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ABSTRACT 
Discovering genetic basis of diseases is an important goal and a challenging problem in bioinformatics research. In- 
spired by network-based global inference approach, Semi-global inference method is proposed to capture the complex 
associations between phenotypes and genes. The proposed method integrates phenotype similarities and protein-protein 
interactions, and it establishes the profile vectors of phenotypes and proteins. Then the relevance between each candi- 
date gene and the target phenotype is evaluated. Candidate genes are then ranked according to relevance mark and 
genes that are potentially associated with target disease are identified based on this ranking. The model selects nodes in 
integrated phenotype-protein network for inference, by exploiting Phenotype Similarity Threshold (PST), which throws 
lights on selection of similar phenotypes for gene prediction problem. Different vector relevance metrics for computing 
the relevance marks of candidate genes are discussed. The performance of the model is evaluated on Online Mendelian 
Inheritance in Man (OMIM) data sets and experimental evaluation shows high performance of proposed Semi-global 
method outperforms existing global inference methods. 
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1. Introduction 
It is challenging for biomedical research to figure out the 
genetic basis of diseases. Traditional biology researchers 
adopt linkage analysis and association studies [1] to dis- 
cover disease genes, which firstly locate disease genes in 
a chromosome region. However, the resolution of this 
approach is low and further analysis of candidate genes 
in a large genomic region is an expensive task, which 
prevents gene identification even after a region has been 
detected.  

Many studies have tried to discover disease genes with 
computational methods. Some work related was based on 
annotations [2-4], or based on sequences [5]. But, the 
methods rely on functional annotations are limited be- 
cause only a small part of genes in the genome have been 
annotated currently and methods based on sequencing is 
an expensive task. Moreover, they treated disease genes 
as separate and independent, however, biological pro- 
cesses are not realized by a single molecule, but rather by 
the complex interactions of proteins, and the breakdown 
in protein interaction networks could result in diseases 
[6]. Moreover, some research indicates that phenotypi- 
cally similar diseases are caused by functionally related 
genes [7], and the proteins coded by these functionally  

related genes usually have direct or indirect interactions 
[8]. From this perspective, disease genes could then be 
investigated through the interaction networks of disease 
proteins. 

Recently, researchers took advantage of the computing 
method to build biological network to help explore the 
relationship among biological information in multiple 
granularity, and network approach in biology is proposed 
and under active research [9], which also facilitates dis- 
ease gene discovery. A wide range of methods are pro- 
posed based on network methods for disease gene priori- 
tization [10-16]. A method utilizing Bayesian predictor 
and ranking of protein complexes linked to human dis- 
eases is proposed by Kasper Lage et al. to predict genes 
of human’s inherited phenotypes [13]. Xuebing Wu et al. 
proposed network-based global inference approach [14]. 
These methods achieve some accomplishments in disease 
gene prioritization, which primarily relies on analysis of 
the topological properties of PPI networks and the ex- 
pectation that the products of genes that are associated 
with similar diseases interact heavily with each other. 

Motivated by these existing network based approaches, 
we propose a network based Semi-global inference model 
for disease gene prioritization, which selects diseases in  
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integrated phenotype-protein network for building profile 
vectors of candidate genes and target disease, by ex- 
ploiting Phenotype Similarity Threshold (PST). The 
model evaluates the relevance between candidate genes 
and the given target phenotype. Candidate genes are then 
ranked according to relevance marks. Genes that are po- 
tentially associated with target disease are prioritized 
based on this ranking. To evaluate the effectiveness of 
the model, the proposed model is tested on known phe- 
notype and gene pairs from OMIM. Our research has 
three contributions: 
• Semi-global inference method with Phenotype Simi- 

larity Threshold (PST) is proposed to prioritize candi- 
date disease genes. The experimental result shows the 
proposed Semi-global method outperforms existing 
global inference method. 

• Phenotype Similarity Threshold (PST) is defined to 
make a difference between high similarities and low 
similarities and to distinguish between diseases closely 
related to target disease and diseases less related, 
which specifies phenotypes in the network to be con- 
sidered and exploited for inference. Two methods 
(S-PST, D-PST) to get PST are introduced and com- 
pared. 

• Performance of proposed model with different vector 
relevance metrics (Pearson correlation coefficient, 
Euclidean distance and Cosine similarity) are eva- 
luated and compared. We show that Semi-global infe- 
rence works well with Euclidean distance and Cosine 
similarity. 

In Section 2, we briefly introduce the background of 
network based candidate gene prioritization by describ- 
ing the problem formally and discussing the related work 
and their limitations. Section 3 presents Semi-global in- 
ference model and explains strategies of PST to select 
nodes in phenotype-protein network. Section 4 shows 
experimental results of proposed Semi-global inference 
model with variation of relevance metrics and PST，and 
comprehensively compares the performance of proposed 
model against an existing global inference method. In 
Section 5, we draw some conclusions and point out fur- 
ther work. 

2. Background 
2.1. Network Based Candidate Gene 

Prioritization 
Here is a brief description of network-based disease gene 
prioritization problem referring to [17]: given target dis- 
ease d, the input to the candidate disease gene prioritiza- 
tion problem consists of two sets of genes, known set K 
and candidate set C. The known set K contains prior 
knowledge of the disease d, e.g., it is the set of genes 
known to be associated with d and diseases similar to d. 

Each gene g ∈  K is associated with a similarity score 
σ(g, d), indicating the known degree of association be- 
tween g and d. The candidate set C contains candidate 
genes, one or more of which is potentially associated 
with target disease d (e.g., these genes might be in the 
linkage interval of d that is identified by association stu- 
dies). The purpose of network based disease prioritiza- 
tion is to use a PPI network G = (V, E), to compute a 
score φ(v, D) for each gene g ∈  C that represents the 
likelihood of g to be associated with d. 

The PPI network G = (V, E) consists of a set of gene 
products V and a set of undirected interactions E between 
these gene products, in which uv ∈  E represents an 
interaction between u ∈  V and v ∈  V. In this network, 
the set of interacting partners of a gene product v ∈  V is 
defined as N(v) = {u ∈  V: uv ∈  E}.  

Global prioritization methods use this network infor- 
mation to compute φ by propagating σ over G. Candidate 
genes with high relevance to target disease of interest are 
ranked in the top and are regarded as the disease genes. 

2.2. Related Work 
Xuebing Wu et al. have proposed network-based global 
inference approach called CIPHER algorithm [14], in 
which Pearson correlation coefficient is adopted to eva- 
luate the relevance between candidate genes and the tar- 
get disease. Another global inference method is proposed 
based on a network propagation algorithm to formulate 
constraints on the prioritization function [16]. 

Although these existing global network based methods 
to some extent throw lights on disease gene prioritization 
problems, they have some drawbacks and limitations. 
Research of Xuebing Wu et al. is based on the assump- 
tion of the linear correlation between profiles of pheno- 
types and disease genes, which shows some bias against 
genes whose related proteins have few interactions with 
other peers [14]. Moreover, as reported in literatures, 
network based global inference methods, favor genes 
whose products are highly connected in the network and 
perform poorly in identifying loosely connected disease 
genes, due to centrality of target disease genes [17] and 
incomplete and noisy nature of the PPI data [18]. 

In global inference method, all the diseases in the 
phenotype similarity network are exploited to generate a 
prediction, including less related diseases to profile a 
target disease, which fails to take into consideration that 
more similar diseases may play more important roles in 
inference. No work has been done for disease gene pri- 
oritization using only parts of diseases in phenotype 
network, and nodes selection strategy has not been ex- 
plored. Secondly, phenotype similarities vary. A target 
disease has different phenotype similarities to other dis- 
eases in the network. No selection criteria is made to 
treat roles of diseases differently in phenotype network, 
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no methods make a difference between high similarities 
and low similarities, which might be considered to de- 
termine which related diseases to refer in gene prioritiza- 
tion problems. 

Our research aims at exploring the uncovered areas 
mentioned and overcoming limitations of global infe- 
rence methods. We propose Semi-global inference me- 
thod by exploiting PST as the criteria to select pheno- 
types in network for inference, which is the essential 
difference between proposed Semi-global model and 
existing global inference methods. 

3. Methodology 
In this section we present the mathematical model and 
show the general framework of gene prioritization algo- 
rithm of Semi-global inference. Furthermore, we explain 
how Phenotype Similarity Threshold is exploited for 
nodes selection in phenotype network, which is the core 
of Semi-global inference model. 

It is important to note that the purpose here is to infer 
functional associations between genes from functional 
and physical interactions between their products. For this 
reason, any reference to interactions between genes in 
this paper refers to the interactions between their prod-
ucts. Meanwhile, disease gene prioritization is inferred 
from phenotypically similar diseases, term disease and 
term phenotypes deliver identical conception in this pa-
per. 

3.1. Mathematical Model 
• Undirected graph 

             (1) 

is defined as phenotype similarity network;  
 is a subset of all the phenotypes, 

;  and the element  
is the similarity of phenotypes . 
• Undirected graph 

              (2) 

is defined as protein interaction network;  
 is a subset of all the proteins,  

;  and the element  
denotes the interaction of proteins . 
• Given a phenotype , , set 

 
   (3) 

is defined as association set of ; each element 
 in  is an association of ; 

set 

           (4) 

is defined as global association set, which contains all 
phenotype-protein associations. 
• Given phenotype similarity network GPhenotype, pro- 

tein interaction network  and global asso- 
ciation set , set 

     (5) 

is phenotype-protein network. 
• Given a phenotype  and a protein , 

, 

 (6) 

denotes one dimension of the profile vector of protein 
. 

• Phenotype Similarity Threshold (PST) is a manually 
set similarity value that satisfies 

 (7) 

• Given a phenotype , set 

         (8) 

contains the phenotypes that have similarities higher or 
equals to PST with . Each element in is de- 
fined as a Closely Related Phenotype of . 
• Given a phenotype , , if  

, then  is used as a dimension in pro- 
file vector of ; vector 

jp            (9) 

characterizes the profile of  in phenotype similarity 
network, in which . Means only the similar- 
ities of Closely Related Phenotypes (higher than PST) 
are used to build the profile vector of a target phenotype 
of interest. 
• Given a phenotype  and a protein , 

, if , then is used as 
a dimension of vector of ; vector 

kg  (10) 

characterizes the profile of in Protein Network, in 
which . 

Given a phenotype  and a protein , let 
 denote a relevance metric of vector jp  and 

vector kg . Three different metrics are defined, which 
characterize the correlation between profile vectors of 
protein  and phenotype  and thus indicate the 
relevance of candidate protein  and target phenotype 

. Let  denote Euclidean distance of two vectors, 

     (11) 

Cosine similarity is a metric measuring the included 
angle of two vectors, which is denoted as , 
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        (12) 

Pearson correlation coefficient indicates linear correla- 
tion between two vectors, which is denoted as , 

            (13) 

3.2. Phenotype Similarity Threshold (PST) 
According to the biological assumption that phenotypi- 
cally similar diseases are caused by functionally related 
genes [7], the proposed Semi-global inference model 
takes into consideration only phenotypes that are highly 
similar to target disease, with similarities higher than 
PST. We use only those Closely Related Phenotypes (re- 
fer to (8)) of  and exploit corresponding similarities 
to characterize the target phenotype. Therefore, In (9) 
and (10), given a phenotype , the dimensions of profile 
vector jp  are determined by the number of phenotypes 
in , the dimensions of profile vector of candidate 
genes are reduced correspondingly. 

3.3. Semi-Global Inference 
Based on the mathematical model above, here we give 
the computation framework of proposed semi-global 
inference method, which consists of two algorithms to 
prioritize candidate disease genes. 

Algorithm 1 Relevance Mark Calculation calculates 
the relevance mark for a given pair of target phenotype 

 and candidate protein . Algorithm 2 Disease 
Gene Prioritization takes a target phenotype as the input 
and evaluates relevance mark for all candidate proteins in 
linkage interval, then prioritizes the candidate proteins 
based on their relevance marks. Proteins with high re- 
levance mark are regarded highly related to target phe- 
notype and thus genes associate with these top ranked 
proteins are the underlying causing genes of target dis- 
ease, as the predictive result of Semi-global inference 
model. 

In practice, each of metrics (11) or (12) (13) are tested 
respectively in Algorithm 1 as relevance evaluation of 
candidate proteins. Algorithm 2 is invoked to prioritize 
candidate genes for all phenotypes we are interested in. 

4. Results 
In this section, we comprehensively evaluate the perfor- 
mance of proposed Semi-global inference model with 
different setting of metrics and PSTs. Then we compare 
proposed model to global inference method. 

4.1. Datasets 
To evaluate the proposed model, data sets needed are 

listed as follows: Phenotype set and quantified similari- 
ties between each pair of phenotypes. Protein set and 
quantified protein interaction between each pair of pro- 
teins. Set of known pairs (associations) of phenotypes 
and associated proteins, which serves as the validation 
set. 

Phenotype set and their linkage intervals are obtained 
from Online Mendelian Inheritance in Man (OMIM) 
Morbid Map [19], which provides a publicly accessible 
and comprehensive database of genotype-phenotype re- 
lationship in humans; phenotype similarities come from 
the research of van Driel et al. [20]; quantified protein 
interaction marks are extracted from STRING database 
[21] to build PPI network; chromosome mapping of pro- 
teins are extracted from Ensembl database [22]; valida- 
tion set can be built from phenotype-protein network, by 
extracting the phenotype-gene mapping from OMIM 
Morbid Map and gene-protein mapping from bioDBnet 
database [23] and mapping phenotype network to PPI 
network. 

Those phenotypes that can not be mapped to proteins 
are removed, due to lack of known associated genes or 
incomplete information of proteins coded by genes in the 
linkage interval. We finally get 1897 phenotypes and 
84652 proteins in total, while only 156584 protein-pro- 
tein interactions are available. Those missing PPI records 
are regarded as zero. 2549 known phenotype-gene pairs 
are maintained for evaluation. 

4.2. Experimental Setting 
We apply leave-one-out cross-validation in order to eva- 
luate the performance of different methods in terms of 
accuracy of disease gene prioritization. For each disease 
of interest, we conduct following experiment: 
• We remove all associations of this target disease from 

global association set (refer to (4)). 
• All the genes in the linkage interval are regarded as 

candidate genes to be prioritized. On average, there 
are 750 candidate genes in the linkage interval of a 
disease. 

• In practice, we exploit Position Parameter  to get 
PST: Phenotype similarities are sorted in an array in 
ascending order, then PST is assigned as the value re- 
trieved from the array with index of (array size * ), 
so PST is determined by assigning  a value from 
zero to one. It is important to note that when , 
all the nodes in phenotype network are considered in 
inference. In this case, Semi-global model degenerates 
into global inference. Thus, global inference method is 
a case of proposed Semi-global model when . 
We conduct experiment with two methods to get PST: 

Static method (S-PST). All the phenotype similarities 
are sorted in one array. PST is a global static value for all 
target diseases during the experiment. 
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Dynamic method (D-PST). PST is retrieved from a 
smaller phenotype similarity set containing only the si- 
milarities related to current target disease. Different PSTs 
are gained for prediction of different target diseases, ac- 
cording to the similarity range of that target disease. 
• We conduct the experiment with each combination of 

relevance metrics and PST methods. 
• In order to systematically compare the performance of 

proposed model, we use following evaluation criteria: 
Average Rank. Average rank in proposed model of 

known disease genes. 
Fold Enrichment. Ability to enrich known disease 

genes over random selection [13]. 
Distribution of Cases. Percentage of the test cases 

ranked within top 1%, top 5% and top 10%. 

4.3. Experiment with Variation of PST and 
Relevance Metrics 

Proposed model with Euclidean distance shows a rapid 
increase of average rank with the increase of λ, though 
the performance is always poorer than that of model with 
the other two relevance metrics. The model exhibits a 
high average rank with high PST (high Position Parame- 
ter λ) using S-PST, in spite of relevance metrics adopted. 

For model with Euclidean distance and Cosine simi- 
larity, fold enrichment gets higher along with the in-
crease of . On the other hand, Figure 1 to Figure 4 
show that proposed model with Cosine similarity gets 
higher performance than the other two relevance metrics. 
Moreover, the trend of the performance with increasing λ 
shows that the model gains better performance when 
highly similar diseases are referred to profile target dis- 
ease and candidate genes, in which the profile vectors 
consist of only a few dimensions and only small part of 
nodes (eg. diseases holding top 5% highest similarities in 
whole phenotype network in S-PST and diseases holding 
 

 
Figure 1. Average rank to compare the performance of pro- 
posed model using S-PST with different relevance metrics. 

 
Figure 2. Average rank to compare the performance of pro-
posed model using D-PST with different relevance metrics. 
 

 
Figure 3. Fold enrichment to compare the performance of 
S-PST model with different metrics. 
 

 
Figure 4. Fold enrichment to compare the performance of 
S-PST model with different metrics. 

λ
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top 5% highest similarities to the target disease in D-PST) 
are exploited. Therefore it indicates the strategy that re- 
ferring only part diseases in proposed Semi-global model 
works well with these two relevance metrics (especially 
with Euclidean distance) and nodes selection with PST 
and dimension reduction of profile vectors achieves per- 
formance improvement. 

Model with Pearson correlation coefficient reaches its 
best performance when λ = 0 (global inference method) 
and shows a decline with increase of λ. Therefore, pro- 
posed Semi-global inference does not increase the per- 
formance if Pearson correlation is adopted as the relev- 
ance metric. 

4.4. Comparison to Global Inference Method 
Here we discuss the cases when D-PST is exploited with 
a certain λ assigned to get the relative high performance 
using different relevance metrics and compare them to 
global inference method using CIPHER algorithm [14] 
with the same relevance metric. 

Table 1 and Table 2 demonstrate that Semi-global 
model with D-PST and high λ outperforms global infe- 
rence method using same relevance metrics. Especially 
for Euclidean distance, when λ is assigned with a high 
value, Semi-global model shows much higher perfor- 
mance than global inference. 

D-PST and Cosine similarity work as the best combi- 
nation, with which proposed model reaches a high per- 
formance with fold enrichment being 217.62 when 

0.96λ =  and average rank being 16.29 when 0.92λ = . 
In this configuration, Semi-global model takes into ac- 
count top 4% most similar diseases of the target disease 
for inference, outperforms the highest fold enrichment of 
197.60 and average rank of 22.31 in global inference 
method. 

Table 3 shows that with same relevance metrics, more 
known disease genes are ranked within top 1%, top 5% 
 
Table 1. Fold enrichment to compare performance of pro- 
posed Semi-global model to a global inference method.1 

 ED CS PCC 
Global inference  

(CIPHER) 55.44 159.71 197.60 

Semi-global inference  
(D-PST) 

177.03 
( 0.991λ = ) 

217.62 
( 0.96λ = ) 

197.60 
( 0λ = ) 

 
Table 2. Average rank to compare performance of proposed 
Semi-global model to a global inference method.1 

 ED CS PCC 
Global inference  

(CIPHER) 1172.60 22.31 67.94 

Semi-global inference 
(D-PST) 

81.46 
( 0.995λ = ) 

16.29 
( 0.92λ = ) 

56.43 
( 0.1λ = ) 

Table 3. Percentage of the known disease genes ranked 
within top 1%, top 5% and top 10% in proposed Semi- 
global model and a global inference model.1,2 

  Top 1% Top 5% Top 10% 

Global inference 
(CIPHER) 

ED 0.21 0.25 0.26 

CS 0.64 0.93 0.97 

PCC 0.72 0.91 0.94 

Semi-global 
inference 
(D-PST) 

ED ( 0.995λ = ) 0.59 0.82 0.85 

CS ( 0.96λ = ) 0.75 0.94 0.98 

PCC ( 0λ = ) … … … 

 
and top 10% in proposed Semi-global model using 
D-PST than that in global inference method. It also 
shows D-PST and Cosine similarity in proposed model 
achieves better performance than other combinations of 
PST methods and relevance metrics. 

Then, we compare distribution and accumulation of 
test cases between proposed Semi-global model and 
global method when they reach their respective high 
performance with particular experimental settings. 

Figures 5 and 6 are general views about distribution 
and accumulation of test cases of proposed Semi-global 
model and global inference method with particular set- 
tings to reach their high performance which are Semi- 
global model using D-PST with Euclidean distance and 

, Semi-global model using D-PST with Co- 
sine similarity and  and CIPHER algorithm 
with Pearson correlation coefficient as a representative of 
global inference. Semi-global model using D-PST and 
Cosine similarity not only gets better performance in 
terms of average rank and fold enrichment than global 
inference, but also generates a more desirable distribu- 
tion of test cases. It ranks more than 75% cases within 
top 1%, and the accumulated ratio of test cases is higher 
than global inference method. 

5. Conclusions 
In this paper, a Semi-global inference model with PST is 
proposed for disease gene prioritization, which applies 
profile vectors in phenotype-protein network to charac- 
terize target disease and candidate genes. The model is 
evaluated comprehensively on OMIM dataset and the 
experimental result shows proposed Semi-global model 
outperforms existing global inference method. 

Phenotype Similarity Threshold (PST) is proposed and 
Closely Related Phenotypes are defined. It is adopted as 
a criterion to select diseases in phenotype network to pro- 
file the target disease. Thus, by considering only highly 
similar diseases, proposed PST has significance in nodes 

0.995λ =
0.96λ =

1ED = Euclidean distance, CS = Cosine similarity, PCC = Pearson 
correlation coefficient. 

2Last row in Table 3 is blank because proposed model with Pearson 
correlation coefficient reaches best performance when λ = 0, which 
degenerates into global inference. 
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Figure 5. Comparison of distribution of test cases between 
proposed Semi-global model using D-PST and a global infe-
rence method.1 
 

 
Figure 6. Comparison of accumulation of test cases between 
proposed Semi-global model using D-PST and a global infe-
rence method.1 
 
selection in phenotype-protein network for gene prioriti- 
zation problem, which as a trial demonstrates a novel 
understanding of the well accepted belief that phenotyp- 
ically similar diseases are caused by functionally related 
genes. 

Effect of different relevance metrics of profile vectors, 
different methods and variation of PST on the proposed 
model are discussed. The proposed model with Cosine 
similarity as relevance metric shows higher performance 
than model using other two metrics. Moreover, proposed 
model achieves performance improvement along with the 
increase of PST when Cosine similarity and Euclidean 
distance are adopted as relevance metrics. We have also 
shown proposed Semi-global model using D-PST exhi- 
bits higher average rank, fold enrichment and more ad- 
mirable distribution than global method. 

Further research includes configurations of Semi- 

global model (proper PST, Position Parameter and re- 
levance metric) to achieve better performance, sensitivity 
of proposed model to noise of PPI data, and the issue of 
bias occurs in global inference. 
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