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ABSTRACT 

The Wells Placement Problem (WPP) consists in choosing well locations within an oil reservoir grid to maximize the 
reservoir total oil production, subject to distance threshold between wells and number of wells cap constraints. A popu-
lar approach to WPP is Genetic Algorithms (GA). Alternatively, WPP has been approached in the literature through 
Mathematical Optimization. Here, we conduct a computational study of both methods and compare their solutions and 
performance. Our results indicate that, while GA can provide near-optimal solutions to instances of WPP, typically 
Mathematical Optimization provides better solutions within less computational time. 
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1. Introduction 

Consider an oil reservoir for which oil production totals 
over the entire reservoir area are given (or estimated). 
We are interested in the Wells Placement Problem 
(WPP), i.e., the problem of maximizing the total oil pro-
duction of the reservoir by selecting locations to build at 
most a certain number of vertical wells at a given mini-
mum distance apart from one another.  

WPP (and variations of it) has been the subject of a 
number of studies in the last decades [1-9]. The main 
approaches used to find solutions have been Genetic Al-
gorithms (GA), which are a special type of Evolutionary 
Metaheuristics, and Integer Programming (IP), a subclass 
of Mathematical Optimization.  

To the best of our knowledge, the earliest study of 
wells placement optimization using IP was the work 
conducted in 1974 by Rosenwald and Green [8], who 
developed a numerical optimization framework to select 
optimal positions of wells. Their objective was to mini-
mize the difference between actual and desired flow 
curves by choosing optimum well locations from prede-
fined location sets. In 1997, Vasantharajan and Cullick [9] 
introduced the term reservoir quality to represent reser-
voir connectivity adjusted by tortuosity, which was the 
surface area surrounding the flow by the volume con- 
tained. The well site selection process was performed  

through IP, with the goal of maximizing reservoir quality. 
Later, in 1999, Cullick et al. [4] improved the formula-
tion of the problem by reducing its number of con-
straints.  

On the other side, GA is the most widely used method 
to solve WPP optimization [1]. Guyaguler et al. [6] de-
veloped a hybrid method of GA linked with polytope 
search and coupled with a proxy generated by kriging. 
The objective function in this work was to maximize net 
present value by finding the optimum injection well loca-
tions. The output of this work indicates that using kriging 
as a proxy with the hybrid optimization framework re-
duced the computational expense considerably. This 
work was extended by Badru and Kabir [2] by including 
horizontal wells and linking the hybrid GA with experi-
mental design to find the impact of uncertainty on recov-
ery and the number of wells required. In 2006, Bangerth 
et al. [3] compared GA with four algorithms designed to 
solve WPP. GA was also compared with Covariance 
Matrix Adaptation-Evolution Strategy by Ding [5] to 
optimize well locations for different types of wells with 
calculated productivity index as the objective function. 
Onwunalu et al. [7] used GA combined with statistical 
proxy to establish a relationship between the variables 
and the objective function using unsupervised learning 
techniques. 
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Some of the articles cited above report computational 
results using either GA or IP, but we are not aware of a 
study that compares both. In this paper, we use GA and 
IP to solve instances of WPP, and report the computa-
tional results of those tests. 

Specifically, our test reservoir sits on an m n  grid, 
where each of the  sites in the grid represents a pos-
sible location for a well. For each , where 

mn
 ,i j I J 

1, , I m   and 1, , J n 

D

, a production total 

 ,i j  is associated with the site, and each pair of sites 
chosen needs to be at least  grid units apart from 
each other. Finally, the maximum number of well loca-
tions selected, , is predetermined. 

p

N

2. Evolutionary Metaheuristics 

Evolutionary Metaheuristics use ideas of biology and 
Darwin’s theory of evolution, such as reproduction, mu-
tation, and “survival of the fittest”, to provide solutions 
to problems that arise in other fields of study. Because 
one of the most used types of evolutionary metaheuristics 
in petroleum engineering is genetic algorithms, we de-
veloped a GA to tackle our problem of interest (for de-
tails on the structure and use of GA in general, see [10]). 

2.1. Definition of Terms and Variables 

Our GA starts with an initial population that is improved 
through crossover, local search, mutation, and the addi-
tion of new members to the population, which we call 
intruders. After a generation, the best fit individuals of 
the population are selected, the others are discarded, and 
a new generation begins. The algorithm runs for a prede-
termined number of generations, gn , and returns the 
fittest individuals of the final population. The fitness of 
an individual, here, is the total oil production associated 
with it. 

An individual zy  is represented by an -array of 
ordered pairs (which we call coordinates), and denoted 
as 

N

      1 1 2 2, , , , , ,
zz zz

N Ny i j i j i j   

where  ,
z

N Ni j , , represent the locations 
on the grid of the wells defined by 

1, ,k   N
zy . Associated with 

zy , the value zp  is the total oil production that results 
from choosing this individual, given by Equation (1). 

 1 , z
k k

N
z k i j

p p              (1) 

We denote the  production totals matrix by , 
i.e., an element of row i  and column  of  is 

 ,i j , and we define (0,0)  We let  be the sorted 
vector of the elements of  and its corresponding co- 
ordinates: 

m n P
j p

p 0p 
P

q

         1 1 1 2 2 2, , , , , , , , ,mn mn mnq q r s q r s q r s   

where 

1 2 mnq q q   , 

 ,k kk r sq p  ,  

and  

    1 1, , , ,mn mnr s r s I J  . 

2.2. The Genetic Algorithm 

The high level structure of our GA is as follows: 
 

 
 

At each generation g , pn  is the number of indi-
viduals in the initial population, c  is the number of 
crossover operations performed, and i  is the number 
of intruders created. The value  is used in the 
sub-routine LOCAL-SEARCH, and will be explained 
later. 

n


n

Lines 1 - 5 initialize the variables of the algorithm, 
which are the individuals of the population, at zero. Line 
6 creates the initial population, and lines 7 - 12 perform 
evolutionary sub-routines for gn  generations. Finally, 
line 13 returns the best fit individual found. 

Throughout the algorithm, and for all individuals con-
sidered, it is verified whether the distance of all locations 
in the grid associated with the individual satisfy the 
minimum distance constraint. When it does, we say that 
the individual is feasible. This verification is done using 
the following sub-routine.  
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tyThis routine takes as input an individual, , and re-
turns 1 if the individual is feasible, or 0 ot ise. The 
procedure simply computes the Euclidea be-
tween every pair of coordinates that define the individual, 
and checks whether the distance is at least 
 

herw
n distance 

. D

 
 

The routine INITIAL-POPULATION can be divided 
into two main blocks: lines 1 - 12 and 13 - 29. The first 
block creates a “greedy” solution to the problem by 
choosing the coordinates of 1y , the first individual of 
the population, based on th   of sorted values 
of . The second block creates the rest of the initial 
po lation by selecting ran  on the grid 
(usi  the function 

e vector

dom

q

 locations
P

pu
ng rand( )A , which returns a random 

ele ent of a finite set m A ), with the condition that each 
individual created is feasible.  

We note that, for large values of , it may be hard, 
and perhaps even impossible, to  locations on 
the grid such that the minimum ween each 
pair of locations is  Our algorit kes  at-

mpts to find such locations, and, in t
o

N
find 

 distance bet
hm 

h

N

ma
e 

D . 10N
case that it is te

n t successful, some of the coordinates of the individual 
being created remain as  0,0 .  

The sub-routine CROSSOVER performs the repro-
duction of individuals. In this routine, two individuals of 
the population 1, , pn

y y  are selected at random (lines 
2 - 3), and the crossover point, represented by d , is also 
selected at random (line 4). In lines 5 - 12, the crossover 
occurs, and two new individuals are created. These new 

individuals are then c  for feasibility, and, in the 
case that they are not feasible, they are “erased” from the 
population by setting all of th

hecked

eir coordinates to  0,0  

(li
 

nes 13 - 21). The procedure is repeated cn  times, and 
the routine creates 2 cn  new individuals.  
 

 

n the 
dual of 

 
Our GA then s a local search in the grid, i

geographical sense, to try to improve ever  indivi
the population.  
 

perform
y

 
 

In line 2, a coordinate  of individual  zy  is chosen 
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at random, and, in case it is not , a local search in 
the reservoir grid, within a s  area

 0,0
quare of   2

2Δ 1  
centered at  ,

z
i j 

 search ar
, is perform  to fin

tion in the ea such
ed to try

 that, if substituted in 
d a loca- 
place of 

 ,
z

i j 
increase

, will maintai
sociated 

n feasib
 its as

ility of the individual and 

zp  
ch fo

value the m
1, ,

ost. The 
 th r 

routine 
performs is local sear

2p cn n

 m  wh
vid  th

y y

utation,
ual of

, a

xt p  is ic
d f ery di e p

nd returns 

h, again, is 
opulation 

their updated 
The ne

performe
1, ,

values. 
 genetic o

or ev
2

erator
 in

p cn n
. y y

 



 
 

This routine picks a coordin  from individual ate 
zy  at random and replaces it with another co  

picked at random  the entire grid. If the replacement 
keeps 

ordinate
 in

zy  feasible and improves the value of zp , then 
zy  is updated; otherwise, zy  remains unchanged. 
Our last genetic operator, INTRUDERS, creates in  

individuals that enter the population “ utside”. The 
intention of this proc

fr
is to add 

om o
e  dure variability to the 

population thus far created.  
 

 
 

This routine is similar to INITIAL-POPULATION. 

choice o  the coordinates of the new individuals  more 
ective: they are chosen a ng the top 10N  value

The main differences are in 6, 

f  is
sel mo s of 
th a

 and preserves the 

 lines 2 and where the 

e P  matrix. Thus, this routine brings to the popul -
tion not only variability, but also members with high 
fitness.  

Our final sub-routine selects pn
2
 best 

t individuals from the entire population fi 1, , p c in n n
y y

  , 
which will become the initial population of 
eration.  
 

the next gen-

 
 

The sorting procedure in line 1 is, in fact, a renumber-
ing of the individuals 

21, , p c in n n
y y

   based on the 
values zp ,  21, , p c in n  

give as input
z n

e we 
. As a clarifying 

exam  to this line ple, suppos
    3,4 , 1  1,2 ,y     5,6 , 7,82y , and  
    3 9,10 , 11,12 , with 1 10p  , 2 30py  , and 

3 20p  . Then the output will be     1 5,6 , 7,8y  , 
    2 9,10 , 11,12y  , and     3 1, 2 , 3, 4y  . Lines 2 

- 7 simply erase variables 
1 2
, ,p pn n

y y
   and keep 

1, ,

c in n

pn
y y  which are the surviving individuals that will 

start a new generation. (In case gg n , then there will 
not be another generation, and WPP-GA will return 1

 individual with the best fitness found after 
y , 

the gn  gen-
erations.) 

A careful analysis of WPP-GA and its sub-routines 
shows that the algorithm terminates, but not necessarily 

ith an optimal solution to the problem, i.e., an individ-
ual whose fitness is the highest possible.  

3. Mathematical Optimization 

Mathematical Optimization approaches quantitative 
problems using tools such as linear algebra, calculus, and 
graph theory. In a sense, it is a more sophisticated me-
thod than Evolutionary Metaheuristics, and, in practice, 

sually requires bigger and more structured algorithms to 

 case, IP, is tha

i
It is common practice, in IP

defining an objective to be m ized (
nimized fine the problem i
question. Here, the for n of WPP is as fo

w

u
solve a given problem. 

The main advantage of using mathematical optimiza-
tion, and, in our particular t a solution may 
be proven to be optimal, as opposed to GA, which does 
not guarantee opt mality of the best solution found. 

, to formulate problems by 
function axim or mi-

), subject to constraints that de n 
mulatio llow: 
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   
 

   

 
  

 


   , 0,1 , ,i jx i j I J  

where a variable  ,i j

 

, ,i j

1 1 1 2

,
,

1 1 2 2

, , 2 2

1 2

,

1 2

maximize , 

,
subject to 1,

i j
i j I J

i j i

i j

j

p x

i j I J
x x

i i j j D

 

    
   



 

x  represents the location  ,i j  in 
the oil reservoir grid, and is equal to 1 if the location is 
chosen, or 0 otherwise. Hence, a feasible soluti  this 

h  
shown. Note that 

EX 
12 with default settings, except for the search strategy, 
which was set to Traditional Branch-and-Cut, and the 
relative and absolute gap tolerances, which were set to 
zero. Every test had a time limit of 3600 seconds.

Our test grid has , and we set the values
of  to h of these values, 
we tried to solve  set to , up to 
the nt at  limi

et

on to
at satisfies allproblem is a mn -vector of 0’s and 1’s t

constraints defined in the formulation 
this is a completely different way of representing a solu-
tion, in comparison with our GA. Nonetheless, the values 
of the objective function, here, and the fitness of the in-
dividuals, in the GA, are comparable, since they have the 
same meaning. 

To solve our instances with the IP approach, we use a 
commercial solver based on branch-and-cut that can 
handle large-scale optimization problems. For details on 
branch-and-cut, the reader is referred to [11]. 

4. Computational Tests 

We ran our computational tests in the Texas Tech High 
Performance Computing Center’s 3.0 GHz CPUs with 16 
GB RAM nodes. For the tests using IP, we used CPL

 
 100m n 

, and 20 . For eac
WPP with N

which either the time
as 

D

poi

8, 12, 16

w

10,20,
t was reached, or 

 mthe value of N  not reached, i.e., neither hod 
was able to find a solution that represented N  well lo-
cations. For the GA, we set 10000gn  , 1000pn  , 

100cn  , in , and 10   for all tests. 
The values of the P  matrix were obtained with the 

commercial reservoir simulator Eclipse, using the Qual-
ity Maps approach (see [12] for details). Some main cha-
racteristics of our heterogeneous and anisotropic reser-
voir are: initial pressure of 4000 psi , porosity of 22%, 
and horizontal 

10

perm of  with 
st

eability average 175 mD
andard deviation of 91.1 mD . The distance between 

two closest grid points is 300 ft , and the thickness of 
the reservoir is 75 ft . 

Table 1 shows the results obtained using both GA and 
 displays the value of the 
ethods. (Note: in GA, this 

nality of the solution found, i.e., t
ated wi so

een the G

IP. The columns “Best Sol’ n”
best solutions found by both m
value is called the fitness of the best individual, whereas 
in IP it is called the objective function value of the best 
solution. We will use the latter expression in our analy-
sis.) “Time” shows the computational time, in seconds, 

required for the test to finish. We note that, because of 
the settings used in CPLEX, all solutions obtained using 
IP are provably optimal precisely when the time is less 
than 3600 seconds. The column “Card” shows the cardi-

he number of well loca-
tions associ th that lution. Finally, “Gap” refers 
to the relative percentage difference betw A and 
IP best solutions, and is computed using Equation (2). 

’ ’Best Sol n with IP Best Sol n with GA
Gap 100

Best Sol n with IP’


   

) (2

he best 

From Table 1, it is clear that the problem gets harder 
as the values of D  and N  increase. On the IP section 
of the table, this is reflected in the time required to solve 
the instances. On the GA side, both the computational 
time and the cardinality of solution show the 
increase in the difficulty of the problem. For instance, for 

8D

t

  and 120N  , the best solution that GA can find 
has cardinality 117, althoug tions with greater car-
dinality (and better objective 

h solu
function value) do exist, as 

th

al 
software developers who worked on it for decades. The
seemingly small values in the last columns reflect this
contrast of algorithms: a gap as small as 0.1% can
very

5.

wells in an 

e IP results show. 
Overall, IP was capable of finding better solutions than 

GA, and, most of the time, was faster. In every test, the 
best solution found by IP had an objective function value 
at least as good as the one found by the GA. In 8 cases, 
both methods found an optimal solution to the problem, 
and in 11 other cases, the gap between the two methods 
was less than 1%. This shows that GA can be effective 
for instances that are less challenging, but, for the harder 
instances, IP was notably more successful than GA. 

The merit of being faster and finding better solutions is 
due not only to the differences in approaching the prob-
lem (IP vs. GA), but also a result of the algorithms used 
to solve the instances. While our GA has less than 500 
lines of code, CPLEX is the product of profession

 
 

 be 
mal  difficult to close, and thus finding a sub-opti

solution can be a much easier task than finding an opti-
mal one. Moreover, the fact that CPLEX can guarantee 
the optimality of a solution is a feature that a GA does 
not have. It is only in comparison studies such as the 
present study, that one can visualize the effectiveness of 
a GA, in finding optimal solutions. Finally, we note that 
CPLEX is a multi-purpose solver that can handle a vast 
number of different problems, while our GA was devel-
oped specifically to tackle WPP.  

 Conclusions and Further Research 

In this study, we compared the performance of GA and 
IP to solve instances of the problem of placing vertical 

m n  grid that sits on a reservoir, with the  
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Table 1. Summary of results using GA and IP. 

GA IP 
D N 

Best Sol’n Time Card Best Sol’n Time Card
Gap

10 55,187,158 112 10 55,187,158 33 10 0.00

20 68,445,523 122 20 68,568,163 43 20 0.18

30 77,462,025 124 30 77,462,025 48 30 0.00

40 85,106,849 142 40 85,112,969 49 40 0.01

50 92,306,494 150 50 92,306,494 54 50 0.00

60 99,004,082 208 60 99,132,004 52 60 0.13

70 104,894,614 191 70 105,383,497 57 70 0.46

80 110,598,373 263 80 111,275,555 54 80 0.61

90 115,751,327 320 90 116,836,492 74 90 0.93

100 120,097,642 472 100 121,998,756 76 100 1.56

110 121,859,490 568 110 126,733,273 97 110 3.85

120 124,017,004 690 117 130,778,001 149 120 5.17

130 124,017,004 762 117 134,14

8 

4,399 284 130 7.55

40 8.91140 124,017,004 859 117 136,147,901 3,600 1

10 47,495,649 111 10 47,495,649 106 10 0.00

20 56,566,624 129 20 56,566,624 130 20 0.00

30 63,89  139 30 63,928,663 129 30 0.059,845

40 0.08

75,637,819 214 50 76,120,456 181 50

60 3.61

12 

3,  

70,334,844 182 40 70,392,256 141 40

50 0.63

77,731,339 356 56 80,639,104 263 60

70 77,064,512 422 56 82,588,104 600 68 6.69

10 40,836,652 115 10 40,836,652 183 10 0.00

20 48,708,586 126 20 48,708,586 243 20 0.00

30 54,792,273 150 30 54,803,004 322 30 0.02

40 56,570,909 240 34 58,673,867 1,  

16 

3,  

534 40 3.58

50 56,758,783 326 35 58,664,640 600 40 3.25

10 36,921,362 113 10 36,921,362 363 10 0.00

20 43,793,101 135 20 43,829,509 333 20 0.0820 

1,  30 45,037,857 229 23 46,605,956 092 28 3.36
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