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ABSTRACT 

Most models for forecasting a company’s value either use only information from single markets or compress informa- 
tion from other markets. We propose a model using a company’s full capital structure including the term structure and 
type of outstanding debt to assess its future value. We discuss the numerical properties of our model and demonstrate its 
usefulness when estimating the probability of default as a valuation example. 
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1. Introduction 

There is a variety of theoretical and empirical work using 
market data to price the equity or the credit side of a 
company. However, there are few attempts to use all 
available information of a company’s capital structure. 
Broadly speaking, a firm’s financial resources are di- 
vided into equity and debt, where the former is traded 
through the stock of the company and the latter is avail- 
able to debt holders through loans, bonds or structured 
debt vehicles, e.g. asset backed securities. With the evo- 
lution of the credit default swap market, there has been a 
third information source, solely used by professional 
traders and thus considered very efficient in pricing a 
company’s default risk. 

Including more market information increases the pre- 
cision of any estimate as even when we assume a market 
to be strongly efficient and the observed market price 
reflects all available information, it is not wise to neglect 
additional prices from other markets. For example, con- 
sidering a senior bond investor, the price of her position 
in an efficient market reacts to a deterioration of the 
company’s creditworthiness only up to the level of the 
expected recovery of the bond. The equity piece, in con- 
trast, is fully exposed to a credit event leading to more 
pronounced reactions in the company’s stock price. 
Combining the information from both markets, the bond 
and the stock price dynamics, increases the validity of 
any valuation. 

The empirical literature related to our approach dis- 

cusses interactions between two markets. [1] shows 
credit markets to lead bond markets and both lead rating 
information in default prediction. [2] establishes the link 
between equity volatility and credit default swaps, [3] 
relates the former market to bond yields and [4] looks 
into the determinants of credit spreads. Furthermore, 
there is a variety of very detailed and insightful work on 
single markets and their different aspects. On the theo- 
retical literature brand, we employ the structural model 
class proposed by [5] and its more operational version by 
[6] and use straightforward method to extract default 
probabilities from bond prices, e.g. [7-9]. 

The combination of these models allows us to use all 
available information on the company’s financial situa- 
tion such as balance sheet information, stock price dy- 
namics, debt structure, debt maturity, term structure and 
market prices of default risk. It is crucial to note that as- 
sessing a company’s default risk is only one of the ap- 
plications of our model. It can also be used as a pricing 
tool for any of the three markets, as a company valuation 
approach or to spot differences in the market’s valuation 
in a capital structure arbitrage setting. 

In the next section, we will introduce our model. The 
implementation and results of the model are then sub- 
jected to the third section, while the last part concludes. 

2. Model 

Fundamental to our model is the filtered probability 
space   0

, , ,t t
Q


    under the martingale measure 
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Q . The filtration 
0t t
 is assumed to satisfy the usual 

conditions. We focus on the equity, bond and default risk 
dynamics of a company. 

 

Let T  be a time horizon and we denote by time 

0  today. We assume that the capital structure of the 
company is changed at known, discrete times 

0T

0 1T T 

MT

20 ,NT T T   



 

which are for example bond redemption dates, coupon 
dates, future bond emissions or changes in the loan struc- 
ture of the company. At these days we allow for changes 
in the debt structure of the company. In our implementa- 
tion these dates will be derived from the bond and loan 
structure of the company. For example IBM currently has 
24 bonds outstanding resulting in an average time be- 
tween bond events of nine days. We assume that the debt 
is constant in between two i  and 1iT   and denote the 
outstanding debt on a per share basis by . 

T
:D D

ii T

One particular important application of a company’s 
valuation is the assessment of its likelihood to fail on 
fulfilling its financial obligations. While there are several 
ways to model the default probability  of a 
default of the company between t and a later time  
we propose a combination of common approaches of 
default risk modelling to obtain model of equity dynam- 
ics. 

 ,defP t T
T t

We use an intensity based default model and a [5] type 
default model to obtain equity volatilities. The tenor 
structure 1  of capital structure dates together 
with the prevailing debt-per-share ratios i  at dates  
will induce a term structure of equity volatilities 

 , ,T 
D iT

S
i  

and consequently a term structure of implied stock vola- 
tilities CG

i . Based on this set of volatilities we model 
the equity price process. 

In our structural model we use standard assumptions to 
derive the survival probability  for a company. 
With this measure at hand we can both assess the riski- 
ness of the company as well as induce its market prices. 
The latter is found by the fundamental link between the 
riskiness of the company and the compensation demanded 
by both equity and bond holder to hold the company’s 
assets. We will illustrate this link in the empirical section 
of this paper, now for the theory we model the com- 
pany’s asset value V under the measure Q as a geometric 
Brownian motion 

 ,P t T 

,d d dt V WDV V    

where the asset volatility   is unknown. There is an 
extensive literature extending this type of models with 
more stochastic, however the trade-off between a theo- 
retically more appealing and a traceable model is large. 
We use a model variant proposed by [6] with some of the 
extensions applied, especially the implementation of im- 
plied volatility and implied leverage based on [10,11]. 

The recovery rate   and its volatility     can be 
based on recovery statistics published by rating agencies. 
Alternatively, option implied volatilities can be used, we 
will demonstrate the latter in the empirical section. The 
unobservable asset volatility   is related to the observ- 
able equity volatility S  by 

.S S

S D
 


             (2.1) 

The approximate survival probability  ,P t T  de- 
pends on : tS S , ,  :D D t  , S ,   and is 
given as  

     
 

   
 

, log
,

2 ,

, log

2 ,

A t T d
P t T

A t T

A t T d
d

A t T

 
     

 
 

     
 

      (2.2) 

with  

2

e
S

d
D

 



 

   
2

2 2, .S S
A t T T t

S D
      

  

Our first goal is to obtain an implied equity volatility 
term structure together with a term structure for the debt 
per share ratio. These volatilities mimic the company’s 
riskiness using full market information. 

For the tenor structure 0 1  and 
each time interval 

0 :Nt t t T    
 1,i it t   we estimate the stock volatil- 

ity  

 1: ,i i it t    

in that time interval and the debt per share ratio  

 1: ,i i it t   .  

The resulting term structure  1, , N σ   and 
 1, , N δ   will be denote by bold letters in the fol- 

lowing and generally, we will denote any term structure 
by bold letters in the following. 

For example, it makes sense for an investor to monitor 
the future development of a company (in terms of vola- 
tility and debt per share ratio) quarter-annually over the 
investment horizon . T

We combine information from several observable mar- 
kets, the bond market, CDS market and stock option 
market. Each market contains information and market 
expectations for the future, which are the implied hazard 
rates from the bond market, the default expectations from 
the CDS market and the implied volatilities from the 
option market each seen from today . In detail, we 
collect 

0t

1) for 0, ,i N   the cumulative default probability 
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
N




 0, iPD t

  0,PS t

  ,i iPDM t t

 between 0 and , i

2) for  the cumulative survival probability 
 between 0 and , 

t

i

i



with 
0, ,i  
 1 0,i PD 

0, ,i  
t
1N

  1 2

1 2

log

log

z

z

d
G u d z u

u

d
d z

u









 

 
    

 
 

    
 

i

3) for  the marginal default probability 
 between  and  conditional on no 

default till . It is,  

t

u

 
1

it
t 1it 

       
  

1
1

0, 0,
, =

0,

i i
i i

i

.
t PD t

PDM t t
PS t







1



PD

DM

1
:

1i
iDS

 
 

  

Further, this gives 2: 1 4 2z r    
4) for  the marginal survival probabil- 

ity i i  between  and 
 conditional on no default till ,  

0, , 1i N 
 , 1i it t P  

0, ,i 

PSM

it 

t

1 ,t t
t

N

it

t

2 2:    

for unknown i  and i , cf. [6]. Assuming  
  ,PSM t t 1

1 i

5) for  the CDS-spread  with 
maturity , 


i

0, , 1i N

ˆ 0, ic  , this simplifies to Equation (2.5).  i i

6) for  the marginal CDS-spread  
  1,i icM t t  

1, ,j  
 between t  and ,  i 1i

7) for  implied volatilities 
t 

M  ˆ jT  of 
observable ATM options with maturities jT .  

Remark: Because the bond-tenor structure 1
B B

n
c

T   T
T

The right hand side of this system stems from Equa- 
tion (2.2) adapted to a time period  1,i it t  . Hence, we 
equal the model implied marginal CDS spread and the 
observed marginal CDS spread and also the marginal 
survival probabilities. To stabilize the numerical process 
we use the observed marginal probability in the right 
hand side of Equation (2.4). Moreover, instead of a root 
finding algorithm to solve the system we use a minimiza- 
tion to find i  and i  in each step which increases the 
numerical robustness of the iteration step. 

 
and CDS-tenor structure mT1

c    does not match 
neccessarily the tenor 1 Nt t   we use appropriate 
interpolation methods to strip all necessary data from 
observable bond and CDS data. 

The backbone of the model is the linkage of all these 
markets by the structural model discussed above. We 
proceed recursively and determine the unknown values 

i

At this stage of the procedure only CDS data and bond 
data are involved in the determination of the term 
structures  and δ . Denote by  σ

  and i  step by step. We start with  and pro- 
ceed with the following computational step successively: 

0i         0 1 1, , , ,N NPSM t t PSM t tPSM   and  

step: : 1i it t         0 1 1, , , ,N NcM t t cM t tcM   the observed mar- 
Goal: Find  and . : t t   1: ,i i it t  1, i i i

Solve system for the unknown i , i :  

  1

!



,

log log

2 2

i i

i i

i i

PSM t t

Ad d

A A



   
       
   

A
d

ginal survival probabilities and CDS-spreads. We can 
interpret the above recursive computation as a mapping 
from the space of observables   N N  PSM cM    to 
the space of term structures N N  σ δ   ,    (2.3) 

    , ,F PSM cM σ δ .  

with  However,  and  are not observable in the real 
world, so that the model cannot be calibrated in its cur- 
rent form and we need a further mapping to observable 
market data. 

σ δ
2

: ei

i

d
1 




 


  

 
2

2
1

1
:

1i i i i
i

A t t 2 


 
      

 
With given volatility term structure  we can com- 

pute by Black-Scholes formula option prices and obtain 
implied volatilities for all traded options. Since our vola- 
tility term structure is deterministic in the strike direction  

σ

and Equation (2.4) 
 

    
       

            1

!
1

1

1 1

1 , e
, 1

( , , e ei i

r
i i i i

i i r t t r
i i i i i i

PSM t t G t t G
cM t t r R

PSM t t PSM t t G t t G





 

 


  

 

    
 

    
          (2.4) 

    
    

         1

!
1

1

1 1

e
, 1

1 , e ei i

r
i i

i i r t t r
i i i i

G t t G
cM t t r R

PSM T t G t t G





 
.

 


  

 

  
 

    
              (2.5) 
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we will not observe a volatility smile, yet curvature in the 
maturity direction can be modelled. Therefore, we fix a 
level of moneyness and stick with at-the-money (ATM) 
options. Hence, we can project the unobservable  
onto observable Black-Scholes ATM-implied volatilities 

σ

 1 , , BS B
M BSσ  S  for observable options with ma- 

turities jT
:

. In this way we managed to define a mapping 
N N MG    

 
 from the space of observables  

N N  PSM cM    to the space of observable ATM- 
implied volatilities,  

    T

1, , ,BS BS
MG  PSM cM  .  

Assuming only mispricing in the CDS and bond mar- 
ket, i.e. no mispricing in option market, we can identify 
mispricing by the least-squares approach 

 
   

2T

1
, 2

ˆ ˆmin , , , .MG  
PSM cM

PSM cM   

More realistic is to assume also mispricing on the op- 
tion market. Hence, we have to include the ATM-implied 
volatilities in the minimization process. Therefore, we 
suggest to minimize the following functional 

 




1 2

, 0

1 2 2

0 1

min

ˆ ,

N
P

i i
i

N M
c B

i i j j
i j

w PSM PSM

w cM cM w  







 

 

     



 

PSM cM

S

  (2.6) 

where , ,P cw w w  are weights and scales to reflect our 
assumptions on the quality of the observed market prices. 

3. Numerical Study 

Before we test our setup on real world data we perform a 
couple of test cases. We assume for all cases a constant 
risk-free rate , no dividend, 0.03r  0.5  , 0.3   
and bond/CDS recovery rate . We will monitor 
quarter annually and assume a stepwise hazard rate i  
for the the interval . From hazard rates we get 
by the credit triangle, 

0.4R 
h

 , 1i iT T 

  1i icM h R    

and 

 e ih dT
iPSM    

with . 0.25dT 
Assume that we have stripped from the bond market 

the hazard rates B
ih  and from the CDS market the rates 

. C
ih
Case 1: In our first test scenario we assume that bond 

and CDS market imply the same hazard rates, hence 
B C
ih h i . Further, we assume that the rates are flat for 

each year with jumps at the end of each year. In particu- 
lar, consider 

 
       
   
   

0.05 0,1 2,3 4,5

: 0.02 1,2

0.08 3,4

B C

h t t

h h H t h t t

h t t

  


    
  

 

.  

From ,B Ch h  we get  and  and 
compute the volatility and debt per share term structure, 
see Figure 1. Seen from , the term structures sug- 
gest a drop in volatility in the second year and a rise in 
volatility for the fourth year, seen from the level of the 
first year. This corresponds to the lower resp. higher 
level of hazard rates during these time periods. Further, if 
we assume a constant level of equity then the debt per 
share ratio suggests lower debt in the second year and 
increasing debt in the fourth year with respect to the debt 
level at the beginning in accordance to the lower resp. 
higher hazard rates. For example, the decrease in debt in 
the second year results in a shortage of outstanding bonds, 
that is rising bond prices which is reflected in lower 
hazard rates. 

 icM

0

  iPSM

t

 

 
(a) Volatility term structure 

 
(b) Debt per share term structure 

Figure 1. Volatility and debt per share term structure for 
study Case 1. 
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Case 2: For the second scenario we assumed a flat 
hazard rate  from the CDS market throughout the 5 
years, and  for the rates from the bond mar- 
ket. Hence, the market implies a constant default risk for 
the company for the next 5 years. For the second year we 
assumed an increase in bond prices that is a drop in the 
risk premium for the company implied from debt and we 
expect a drop in volatility due to a less risky company 
and a drop in debt per share ration as less debt is out-
standing on the market. In the fourth year we assumed 
more risk stemming from the bond market. Yet, the de-
fault risk is untouched showing a strong market belief in 
this company resulting in a drop of volatility. On the 
other hand rising risk premiums from the bond market 
signal more debt and we expect a rising debt per share 
ratio. The model results are shown in Figure 2. 

Ch
B   h H t

Case 3: For the third scenario we assumed a flat 
hazard rate Bh

C 
 from the bond market throughout the 5 

years, and  for the rates from the CDS mar-  h H t
 

 
(a) Volatility term structure 

 
(b) Debt per share term structure 

Figure 2. Volatility and debt per share term structure for 
study Case 2. 

ket. Quantitatively, if default risk drops and bond risk 
stays untouched, one expects the volatility to drop as 
well as there is less risk in the underlying. Because there 
is a mismatch between the CDS implied default risk of 
the company, which is low for the second year, and a 
higher level of risk premium from the bond market, there 
is a strong market belief in the company and a rise in the 
debt per share ratio. On the other hand, rising default risk 
in the fourth year implies a higher volatility. The cause of 
the higher default risk is explained by a higher degree of 
debt. The model results are shown in Figure 3. 

Case 4: For the last example we extend our previous 
hazard rate by a linear increase in the third year,  

     
   
     
   

0.05 0,1 4,5

0.02 1,2

0.02 0.06 2 2,3

0.08 3,4

B C

h t t

h t t
h h

h t t t

h t t

  


 
  

    
  



 

 

 
(a) Volatility term structure 

 
(b) Debt per share term structure 

Figure 3. Volatility and debt per share term structure for 
study Case 3. 
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and assume that bond and CDS market follow this hazard 
rate. Hence, the risk is determined by the hazard rate 
which is reflected in the volatility mimicking the behav- 
ior of the hazard rate, see Figure 4. Moreover, we would 
also expect that the debt per share ratio mimics the 
hazard rate as the debt level is determined by the bond 
prices. 

We finish this section with a real-world example. For 
our study we took the 0  as observation 
day and chose IBM company as underlying because 
options on IBM and CDS quotes are liquidly traded and 
IBM offers a rich structure of issued bonds with different 
maturities. We assume a constant risk free interest rate of 
1.5% to simplify discounting, a mean standard deviation 
of the global recovery 

5 /18 / 2011T 

0.5   and a percentage stan- 
dard deviation of the global recovery 0.1 

11/ 29 / 2T 

 in the 
CreditGrades model. From bond market we picked three 
bonds  with maturities  

1 2 3  
and CDS quotes with maturities 6 m, 1 y, 2 y which are 
tabulated in Table 1. 

1 2 3, ,B B B
1/11/ 2011,T T1 1 011, 012  0 / 22 / 2

 

 
(a) Volatility term structure 

 
(b) Debt per share term structure 

Figure 4. Volatility and debt per share term structure for 
study Case 4. 

From the bond data we stripped observed marginal 
survival and default probabilities between the given time 
points and obtained marginal CDS quotes by assuming a 
flat hazard rate between two successive time points from 
the observed CDS quotes. The results are summarized in 
Table 2. 

From option quotes we collected data for ATM op- 
tions with maturities 30 d, 3 m, 6 m, 12 m, 18 m, see 
Table 3. We assume that all input data might be inflicted 
by mis-pricing so that we choose Equation (2.6) for the 
calibration with weights . The 
optimization was done by Nelder-Mead algorithms which 
avoids the computation of derivatives and works very 
robustly even in higher dimensions [12]. 

1, 100, 1P cw w w  

The results of the calibration is summarized in Figure 
5 which shows the model implied volatility and debt per 
share term structure. Hence, the model implies rising 
riskiness of IBM over the next one and a half year, and a 
drop of the debt per share ratio beginning in 6 month and 
lasting for about one year. From the volatility term struc- 
ture in Figure 5 we get Black-Scholes implied ATM 
volatilities for options with different maturities. We com- 
pare the model implied ATM volatilities to the market 
observed data in Table 3. We observe that the short term 
options (i.e. maturity till 6 month) are matched well by 
the model whereas the model suggest higher implied 
volatilities for the long term options (12 months and 18 
months) in accordance to the volatility term structure in 
Figure 5. 

Moreover, we get marginal credit default swaps and 
default probabilities by the calibration. For a comparison 
we calculated from the computed marginal spreads the 
model implied CDS quotes for 6 m, 1 year and 2 years, 
see Table 1. In good accordance to the above results the  

 
Table 1. Observed CDS and model implied CDS quotes. 

Maturity 6 m 1 y 2 y 

CDS (bp) 11.6 11.43 16.75 

Model CDS (bp) 11.60 27.42 24.98 

 
Table 2. Marginal CDS quotes, survival and default prob- 
abilities and model implied marginal probabilities. 

 11/11/2011 10/22/2011 11/29/2012 

Marginal CDS (bp) 11.6 28.11 22.17 

Marginal PD 0.024% 0.063% 0.27% 

Marginal model PD 0.228% 0.069% 0.084% 

 
Table 3. Observed ATM implied volatilities and model im- 
plied volatilities. 

 30 d 3 m 6 m 12 m 18 m 

ATM vol. 17.17% 18.58% 20.28% 21.75% 22.39%

model ATM vol. 18.58% 18.58% 19.36% 27.15% 29.77%
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(a) Volatility term structure 

 
(b) Debt per share term structure 

Figure 5. Volatility and debt per share term structure for 
IBM with observation day T0 = 5 = 18 = 2011. 

 
model implies higher risk levels of IBM starting in 6 
months. The calibrated marginal default probabilities are 
shown in Table 2. They are matching the observed data 
well. 

4. Conclusion 

Precise estimation of market parameters is crucial for a 
variety of applications. Regulatory bodies, for example, 
rely on default estimates from rating agencies or implied 
measures from single markets. Combining all available 
information within one structural approach enables mar- 
ket participants to benefit from the full information set. 
In the example of default estimates, the outcome is more 
precise and stable over time compared with a single mar- 

ket’s outcome. We use widely-accepted models for the 
equity and credit side of a company and combine them 
into a single model. We demonstrate the numerical prop- 
erties of our model and estimate an example. Future re- 
search should focus on a broad market study and a full 
benchmark against more simple models. 
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