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ABSTRACT 

In a preceding paper, we discussed the solution of Laplace’s differential equation by using operational calculus in the 
framework of distribution theory. We there studied the solution of that differential equation with an inhomogeneous 
term, and also a fractional differential equation of the type of Laplace’s differential equation. We there considered 

derivatives of a function  on , when  u t 0,  u t  is locally integrable on  0, , and the integral  

converges. We now discard the last condition that  should converge, and discuss the same problem. In 

Appendices, polynomial form of particular solutions are given for the differential equations studied and Hermite’s 
differential equation with special inhomogeneous terms. 

 1

0
du t t

 du t t
1

0
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1. Introduction 

Yosida [1,2] discussed the solution of Laplace’s differen- 
tial equation (DE), which is a linear DE, with coefficients 
which are linear functions of the variable. The DE which 
he takes up is 

       
   
2 2 1 1

0 0 0,   0,

a t b y t a t b y t

a t b y t t

   

   
        (1.1) 

where l  and l  for  are constants. His dis- 
cussion is based on Mikusiński’s operational calculus [3]. 
Yosida [1,2] gave there only one of the solutions of the 
DE (1.1). 

a b 0,1,2l 

In the preceding paper [4], we discussed the solution 
of an fractional differential equation (fDE) of the type of 
DE (1.1), that is given by 

       
     

2
2 2 0 1 1 0

0 0 ,   0,

R Ra t b D u t a t b D u t

a t b u t f t t

     

   
    (1.2) 

for 1   and 1 2  . Here  for >0 0 RD u t    
is the Riemann-Liouville fractional derivative (fD) 
defined in Section 2. We use  to denote the set of all 

real numbers, and 



 :b x x b     . When   is  

equal to an integer >0n ,    0

d

d

n
n
R n

D u t u t
t

 . When  

1  , (1.2) is the inhomogeneous DE for (1.1). We use 
 to denote the set of all integers, and 
 :a n n a    ,  :b n n b      and 

   , :a b n a n b     for  satisfying . ,a b <a b

We use x    for x , to denote the least integer that 
is not less than x . 

In [4], we adopt operational calculus in the framework 
of distribution theory developed for the solution of the 
fDE with constant coefficients in [5,6]. In [4], we give 
the recipe of obtaining the solution of the inhomogene- 
ous equation as well as the homogeneous one, and we 
show how the set of two solutions of the homogeneous 
equation is attained. 

In [4], we adopt the usual definition of the Rie- 
mann-Liouville fD, which defines  only for 
such a locally integrable function 

 0 RD f t

 f t  on  that  >0

 1

0
df t t  is finite. Practically, we adopt Condition B in  

[4], which is 
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Condition IB  and    u t H t    f t H t
 

 are ex- 
pressed as a linear combination of g t  for > 0 . 

Here  H t  is Heaviside’s step function, and when 
 f t  is defined on >b ,     f t H t b  is assumed to 

be equal to  f t  when  and to  when t b>t b 0  . 
 g t  is defined by 

   
11
,g t t 




            (1.3) 

for >0  , where    is the gamma function. 
In [4], we take up Kummer’s DE as an example, which 

is 

       
2

2

d d
0,   0,

dd
t u t c t u t a u t t

tt
          (1.4) 

where  are constants. If , one of the so- 
lutions given in [7,8] is 

,c a c

   
 1 1

0

; ; : ,
!

nn

n n

a
F a c t t

c n





            (1.5) 

where  for a  and    1

0

n

n k
a a




  k  >0n ,  

and . The other solution is  0
1a 

 1
1 1 1;2 ; .ct F a c c t               (1.6) 

In [4], if , we obtain both of the solutions. But 
when , (1.6) does not satisfy Condition IB and we 
could not get it. 

< 2c
2c 

In a recent review [9], we discussed the analytic con- 
tinuations of fD, where an analytic continuation of Rie- 
mann-Liouville fD, , is such that the fD exists 
even for such a locally integrable function 

 0 RD f t

 f t  on  

>0  that  1

0
df t t  diverges. In the present paper, we  

adopt this analytic continuation of .  0 RD f t

In place of the above Condition IB, we now adopt the 
following condition. 

Condition A  and    u t H t    f t H t
 

 are ex- 
pressed as a linear combination of  g t H t  for 

S  , where  is a set of S > \M <1    for some 
. > 1

As a consequence, we can now achieve ordinary solu- 
tions for (1.2) of 

M 

1 
c
. For (1.4), we obtain both solu- 

tions (1.5) and (1.6) if . 
It is the purpose this paper to show how the presenta- 

tion in [4] should be revised, with the change of defini- 
tion of fD and the replacement of Condition IB with 
Condition A. 

In Section 2, we prepare the definition of Riemann- 
Liouville fD and then explain how the function  u t  
and its fD in (1.2) are converted into the corresponding 
distribution  and its fD in distribution theory, and 
also how  is converted back into . After these 
preparation, a recipe is given to be used in solving the 

fDE (1.2) with the aid of operational culculus in Section 
3. In this recipe, the solution is obtained only when  

 u t
 u t  u t

2 0a   and 2 0b  . When 
1

2
  ,  is also re-  1 0b 

quired. An explanation of this fact is given in Appendi- 
ces C and D of [4]. In Section 4, we apply the recipe to 
(1.2) where 1   and 0 , of which special one is 
Kummer’s DE. This is an example which Yosida [1,2] 
takes up. In Section 5, we apply the recipe to the fDE  

0a 

with 
1

2
  , assuming 0 0a  . 

For the Hermite DE with inhomogeneous term, Levine 
and Malek [10] showed that there exist particular solu- 
tions in the form of polynomial. In Appendices A and C, 
we show that such a solution exists for the DE and fDE 
studied in Sections 4 and 5, respectively. In Appendix B, 
we show how the results presented in [10] are derived 
from those in Appendix A. 

2. Formulas 

We now adopt Condition A. We then express    u t H t  
as follows; 

     1 ,
S

u t H t u g t H t 





         (2.1) 

where 1u    are constants. 
Lemma 1 For <1\   , 

  1 .t g t g t                     (2.2) 

Proof By (1.3), for <1  , we have 

       1

1

1
t g t t t g t 

 
 

      
  

.  

2.1. Riemann-Liouville Fractional Integral and 
Derivative 

Let    f t H t b  be locally integrable o   . We 
then define the Riemann-Liouville fractional integral, 

n

 D f t
b R

 , of order >0   by 

       11
d ,   .

t

b R b
D f t t x f x x t b




   

    (2.3) 

We then define the Riemann-Liouville fD,  b RD u t , 
of order   , by 

   d
,   > ,

d

N
N

b R b RN
D u t D u t t b

t
     

      (2.4) 

if it exists, where  max ,0N     , and    0
b RD u t u t  

for . >t b
For > 0 , we have 

    1
0

1

, \

0, .R

g t
D g t  



 
 

, 



 
 

 

 


   (2.5) 
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If we assume that     takes a complex value, 
 by definition (2.3) is analytic function of  0 RD g t


   

in the domain Re < 0 , and  defined by 
(2.4) is its analytic continuation to the whole complex 
plane. If we assume that 

 0 RD g t


  also takes a complex value, 
 defined by (2.4) is an analytic function of  0 RD g t

   
in the domain Re > 0 . The analytic continuation as a 
function of   was also studied. The argument is natu- 
rally concluded that (2.5) should apply for the analytic 
continuation, even in Re 0   except at the points 
where <1  ; see [9]. 

We now adopt this analytic continuation of  t0 R  
to represent , and hence we accept the fol- 
lowing lemma. 

D g


 0 RD g t


Lemma 2 (2.5) holds for every   , <1\   . 
By (2.1) and (2.5), we have 

   
1

0 R
S

1D u t u g t
  


  

 

 

 


.      (2.6) 

For  defined by (2.1), we note that  u t

   0
M

RD u t H t    

is locally integrable on . 

2.2. Fractional Integral and Derivative of a 
Distribution 

We consider distributions belonging to R
 . When a 

function  is locally integrable on   and has a 
support bounded on the left, it belongs to 

 h t

R
  and is 

called a regular distribution. The distributions in R
  

are called right-sided distributions. 
A compact formal definition of a distribution in R

  
and its fractional integral and derivative is given in Ap-
pendix A of [4]. 

Let    f t H t

   
 be a regular distribution. Then  

0 RD f t H t    for 0   is also a regular distribu-  

tion, and distribution    D f t H t
    

 


 is defined by 

    0 ,   0.RD f t H t D f t H t        (2.7) 

Let , and let  be such a regular distri-  >0N   h t

bution that  dn

d n
h t

t



 is continuous and differentiable on  

 , for every . Then  is defined by 0, 1Nn   ND h t

   d
.

d

N
N

N
D h t h t

t
             (2.8) 

Let >0  , N    , and let  

    0

d

d

n
N

Rn
D f t H t

t
  

 



 

be continuous and differentiable on  for every 
. Then 


0, 1Nn 

     0 .R  D f t H t D f t H t             (2.9) 

When  h t  is a regular distribution,  D h t  is de- 
fined for all   . 

Lemma 3 For   Rh t  , the index law: 

  ,D D h t D h t               (2.10) 

is valid for every ,  

. 

Dirac’s delta function  is the distribution de-   t
fined by    t DH t  . 

Let  g t  for    be defined by 

   .g t D t
                (2.11) 

Lemma 4 If >0  , 

     .g t g t H t              (2.12) 

Proof By putting   1f t   in (2.7) and using (2.11) 
and (2.5), we obtain 

   
   

0

1

1

,   0.

RD H t D H t

g t H t

 

 

 



   
 

 

By operating  to this and using (2.9) and (2.5), we 
obtain (2.12).  

D


Corresponding to  u t  expressed by (2.1), we define 
 u t  by 

  1 .
S

u t u g t 





               (2.13) 

Then  u t  and  f t  are expressed as 

           ˆˆ ,   u t u D t f t f D t      (2.14) 

where 

  1ˆ .
S

u D u D 









               (2.15) 

Because of (2.11), we have 

   
   

1

1

, \

, .k
k

g t
D g t

g t D t k
 



 
  

  ,

 

        

  


 
(2.16) 

Lemma 5 Let     . Then 

   1 ,t g t g t                         (2.17) 

     1 .t D t D t D t
D

      
     


  (2.18) 

The last derivative with respect to  is taken regard- 
ing  as a variable. 

D
D

A proof of (2.17) for >0   is given in Appendix 
B of [4]. 

Proof When    , >0  , by Lemmas 4 and 1, 

    
   
 

1

1 ,

t g t t g t H t 
g t H t

g t

 












  

 

 




 

Open Access                                                                                             AM 



T. MORITA, K. SATO 29

The first equality in (2.18) is obtained from (2.17) and 
vice versa, by using (2.11).  

The following lemma is a consequence of this lemma. 
Lemma 6 Let  be expressed as a linear com- 

bination of 
 u t

g t  for   . Then 

         ˆ ˆ .t u t t u D t u D t
D

 
    


      (2.19) 

2.3. From  to  and Vice Versa  u t  u t
Lemma 7 Let <1\   , > 1N   satisfy > 0N  . 
Then 

      0 ,N N
Rg t D D g t H t 
          (2.20) 

      0 .N N
Rt g t D D t g t H t 
       (2.21) 

Proof Formula (2.20) is derived by applying (2.3), 
(2.12) and (2.16) to the righthand. Formula (2.21) fol- 
lows from (2.20) by replacing  g t  and  g t

t
 by 

, and  , respec-
tively, by using (2.2) and (2.17).  

   1t g t g t      t  


1t g g 

By using Lemma 7 to (2.6), we obtain 

    
 

1

0 0

1

N N
R R

S

D D D u t H t

u g t



  

  



 

 

 
 

 


          (2.22) 

    
 

1

0 0

1

N N
R R

S

D D t D u t H t

t u g t



  

  



 

 

  
 



         (2.23) 

Lemma 8 Let <1\   ,  satisfy > 1N  > 0N  . 
Then 

     0 .N N
Rg t H t D D g t 

           (2.24) 

This follows from (2.20). 
Condition B  is expressed as a linear com- 

bination of 
 u t

 g t  for , where  is a set of  S   S

> <1\M   , for some >1M 

. 

When this condition is satisfied,  is expressed as 
(2.13) with  replaced by 

u t 
S S

~
. 

Lemma 9 Let  satisfy Condition B. Then the 
corresponding  is obtained from , by 

 u t
 u t  u t

     0 ,N N
Ru t H t D D u t             (2.25) 

and is expressed by (2.1) with  replaced by . S S
Lemma 10 Let  and  u t  u t  be given by (2.13) and 

(2.1), respectively. Then  tD u  and     0 RD u t H t  
are related by 

      
 

1

0 0

1

N N
R R

k
k

k
k S

D u t D D D u t H t

u D t

 










 

 

   
 




       (2.26) 

      
 

1

0 0

1

N N
R R

k
k

k
k S

t D u t D D t D u t H t

t u D t

 










 

 

    
 




   (2.27) 

if > 1N   satisfies N M   . 

Proof By (2.13) and (2.16), we have 

  

 
1

1

1

1

S

k k
k

k S

D u t u g t

u g t


  


 









 

 

  

 












 


           (2.28) 

Using (2.22) in the first term on the righthand side, we 
obtain (2.26). Multiplying (2.28) by  and noting that 
the first term on the righthand side is then equal to (2.23), 
we obtain (2.27).  

t



3. Recipe of Solving Laplace’s DE and fDE 
of That Type 

We now express the DE/fDE (1.2) to be solved, as fol- 
lows: 

     0
0

,   0,
m

l
l l R

l

a t b D u t f t t



         (3.1) 

where 
1

2
   or 1  , and . In Sections 4 and 

5, we study this DE for 

2m 

1   and this fDE for 
1

2
  , 

respectively. 

3.1. Deform to DE/fDE for Distribution 

Using Lemma 10, we express (3.1) as 

       
0

,
m

l
l l

l

a t b D u t f t v t



             (3.2) 

where 

     
1

1

1

1
1 0

.
lm

k
l l l k

l k k
l k

v t a t b u D t











  

 
  

 

 
    
  

  




  (3.3) 

3.2. Solution Via Operational Calculus 

By using (2.14) and (2.19), we express (3.2) as 

       

           

       

0 0

ˆ ˆ

ˆ ˆ

ˆ ˆ ,

m m
l l

l l
l l

a D u D t b D u D
D

A D u D t B D u D t
D

f D t v D t

  

 

 

 

      
        

 

  t

 (3.4) 

where 
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0

1

0

,   

,

m
l

l
l

m
l l

l l
l

A D a D

B D l a D b D



 







 

     




            (3.5) 

 

1 1
1 1

1
1

1

ˆ

.
m

k k
l l k l l k

l k k
l k l k

v D

a k u D b u D 

 
 

 


   

  
   



 
    
  

  
 

 

1



(3.6) 

In order to solve the Equation (3.4) for 

     ˆu t u D t , 

we solve the following equation for function  û x  of 
real variable x : 

       

   

d
ˆ ˆ

d
ˆ ˆ .

A x u x B x u x
x

f x v x

 

 
         (3.7) 

Lemma 11 The complementary solution (C-solution) 
of equation (3.7) is given by   1

ˆû x C x   , where  
is an arbitrary constant and 

1C

   
 2

ˆ exp d ,
x B

x C
A


 


 

  
 
           (3.8) 

where the integral is the indefinite integral and  is 
any constant. 

2C

Lemma 12 Let  ˆ x  be the C-solution of (3.7), and 
 be the particular solution (P-solution) of (3.7), 

when the inhomogeneous term is 
 *û x

x   for   . Then 

   
   

 *
3

ˆˆ d ,
ˆ

x
u x x C x

A




 
  



    ̂     (3.9) 

where  is any constant. 3C
Since    f t H t  satisfies Condition A and  v̂ D  is 

given by (3.6), the P-solution  of (3.7) is expressed 
as a linear combination of 

 û x
 *u x̂  for > M 

 û D

, and of 
 for , respectively.  *ˆ ku x > 1

From the solution  of (3.7),  is obtained 
by substituting 

k 
û x

x  by . Then we confirm that (3.4) is 
satisfied by that 

D
 û D  operated to .  t

3.3. Neumann Series Expansion 

Finally the obtained expression of  û D

D

 is expanded 
into Neumann series [11]. Practically we expand it into 
the sum of terms of negative powers of D, and then we 
obtain the solution  of (3.4). If the obtained 

 is a linear combination of 
   û D t

 û D   for > M   
with some > 1 , then u D  is the solution 

 of (3.2). If it satisfies Condition B, it is converted 
to a solution  of (3.1) for t , with the aid of 
Lemma 9. 

M 

 u t

 ˆ    t

> 0
 u t

3.4. Recipe of Obtaining the Solution of (3.1) 

1) We prepare the data:  by (2.14), and  f̂ D  A x , 
 B x  and  v̂ D  by (3.5) and (3.6). 
2) We obtain  ˆ x  by (3.8). The C-solution of (3.2) 

is given by 

    1
ˆ .u t C D t     

If   0v D  , the C-solution of (3.1) is obtained from 
this with the aid of Lemma 9. 

3) If  ˆ 0f D   or  ˆ 0v D  , we obtain  *û x  
given by (3.9). 

4) If  
1

ˆ 0k
kk

v D c D


    and , the so-    0f t 

lution of (3.2) is given by 

       
1

*
1

ˆ ˆ ,k k
k

u t C D t c u D t  





   


     (3.10) 

where k  are constants. The C-solution of (3.1) is then 
obtained from this with the aid of Lemma 9. 

c

5) If   1
ˆ 0k

kk
f D d D  


  , the P-solution of (3.2)  

is given by 

     *

1

ˆ ,   0,
kk

k

u t d u D t t 




    

where >k M   and k  are constants. The P-solu- 
tion of (3.1) with inhomogeneous term 

d

   1 kk ck
f t d g




  t  

is obtained from this with the aid of Lemma 9. 

3.5. Comments on the Recipe 

In the above recipe, we first obtain the C-solution of 
(3.7), that is    1

ˆû x C x  . It gives the C-solution 
   û D t  of (3.4) and hence the C-solutions  u t  of 

(3.2). A C-solution  u t  of (3.1) is then obtained with 
the aid of Lemma 9. 

We next obtain the P-solution  of (3.7), when 
the inhomogeneous part is 

 *û x
x   for   . As noted 

above, the P-solutions  û x  of (3.7) for ˆ f x  and for 
 v̂ x , are expressed as a linear combination of  *û x  

for > M  , and of k  for > 1*u xˆ k  , res- 
pectively. The sum of the P-solutions  û x  of (3.7) for 
 f̂ x  and for  v̂ x  gives the P-solution    tû D  

of (3.4) and hence the P-solution  of (3.2). The 
C-solution 

 u t
 u t  of (3.1) comes from the C-solution of 

(3.7) and the P-solution of (3.7) for .  v̂ x

3.6. Remarks 

When we obtain  û D

lb

 at the end of Section 3.2, we 
must examine whether it is compatible with Condition B. 
We will find that if 0  for >l m 1   , the ob- 
tained  û D  is not acceptable. Hence we have to solve 

Open Access                                                                                             AM 



T. MORITA, K. SATO 31

the problem, assuming that  for all 0lb  > 1l m  .  

When 
1

2
   and , we put . When  2m  2 1 0b b 

1   and , we put . Discussion of this 
problem is given in Appendices C and D of [4]. In the 
present case, the discussion must be read taking Condi- 
tion B there to represent the present Condition B. 

2m  0=2b

4. Laplace’s and Kummer’s DE 

We now consider the case of σ = 1, m = 2, , 
and . Then (3.1) reduces to 

2 10, 0a a 
0 2 0a b 

     

   

2

12

0

d d

dd
a t u t u t

tt
b u t f t

  

  

2 1

,   0.

a t b

t




       (4.1) 

By (3.5) and (3.6),  A x ,  and  are  B x  v̂ x

   
   

2
2 1 2

1 2 0 1

,   

2 ,

A x a x a x a x x

B x b a x b a

   

   
     (4.2) 

   2 1 0ˆ ,v x a b u                   (4.3) 

where 1

2

a

a
  . 

4.1. Complementary Solution of (3.7), (3.2) and 
(4.1) 

In order to obtain the C-solution  ˆ x  of (3.7) by using 
(3.8), we express    B x A x  as follows: 

 
 

1 2 ,
B x

A x x x

 


 


             (4.4) 

where 

01
1 2 1

2 1

01
2

2 1

2,   1,  

 1.

bb

a a

bb

a a

  



    

  
       (4.5) 

B(x) is now expressed as    2 1 2 1 1B x a x a     . 

By using (3.8), we obtain 

   

 

21

2
1 2

1 2

1

2

0

ˆ

1

,nn

n

x x x

x x

x
n



 

 

 






 


  



 

 

 
  

 


          (4.6) 

where 
   1

!

n

n

n n

   
 

 
 for   and > 1n   are  

the binomial coefficients. 
The C-solution of (3.2) is given by 

         

   

 

2
1 2

1 2

1

1
1

2
1

0

ˆˆ

1

.nn

n

u t u D t C D t

C D D t

C D
n

 

 

  

 


 

 


  



  

  

 
  

 




t

1

        (4.7) 

If 1 2 >    , we obtain a C-solution of (4.1), by 
using Lemma 9: 

     

   

 
 
     

 
   

1 2

1 2

1 2

1

2 1
1

0 1 2

1
1

1 2

2

0 1 2

1
1

1 2

1 1 2 1 2

1

1

!

1

; ; .

nn

n

nn

n n

u t H t C t

C t
n n

C t

t H t
n

C t

F t H t

 

 

 






 

 




 

 

   


  



  





  

 

 
      


  


 

 


  

    





H t

  (4.8) 

Remark 1 In Introduction, Kummer’s DE is given by 
(1.4). It is equal to (4.1) for , , 2 1a  1 1a   1b c  
and 0b a  . In this case, 

2 1 2

1

1,   2,   

1,   1.

c a c

a

  
 

     
   

         (4.9) 

We then confirm that the expression (4.8) for >1c  
agrees with (1.6), which is one of the C-solutions of 
Kummer’s DE given in [7,8]. 

4.2. Particular Solution of (3.7) 

We now obtain the P-solution of (3.7), when the inho- 
mogeneous term is equal to x   for  

 ˆ
. 

When the C-solution of (3.7) is x , the P-solution 
of (3.7) is given by (3.9). By using (4.2) and (4.6), the 
following result is obtained in [4]: 

   
 

 

21

21

2 1

*
11

2

3

* 1
, 1

02

ˆ d

ˆ

1
,

x

n n
n

n

u x x x
a

C x

C x
a




 


  

 
  










  

 


  


 

 





  (4.10) 

where 

1 2

1 1*
,

0 1 2

1 1
.

n

n p p
k

p p
C

k n k n k p p

   
        
    (4.11) 

Lemma 13 When 1 2 <p p 1  ,  defined by 
(4.11) is expressed as 

1 2

*
,n p pC
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1 2 1 2

1 2

* ?
, ,

1 2

2†
,

1 2

1
,   

.
1

n

n p p n p p

n
n p p

n

C C
p p

p
C

p p


 




 

† 

         (4.12)

 
This lemma is proved in [4]. 

4.3. Particular Solutions of (3.2) and (4.1) 

Equation (4.10) shows that if the inhomogeneous term is 
 for  D t   , the P-solution of (3.2) is given by 

   
2 1

* * 1
, 1

02

1
.n n

n
n

u t C D t
a


     


  

 


     (4.13) 

Theorem 1 Let <0\   , 1 2 <11       , 
and    f t g t . Then we have a P-solution  *u t  of 
(4.1), given by 

         †

2 1 2

1
,

1
u t H t u t H t

a   
 

       (4.14) 

where 

   
 

       

†

1

0 1 2

1
.

2 1
nn

n n

u t H t

t
n



  


   





 


      t H t
(4.15) 

Proof Applying Lemma 9 to (4.13), we obtain 

   

   
2 1

*

*
, 1

02

1 1
.

1
n n

n
n

u t H t

C t
a n




   






 



   H t

   (4.16) 

By using (4.12) in (4.16), we obtain (4.14) with (4.15). 
 
We note that  is expressed as    †u t H t

     
   

      

†

1

0 1 2

1

1

1 1

2 1 !
nn n

n n n

u t H t t

t H t
n


 

 


   






 

 


    
    (4.17) 

 
2 2 1 1 2

1

1

1 ,1;2 , 1;

t

  .F t H t





      


 

       
 (4.18) 

4.4. Complementary Solution of (4.1) 

By (4.3) and (4.5), . When     2 1 2ˆ 1v x a u    
0

0

.

 ˆ 0f x   and v x , the P-solution of (4.7) is given   ˆ 

by 

     *
2 1 2 0 0ˆ ˆ1u x a u u x            (4.19) 

By using (4.14) for 0  , if 1 2 <1 1    , we 

obtain a C-solution of (4.1): 

       

 
     

 

†
0 0

1
0

0 1 2

0 1 1 1 1 2

1

2 !

1 ;2 ;

nn

n n

u t H t u u t H t

u t
n

u F t H t




 

   





 


 

 

     



 .

H t

1

 (4.20) 

In Section 4.1, we have (4.8), that is another C-solu- 
tion of (4.1). If we compare (4.8) with (4.15), when 

1 2 >    , it can be expressed as 

     
1 2

†
1 1 1 .C t H t C u t H t              (4.21) 

Proposition 1 When 1 2   , the complementary 
solution of (4.1), multiplied by  H t , is given by the 
sum of the righthand sides of (4.8) and of (4.20), which  

are equal to    
1 2

†
1 1C u t H t     and    †

0 0u u t H t ,  

respectively. 
Remark 2 As stated in Remark 1, for Kummer’s DE, 

1  and 2  are given in (4.9), and 

1 1 21 , 2 ,a c 1.              (4.22) 

We then confirm that if , the set of (4.8) and 
(4.20) agrees with the set of (4.5) and (4.6). 

c

4.5. Remarks 

In [10], it was shown that there exist P-solutions ex- 
pressed by a polynomial for inhomogeneous Hermite’s 
DE, et al. We can obtain the corresponding result for 
Laplace’s DE. We discuss this problem in Appendix A, 
and then discuss the P-solution of inhomogeneous Her- 
mite’s DE in the present formulation in Appendix B. 

5. Solution of fDE (3.1) for 1 2  

In this section, we consider the case of 
1

2
  , 2m  ,  

2 1 00, 0, 0a a b   , and , 0 2 1 0a b b  
Then the Equation (3.1) to be solved is 

     
 

1 2
2 0 1 0 0

,  > 0.

R Ra t D u t a t D u t b u t

f t t

    


     (5.1) 

Now (3.5) and (3.6) are expressed as 

   
 

1 2 1 2 1 2
2 1 2

1 2
0 2 1

,

1
,

2

A x a x a x a x x

B x b a a x





   

  
      (5.2) 

   1 1 2 2
0

ˆ 1
M

k
k

k

v x a k u x 


,               (5.3) 

where 1

2

a

a
  . 
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5.1. Complementary Solution of (3.7) 

By using (5.2),    B x A x  is expressed as 

 
 

1 2 1 2
1 2 1 2

,
B x

x
A x x x

 


    

        (5.4) 

where 

0 0
1 2 1 2

2 2

1
1, , .

2 2

b b

a a
         

1
     (5.5) 

By (3.8), the C-solution  ˆ x  of (3.7) is given by 

     2 2
1 1 2

1 2

2 21 2 1 2

2 2

0

ˆ 1

2
.nn

n

x x x x x

x
n

   

 

  




 


  



   

 
  

 


   (5.6) 

5.2. Complementary Solution of (3.2) and (5.1) 

The C-solution of (3.2) is given by 

         

 1 2

1

2 2
1

0

ˆˆ

2
.nn

n

u t u D t C D t

C D
n

 

  


 


  



  

 
  

 




t
      (5.7) 

If 1 2 >02 2   , by applying Lemma 9 to this, we 
obtain the C-solution of (5.1): 

       

 1 2

1

2 2 1
1

0
1 2

2 1
.

2

nn

n

u t H t C t H t

C t
nn

 






 


  



 

 
         

 

 H t   (5.8) 

5.3. Particular Solution of (3.2) and (5.1) 

By using the expressions of  A x  and  ˆ x  given by 
(5.2) and (5.6) in (3.9), we obtain the P-solution of (3.7), 
when the inhomogeneous term is x   for   : 

   

 
 

21

21

2 1

2* 1 2

31 21 2 1 2
2

* 2
2 ,2 2

02

ˆ

ˆd

2
,

x

n n
n

n

u x x x

C x
a

C x
a









  



  
  








 




  




 





    (5.9) 

where 
2 1

*
2 ,2 2n C     is defined by (4.11) and is given by  

(4.12), if 1 2 <12 2 2     . 
By using (4.12) in (5.9), we can show that if the in- 

homogeneous term is  D t  for   , the P-solu- 
tion of (3.2) is . By applying Lemma 
9 to this, we obtain the following theorem. 

   u t t  * *û D  

Theorem 2 Let  , <1 1 2 <12 ,2 2 2        ,  

and    
11

f t 






of (5.1), given by 

     
*

2 1 2

1
u t H t

a   


  
   † ,u t H t    (5.10) 

where 

     
 

   

1†

0 1 2

2 1

2 2

1 2 2 2

1
.

2

n

n n

n n

u t H t

t H t
n





 
  








 




  

 
   
 


   (5.11) 

In Appendix C, discussion is given to show that there 
exist P-solutions in the form of polynomial for (5.1). 

5.4. Complementary Solution of (5.1) 

We obtain the solution  only for  *u t <1 
 

. Even 
though we have P-solutions of (3.2) for    t ˆv t v D , 
when  v̂ x  is given by (5.3) with nonzero values of 

1 2 2ku   , it does not satisfy Condition B, and does not 
give a solution of (5.1). Hence  given by (5.8) is 
the only C-solution of (5.1). 

 u t

If we compare (5.8) with (5.11), we obtain the follow- 
ing proposition. 

Proposition 2 Let 1 2 >2 2 0   . Then the C-solu- 
tion of (5.1) is given by 

     
1 2

†
1 1 .C t H t C u t H t              (5.12) 
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Appendix A: Polynomial Form of P-Solution of (4.1) 

Let 1 \ <0    and . Then (4.15) gives 1 >n  0
 

   
      1

1 1 2 1 11
11 2 1 1

† †
, 1†

1, 1

1 1

1
n

n nn
n nn

u t H t t C t H
nC


   

  




t


  
 

 
   

                   (A.1) 

 

 
      

1
1

2 1 11

1 2 1 1

1
† †

, 1† 1
0 1, 1

1 1

1

n
n

nn
nn

u t t C t H t
nC


   

  






 
 

 
       

             (A.2) 

 

where 
 

 2 1 1

1 1†
, 1

1 1 2

1
.

2
n

n

n

C  

 
   

 


  
       (A.3) 

We obtain the following theorems from (A.2) with the  

aid of Proposition 1. 
Theorem 3 Let 1 >n 0 , 1 <0 1 2 <, 0      , 

and    
1nf t g t . Then we have the polynomial form 

of P-solution of (4.1): 
 

     
 
   

 
       

1
1

1

1

1
1 2 1

02 1 1 2 1 21

2 11
.

1 21

n
nn n

n
n nn

u t H t t H t
a n n

  


    





  
   

        


1
         (A.4) 

 

Theorem 4 Let 1 >0 , 1 2n  > 1    , 2 > 1   and    f t g t  for 1 2 1 n1       . Then we have the 
polynomial form of P-solution of (4.1): 
 

   
 

   
 

       
1

1 1 2

1

1

1
21

02 1 1 22

11
.

1

n
nn n

n
n nn

u t H t t t H t
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                  (A.5) 

 

Appendix B: Polynomial Form of P-Solution 
of Hermite DE 

We now consider the inhomogeneous Hermite DE given 
by 

     
2

2

d d
2 2

dd
y x x y x c y x x

xx
,        (B.1) 

for  and > 1x   . We put  and 
. Then the equation for  is given by 

2t x
 u t  y x  u t

       
2

2
2

d d
4 4 2 2

dd
t u t t u t c u t t

tt
     

This is Laplace’s DE (4.1) with parameters 

2 1 1 0 1 2

1 2

3
4, 4, 2, 2 , ,

2

1
1, ,

2 2 2

a a b b c

c c

 

 

       

    

  (B.3) 

and the inhomogeneous term    2 11
2

f t g



    
 

t

1

. 

Theorem 5 Let 2c m  ,

.   (B.2) 

 nd m, a  1n2 1   , 

1 >0n  . Then ve the polynomial form of P- 

solution of (B.2): 

 we ha

 

   
 

 
 

1
1

1

1 1

0
1

1 1
2 2

.
1 1 1

4 1
2 2 2

n
n nn

n

n n

n m

u t H t t H t
n m n





            
            
    

                    (B.4) 

 

Proof In this case, 1

3

2
m    , 2 m  , and  

1 1
2

n


  . By Theorem 3, we obtain this result.  

Theorem 6 Let c 2 1m  , 0m , and < 12 1n   , 

1 >0n  . Then we have the polynomial form of P- 

solution of (B.2): 
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1 1
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01

1
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.

34 1
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nn
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n
m

u t H t t t H t
n m n





      
    

 

                     (B.5) 

      

Proof In this case, 1

3

2
m    , 2 m  , and 

1

1
1

2 2
n


   . By Theorem 4, we obtain this result.  

Theorem 7 Let 2c m , , and m 12 1n   , 

1 >n 0 . Then we have the polynomial form of P- 

solution of (B.2): 
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1

1 1
1 2

0
1

11
1

22
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1 3
4 1

2 2
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nn

n
n
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                    (B.6) 

 

Proof In this case, 1 1m    , 2

1

2
m   , and 

1

1
1

2 2
n


   . By Theorem 4, we obtain this result.  

Theorem 8 Let 2c m , , and <0m 12 2n  

1 >0n

, 

 . Then we have the polynomial form of P- 

solution of (B.2): 
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1

1 1
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1

1
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1 1
4 1

2 2

n
n nn

n
n

n

n
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u t H t t H t
n m n





     
 

         
   

                   (B.7) 

 

Proof In this case, 1 1m    , 2

1

2
m   , and 

1 1
2

n


  . By Theorem 3, we obtain this result.  

Remark 3 We confirm that Theorems 7 and 5, res- 

pectively, agree with Theorems 1 and 2 in [10]. 

Appendix C: Polynomial Form of P-Solution 
of (5.1) 

Let 1   and 1 >n 0 . Then (5.11) gives 
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1 1 2 1 11
11 2 1 1
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2 ,2 2†
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     (C.2) 

 
where 

 
 2 1 1

1 1†
2 ,2 2

1 1 2

2 2
.

1 2 2 2
n

n

n
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     (C.3) 

We obtain the following theorem from (C.2) with the  

aid of Proposition 2. 
Theorem 9 Let 1 >n 0 , 1 2 > 1    , 2 > 1   

and    f t g t  for 1 2 1n      . Then we have 

the polynomial form of P-solution of (5.1): 
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