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ABSTRACT

Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by high-
powers of agiven integer and showed that for integer a>2 andrea number A>0.Thereisa B= B(A) >0 suchthat

Li(y) X
2 T e ) <y
d<x2q LB
(d,q)=1

1

holds uniformly for moduli g < x® exp(—(log log x)3) that are powers of a. In this paper we are able to improve his

result.

Keywords. Primes; Arithmetic Progressions; Riemann Hypothesis

1. Introduction and Main Results

Let p denote a prime number. For integer a,q with
(a,q)=1, weintroduce

r(xga)= > 1
pza?rgn)t()dq)

to count the number of primes in the arithmetic pro-
gression a(modq) not exceeding x. For fixed q, we
have

— (%)

as x tends to infinity. However the most important
thing in this context is the range uniformity for the
moduli g intermsof x. The Siegel-Walfisz Theorem,
see for example [1], shows that this estimate is true only
if g<L”*, where and throughout this paper we denote
logx by L. The Generalized Riemann Hypothesis for
Dirichlet L-functions could give a much better result:
non-trivial estimate holds for g < x2L. Unfortunately
the Generalized Riemann Hypothesis has withstood the
attack of several generations of researchers and it is still
out of reach. However number theorists still want to live
a better life without the Generalized Riemann Hypothesis.

7(xq,a) ~
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Therefore they try to find a satisfactory substitute. In this
direction the famous Bombieri-Vinogradov theorem [2,
3], states that

Theorem A. For any A>0 there exists a constant
B=B(A)>0 suchthat

Li(y)
()

max max < x4,

40 y<x (a,q)=1

z(y;q,a)-

1
where ¢(q) is the Euler totient function, Q=x2L"®,

. du
and L| (y) = ;l@.

Recently in order to study the arithmetic functions on
shifted primes, Elliott [4] studied the distribution of
primes in arithmetic progressions whose moduli can be
divisible by high-powers of a given integer. More pre-
cisely, he showed that

Theorem B. Let a be an integer, a>2. If A>0,
then thereisa B=B(A)>0 such that

Liy)| . x
;od,r) - :
& T e ) ) < Sy
dezq*lL’Es
(d,g)=1
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1
holds uniformly for moduli q< x3 exp(—(loglog x)3)
that are powersof a.

When q=1, his result recovers the Bombieri-
Vinogradov theorem. And obviously his result gives a
deep insight into the distribution of primes in arithmetic
progressions.

The most important thing Elliott concerned in [4] is
that in Theorem B the parameter q may reach a fixed
power of x. However we want to purse the widest
uniformity in g by using some new techniques estab-
lished in the study of Waring-Goldbach problems.

We shall prove the following result.

Theorem 1.1. Let a beaninteger, a>2.1f A>0,
then thereisa B=B(A)>0 suchthat

Li (y)| X
max max ;od,r)— '
; y<x (r,qd)=1 ﬂ.(y q ) ¢(qd)| = ¢(q) LA
d<x2q 1B
(d,q)=1

2
holds uniformly for moduli q< x5 exp(—(loglogx)s)
that are powersof a.
When d=1 and a an odd prime, our result gives
that for these particular moduli g with the form

q=p".(n=123)
war <o)
7(x9,r)={1+0(L )2} Q)

holds uniformly for moduli q< x® exp(—(loglog x)3).
Then the special case of our result shows that the least
prime P, (q,r) inthese special progressions
n=r(modq) satisfies

Pin(ar)<q

This result improves a former result given by Barban,
Linnik and Tshudakov [5],

5/2+e¢

Pmin (q’r)<< q8/3+(
where q=p",(n=123,).

If we focus our attention on the least prime in
arithmetic progressions with specia moduli, we can
prove the following result.

Theorem 1.2. Let a beaninteger, a>2.1f A>0,
then thereisa B=B(A)>0 suchthat

Li(y)|
vod,r)— '
Do T T
d<x20q 1B

(d.a)=1

holds uniformly for moduli q< x22 exp(—(loglog x)3)
that are powersof a.
Then our result shows that the least prime P, (q,r)
in these special progressions n=r(modq) satisfies
Pun(0.1) <0

12/5+¢
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It should be remarked that the Generalized Riemann
Hypothesis for Dirichlet L-functions would allow
qd < x2L** with no further restriction upon the nature
of q. Therefore our Theorems 1.1 and 1.2 can be
compared with the result under the Generalized Riemann
Hypothesis.

2. Preliminary Reduction

Let A(n) denote von Mangoldt's function, and for
mutually primeintegers w and r, let

w(ywr)= 2 A(n)

n<y
n=r(modw)

For 2<w<x¥* andaninteger q>1, define

w(y;qd,r)—iw(y;q,r)

G(w- ¥ 0

d<w
(d.q)=1

max max
(r.qd)=1 y<x

Then
Lemma2.l. Forany K >01/4<65<1/2,wehave

s 1, - 1 3

G(x°q'L* <<G(ex [— loglog x Dlo X
(a7 p| 5 (loglogx)” | |log "
+r(q)q’1x(logx)6’K
uniformly for positive integers
qSXHexp(—(IogIogx)g),XZS where 9=2/5 , if
9/20<5<12 and =5/12, if 1/4<5<9/20. Here
z-(c{):z:nlql'

For Dirichlet characters y andreal y>0 define

v (Y. 2)=2x(n)A(n). (2
n<y
Lemma22. Let y(y,x) definedasin(2). Then

33T max

d<Q z(modDd) Y<*

W(yvl)| < (X+ X1/2Q2D+X4/5QD1/2) LC,

(©)
holds uniformly for all integers D >1 and real numbers
x>2,0=>1

Lemma2.3.Let y(y,y) definedasin(2). Then

max |y (y, v )| < (x+x¥*Q°D)L°.  (4)

d<Q z(modDd) Y<¥

holds uniformly for all integers D >1 and real numbers
Xx>2,Q>1 Here the inner sum is taken over all
primitive Dirchlet characters (mod Dd).

3. Proof of Lemma 2.2
Let
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and M,,---,M,, be positive real numbers such that
1
Y<M,--M <X and 2Mg,-++,2M,; < X5, (5)
For j=1,---,10 define
logm, if j=1,
a;(m)=11, if j=2,---,5 (6)

u(m), if j=6,--10,

where x(n) is the Mébius function. Then we define
the functions

and
F(S'Z)zfl(sv)()"'flo(SJ()a (7

where y is a Dirchlet character,
variable.

Lemma 3.1. Let F(s, ) e as in (7), and A>1
1

arbitrary. Thenforany 1< R< X and 0<T < X*,

+|t,;(j
2
(Tj T+diT2X1°+X2JIog°X,

s a complex

dt

N

r~R;( modr

©)

3 1

where ¢>0 isan absolute constant independent of A,
but the constant impliedin <« dependson A

Proof of Lemma 3.1. This lemma with d =1 was
established in [6], and in this general form [7]. We
mention that in general the exponent 3/10 to X in the
second term on the right-hand side is the best possible on
considering the lack of sixth power mean value of
Dirchlet L-functions.

Now we complete the proof of Lemma 2.2.

Proof of Lemma 2.2. In (5), we take

2

Y =x5, X =X

Define a;(m), f,(s,7) and F(s y) as above. To
go further, we first recall Heath-Brown's identity [8],
which dates that for any n<2z* with z>1 and

k>1,
A =E (]2 teanuln)-u(r)
Then for o

2
2Y =2x5 <y< X =X,

w(y,z) isalinear combination of O(L) terms, each
of which is of theform

Copyright © 2013 SciRes.

S(M):=

2y a(m) z(m)--a, (M) 2(my),

M ~My,---,M~Mag

y/2<my:--myp<y
where M denotes the vector (M;,M,,---,M;;) with
M; as in (5. Obvioudy some of the intervals
(MJ,ZMJ} may contain only integer 1. By using
Perron’s summation formula with T=y (see Propo-
sition 5.5 in [1]), and then shifting the contour to the left,

we have
_ 1 (yi+iy
G(M)_% 1+1/L—iy ( )

1 Yz Y2+ A1/ L+i
B 2_711{J.1+32/Liiy+ .[yzz_inyr E2+iLy y} + O( LZ),

On using the trivial estimate

y-(v/2y ds+0(L?)
S

F(o+iy, 7)< |f(o iy, 7)|-| f (o £iy, 7)
<(MIPL)MZ7 M7 < XL,

the integral on the two horizontal segments above can be
estimated as

tog

. y
+ g
< yzg-]ga:él/L|F(G_ly’Z)| ;
yJ 1 ,} i
< max X7LI-<x?y 2L < XL,
1250141 y
Then we have
&(M)

1-¢-it 1 it
—(vy/2)2" 3
R dHo(xmL]

2
:inF[EHt,;(j y
27" \2 —+it
2

dt 3
<y I ‘ +|t,;(j‘|| XOL.

Noting that F(s, x) doesnot dependon y, we have

3

Tl (1.
10 n
)= e oot
©
On the other hand we have
maxy (v, z)| < Y- (10)
From (9) and (10), we have
> max|y (. z)
d<Q z(modDd) Y=X
< * 7
dzﬂ:?l(mzm:wd 2¥<ysx ( )()| dZ«:mmZo:d ba) Y<2Y |W y |
2
< Lloxgz J ‘ ‘Ht:ZJ +Q Dx5.
d<Q,{(modDd | |
APM
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Further let q=Dd and then we obtain

> 2 may(yz)
( +|t,;(j‘dt

d<Q z(modDd) Y<¥

< lex2 max max ———
0<T<x1<R<QD T 41

DI

q~Rz (modq)
Dlq
2
+Q?Dx5.
From Lemma 3.1, we have
> 2 maxjy(yz)
d<Q;{(modDd) =
1 2 13 1
< L°x2 max max —/—— R +i-|-leo+xz
0<T<x<R<D T +1| D DY?
2
+Q°Dx5
1 (Q ) QD 3 1
< LCXZ{ 5 o = (T+1)2 x10+x2 (T +1)
2
+Q?Dx5

1 4 1
< [x+ x2Q%D + x5QD2] L°.
This completes the proof of Lemma 2.2.

4. Proof of Lemma 2.3

Firstly we recal one result of Choi and Kumchev [9]
about mean value of Dirichlet polynomials. Let
m>1r>1 and Q>r, Let H(mr,Q) denote the
set of character y =&y modulo mq, where & is a
character modulo m and w is a primitive character
modulo q with r<q<Q, r|q ad (g,m)=L1
Then the result of Choi and Kumchev states as follows.

Lemma 41 Le m>Lr>1T>2N>2 and
H(m,r,Q) beaset of characters as described as above,
Then

T

2, A(m)z(n)n™

N<n<2N

xeH(mr,Q) N

11
dt <<[N+HN2°JL°,

where ¢ is an absolute constant, H =mr'Q*T and
L =logHN. Now we complete the pgoof of Lemma 2.3.

Proof of Lemma 2.3. Let Y=x2 and X =x. We
define
F(sz)= 2 A(n)x(n)n
Y<n<X
It y satisfies
Y<y<X, (11)

we apply Perron’s summation formulawith T=y (see
Proposition 5.5 in[1]), and then obtain

Copyright © 2013 SciRes.

R.T.

GUO
1 by ys_(y/z)s _
v(Y.x)= g bin(s,;()—s ds+0(xy L)
1 b+iy

b-iy

F(s,;()%y/z)sds+o[xifj,

If welet b—> 0, wehave

27

where O<b< L™
Y-/ 1 _
v(y.x)< J,yF (lt,;()|t|—+1dt+0(xy 1LZ).
Noting that F (s, 7) doesnotdependon y,wehave

max
Y<y<x

X . dt 1
V/(y,z)|<<jXIF(It,z)|M—+1+O{x2L2J. (12)
On the other hand we have

|y/ 4 |<<Y:x%. (13

y< 2Y

From (12) and (13), we have

x|y (v, 7)|
d<Q z(modDd) Y=*
< max X
t;?z mZo:dDd Y<ysx ( )| dz;?z Z y<2Y|V/ hx |
<> > j_ || +Q Dx2L2

d<Q z(modDd)

Further let q=Dd and then we obtain

v(y.z)|

d<Qz modD

< max max ——

1
2 212
0<T<x1<RsQD T +1 Z)|dt+Q Dx2L-.

Z J-2T|
q~R;( mod Dd
Dlq

Lemma4.1 with m= 1 gives that

> I:T|F(it,;()|dt<<(x+R—;r

g~R y(modDd)
Dlq

11

xm] L. (14
From (14), we have

5

d<Q y(modDd) Y=X

v (y.7)

1 o7 U 1
< max max ——{ X+ ——x2 L+ Q*Dx2L?
0<T<x1<R<QT +1 D
D) 4 ~ 1
35 {% X2 4 x(T +1) 1}+Q2DX2 L
11
<<(x+ x2°Q2D] LC.

This completes the proof of Lemma 2.3.
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5. Proof of Lemma 2.1

We partition the moduli gd as qd,d,, where the prime
factor of d, notexceed L andthoseof d, do not. If
w(n) denotes the number of distinct prime divisors of
the integer n, and t=2Kloglogx/logloglogx, with
estimate w(xq.r)<x/¢(q), for 14<5<12, we

have
1 1
x;qd,r

AR CAP_YICY
xlog x

“oa) Ei {pZZp ]
xlog eIog(KIogL)+O(1)Jk

= $(q) ;[ k
xlog x

<

5 exp(~t(1+0(1))logloglog ),
whichis O(¢(Q)71XL‘K)_

Moreover the corresponding sum, taken over those
moduli d for which d, isdivisible by the v"" power
of someprime, v>8, is

X 1 1 1
“ 5@ & h(0) 2 () 2 9
< ¢(q) 2" x(logx)’.
With v=[4(K+3) Ioglogx], thisis
O( xLK)

We denote exp[ (Ioglogx)j by A. Arguing

similarly for ¢(d) w(xq,r), wehave

max max
d<q’1x5(r ,qd)=1 y<x
A

w(y:qd,r)-———vy

#(q)L’

We collect together those moduli gd with a fixed

value of d; not exceeding A and set D=qd,.
Noting that
w(y;D,r)= >, A(n)+O(logyd,),
i

we see from the orthogonality of Dirichlet characters that

Copyright © 2013 SciRes.

w(y;qd,r)—%w(y;q,r)

¢
{t//(y;qdl,r)—

@w(y;q,r)}

@w(y;D,r)

1 o logd,y
A “)‘”(”)*O( 5(3,) ]

where ' denotes that if we factorise y as 7,
defined (modD), y, defined (modd,), then the
character y, isnot principal.

In order to establish Lemma 2.1 it will therefore suf-
ficeto prove that the sum S given by

DI YD)

dh<Ad, <LK (qdy ) x? #(modDdz)

1
#(d,)

=y (y;Dd,,r)-

w(y,x)lm,

is <<r(q)q‘1x(logx)6_K. For a fixed vaue of
D(=qd,), we collect together those terms involving the
characters » induced by a particular primitive
character 7' (modD,p), where DJD and p|d, .
Since y and y  differ on at most the integers n for
which (n,D,p)=1 but (n,Dd,)>1,

y/(y,;[)+0(log Dd,y).

Interchanging summations,

y<x

w(y.x)=

max
dp <LK (qay )™ %% 2(mod Dd) ysx ( )‘ ¢( )
* 1
< max | (Y, 7)| _
D%I;%: Z("%”':Dlp) y=x ( ) E(Z: ¢(Dd2)

Here p< L‘ D 'x’, and the innermost bounding sum
is <« ¢(Dp) log x. We cover the range of p with
adjoining intervals U<p<2U , subject to
L“ <U<L*D™*x’. When §=1/2, by Lemma 2.2 a
typical interval contributes

1
< l+x2UD +X5D2 —Iog xloglogx
U D

Since
DY2 < DY2 = 12 15 1 3
V2 < =(qd,)"” <x"exp —Z(Ioglogx) , the
wholesumover p is
< D*x(logx)" " loglog x.

Arguing similarly for 6 =9/20, by Lemma 2.3 the
whole sum over p isalso <D~ x(Iogx) loglog x.
Noting that
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di<A D di<A dl

< r(q)q‘ln[l+ﬂ+

p<A

-2
_ 1 _
=7(g)q 11_[(1——} <7(g)q 1(IogA)2
p<A p
<7(q)g™(loglog x)6 :
summation over d, deliversthedesired bound on S.
This completes the proof of Lemma 2.1.

6. Zeros of Dirichlet L-Functions

Lemma 4.1 Let L(sy),s=o+it, denote an
L-function formed with a Dirichlet character
x(modq),q=3h= H - With 1 =logq(ft]+3),

define
ot = 4.104(|ogh+(| log 2! )3/“).

Then there can be at most one non-principal character
(modq) for which the corresponding L-function has a
zero in the region o >1-6. Moreover such a character
would berea and the zero would bereal and simple.

Proof of Lemma 4.1. This is Theorem 2 of Iwaniec,
[10].

Lemma 42. Let y,(modD,),j=12 be distinct
primitive real characters. There is a positive real ¢, so
that at most one of the functions L(s, ) formed with
these characters can vanish on the line segment

1-¢,(logD,D,) " <o <1, t=0. (15)

Proof of Lemma 4.2. Thisis result of Landau, which
can befound at Satz 6.4, p. 127, of Prachar [11].

Lemma 4.3. For any modulus D,0<a <1T >0, let
N(a,T,D) denote the number of zeros, counted with
multiplicity, of al functions L(s,y) formed with a
character y(modD), that lie in the rectangle
a <Res<1|Ims<T. Thenwehave

L(1a)
N(a,T,D)<(DT)s ,

uniformly for 0<a <1T>2.
Proof of Lemma 4.3. This is Theorem of Heath-
Brown [12], on p. 249.

7. Proof of Theorems1.1and 1.2

We shall first provide a version of the theorem with
w(y;qd,r) inplace of z(y;od,r). After Lemma 2.1
it will suffice to establish the bound

G(4) < x(¢(a)(log x)A)’l,

Copyright © 2013 SciRes.
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for any fixed positive A.
We employ the representation

Sr(MA(n)=Ey-¥ L

n<y /st P
log Dy)
+O£—y( oi ) +yV4I0gDy},

valid for all characters (modD), where y>T>2;
E, islif y isprincipa, zero otherwise; p=f+iy
runs through all the zeros of L(s,y) in the rectangle
0<Re(s)<1|Im(s)<T withahalf disc
|s<c,(logD) " >0,Re(s)>0 removed. This
representation is a dightly modified version of that given
in Satz 4.6, pp. 232-234 of Prachar [11].

Since L(s,7) has «logDT zeros in the strip
0<Re(s)<1T <|im(s) <T+1, cf. Prachar [11], Satz
3.3, p. 220,

z " < y”{logZDJrz > J
ﬂ>1/2 P m<T m<y<m+1 ,0|
IyI<T
< y"?(logDy) ¥ m™* < y*?(log Dy)*,
m<T
and a the expense of raising y**logDy to
y*?(log Dy) we may confine the zeros p to the half-

plane Re(s)>1/2.
From the orthogonality of Dirichlet characters

#(D)y (y;D.r)-y
> )f(r)[z;mn)A(n)—Ely]

z(modD n<y

<<zzy ( +y3/2jD(IogDy)2,

Lo

where it is understood that the p(=pg+iy) are the
zeros of the L-function formed with the character y of
the outer summation.

We replace y by z and average over the interval
y<z<y+w with w=y(logy) "~ toobtain

=["(#(D)w(zD,r)-z)dz
Iy y _+( . y“j(log Dy)’.

Replacing z in the integrand by y introduces an
error of

<w+¢(D) >

y<N<y+w
n=r(modD)

logy <« W+¢(D)(%+ljlog Y,
and we may remove the integral averaging:
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#(D)y (vD.r)-y<(logy)* T ¥ ¥
" (il

This bound will be satisfactory for y > x(logx) *2.
Otherwise, we shall employ the crude bound

_ Ly ylog(y+2)
w(y;D,r) 4(0) < 5 +1,

whichisvalid for all positivey. With these bounds

R, =max¢#(D)

y<x

y(¥;:D,r)-——=

4(D)

x’ (logx)"**

2(mod D)ﬂ‘?_l/_z |ﬂ + i}/|2

+(T£+ x”sz(logx)2+

<

(log X)A+1 !
holds uniformly for 2<T < x(log x)_A_2 ,D<x¥*. We
set T=x"2
The double-sum does not exceed
4y 2% N 3 ¥
1<2k<T #(modD) p>Y2
Mgzkﬂ
_ 2k [0+ u K+1
= 4&2;2 Iw x“dN (u,2*,D)
where 1-0 is the largest value of S taken over al
thezeros f+iy intherectangle
0< Re(s)<1|Im(s) < 2T.
Supposing for the moment that D=qd and that
thereis no zero that is exceptional in the sense of Lemma
4.1, then we may take

34\1
Hzc(logd+(Iong(T+3)Ioglong(T+3)) ) .

Inview of Lemma4.3, typically

1-6+
. x"dN (u, T, D)

:—x“N(u,r,D)|

1-6+

2 ;_;N(u,r,D)x“ log xdu
< x?N(Y2,7,D)+ _[HJ Dr)5* x* log xdu
(¥2,7.D)+c, |, (Dr) g xdu.

with restriction g < x¥2A~ we have
D%* < xexp(—(log x)7/8), then the integral is

< xexp(—&(log x)7/8)r3/2 < xexp(—(log x)j/g)r‘”,

uniformly for 7<2T and d<A
N(1/2,7,D) <« D(7r+2)logD(z +2),
Satz 3.3, p. 220, as earlier. Altogether

Moreover,
Prachar [11],

Copyright © 2013 SciRes.

Rg < x(log x)

with the same uniformity in d .
If there is an exceptional zero (modqd), for which

B> 1—q(2|og4aA)_1, and the corresponding function

L(s x) is attached to a real character induced by a
primitive character »'(modD’), then D’ is a divisor
of some 4ad with d<A, and an application of
Lemma 4.2 shows that there is no further L-function
formed with a real character (modD),D <4aA, that
has areal zero on the line-segment

1-c (2log4ar) ™ <Re(s)<LIm(s)=0 unlessthat

character is also induced by #'(modD’). In particular,
D will be divisible by D’. For those moduli qd for
which 4ad isnotamultipleof D’ wemay choosethe
same 6 as before and recover the above estimate for

R

Hence

ZU maX

d<a  YSX

l//(YJqdar)—m

X 1 X

< (logx)*"* cé #(qd) = #(q)(logx)*’

where " indicates that the moduli are not divisible by
the (possibly non-existent) modulus D’.

A theorem of Siegel showsthat for any € >0 thereis
a positive constant c(e) so that an L-function fromed
with a real character (modD) has no zero on the
line-segment  1-c(¢)D™ <Re(¢)<1,Im(s)=0; cf.
Prachar [11], Satz 8.2, p.144. Unless

D’z(c(e)(log x)yz)y(, this again allows the argument

to proceed We may therefore assume that
D’>(Iogx)A+2 and remove the restriction " from
the above summation over d at an expense of

2
< > xlogx X(IOQ’X) <« .
d<a qd ab q(logx)

4ad=0(mod D)

A modified version of this argument delivers the
bound

Y |<< X
#(a)| #(q)(logx
and in this case there is no exceptiona zero.

By substraction we see that
G(A) < x(¢(q)(|og x)A)_1 indeed holds for every fixed

A> 0.
Since 7(g)<logg, an application of Lemma 2.1
showsthat with B = A+6,

max

y<x

v(y:ar)-

)A+l ’
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w(y:qdm)—wyd)‘

max max
g (r.gd)=1 y<x

quxg(log X)”
X

< 9(a)(10gx™™

uniformly for moduli q < x’ exp(—(loglogx)°) that are
powers of a whee 6=2/5, if §=1/2 and
0=5/12, if 5=9/20.
Replacing y (y;qd,r) inthisbound by
O(y;qd,r)= Y logp

p<y
p=r(modqd)

introduces an error

< 2 2 2 |logp
qd<x¥?(logx)~B2<m<logx <x/m
p™=r(modqd)
< 3 X?<xqt(logx) ",

qd<x¥?(logx)~®

the congruence condition p™ =r(modgd) having been
ignored.

Employing the Brun-Titchmarsh bound
z(y; D,r;<< y(¢(D)log y)fl, valid unifromly for
1<D<y¥,(r,D)=1 We see that the contribution to
the sum in the theorem that arises from maxima that
occur intherange 0<y<y, = x(logx)’A is

< Y Yo(#(ad)logy,) " < yog(a)”
déxj/zq’1

< x(¢(q)(|og x)A)il

We may therefore confine our attention to maxima
over therange y, < y< X

Integration by parts shows that
Li(y)
;Dl .
e (% Dr) =55
Li(y) y
;Dyr)————+— a(y;D,r)———o.
<[00 D) =150 * Togrome P B =g

The theorems hold with B = A+6.
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