.39 

387.94 
-7.27 

0.26 
766.67 

LARS [mm/a] 
Difference [%]

922.83 
1.67 

501.85 
2.55 

421.32 
0.71 

0.34 
1033.33 

 
temperature extremes, the natural spectrum could not be 
covered completely neither by ERM nor by LARS. 

The application of the weather generators in a hydro- 
logical context showed temporal and element wise de- 
pendences of the performance. While the simulated data 
set of LARS-WG shows better results for precipitation 
and evapotranspiration on a monthly basis, ERM per- 
formed better on the annual scale for these elements. 

The application of ERM in BROOK90 resulted in a 
post processing due to implausible negative evapotran- 
spiration values in winter, which were caused by a “can- 
opy evaporation of the snow” term. The presented ap- 
proach is a practical solution, but the authors would al- 
ways prefer a better description and parameterisation of 
the responsible processes.   

Overall the hydrological perspective emphasises the 
preservation of annual meteorological and hydrological 
regimes. Both applied models are useful and reliable for 
modelling the water balance.  

The presented weather generator (i.e. ERM) could be 
extended from a single site to a raster-based multi site 
weather generator, which might be coupled with a cas- 
cade model for the downscaling from daily to 5 min time 
series [39]. However, this would require a change for the 
hydrological modelling to a raster based model like WaSim- 
ETH [37]. 

As a result of the related demands of information con- 
sidering the future climate at a regional scale likewise the 
intention arose to simulate climate scenarios by the rec- 
ognition of other future atmospheric properties like GCM 
outputs [40]. 
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