Advances in Chemical Engineering and Science, 2013, 3, 30-36

http://dx.doi.org/10.4236/aces.2013.34A 1005 Published Online October 2013 (http://www.scirp.org/journal/aces)

+53 Scientific
#3% Research

A Comparison between Evolutionary Metaheuristics and
Mathematical Optimization to Solve the Wells
Placement Problem

Ghazi AlQahtani, Ahmed Alzahabi, Ernee Kozyreff, Ismael R. de Farias Jr., Mohamed Soliman
Texas Tech University, Lubbock, USA
Email: ghazi.algahtani@ttu.edu, ahmed.alzahabi@ttu.edu, ernee.kozyreff@ttu.edu, ismael.de-farias@ttu.edu,
mohamed.soliman@ttu.edu

Received August 17, 2013; revised September 20, 2013; accepted October 4, 2013

Copyright © 2013 Ghazi AlQahtani et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The Wells Placement Problem (WPP) consists in choosing well locations within an oil reservoir grid to maximize the
reservoir total oil production, subject to distance threshold between wells and number of wells cap constraints. A popu-
lar approach to WPP is Genetic Algorithms (GA). Alternatively, WPP has been approached in the literature through
Mathematical Optimization. Here, we conduct a computational study of both methods and compare their solutions and
performance. Our results indicate that, while GA can provide near-optimal solutions to instances of WPP, typically
Mathematical Optimization provides better solutions within less computational time.

Keywords: Wells Placement; Genetic Algorithm; Integer Programming

1. Introduction

Consider an oil reservoir for which oil production totals
over the entire reservoir area are given (or estimated).
We are interested in the Wells Placement Problem
(WPP), i.e., the problem of maximizing the total oil pro-
duction of the reservoir by selecting locations to build at
most a certain number of vertical wells at a given mini-
mum distance apart from one another.

WPP (and variations of it) has been the subject of a
number of studies in the last decades [1-9]. The main
approaches used to find solutions have been Genetic Al-
gorithms (GA), which are a special type of Evolutionary
Metaheuristics, and Integer Programming (IP), a subclass
of Mathematical Optimization.

To the best of our knowledge, the earliest study of
wells placement optimization using IP was the work
conducted in 1974 by Rosenwald and Green [8], who
developed a numerical optimization framework to select
optimal positions of wells. Their objective was to mini-
mize the difference between actual and desired flow
curves by choosing optimum well locations from prede-
fined location sets. In 1997, Vasantharajan and Cullick [9]
introduced the term reservoir quality to represent reser-
voir connectivity adjusted by tortuosity, which was the
surface area surrounding the flow by the volume con-
tained. The well site selection process was performed

Copyright © 2013 SciRes.

through IP, with the goal of maximizing reservoir quality.
Later, in 1999, Cullick et al. [4] improved the formula-
tion of the problem by reducing its number of con-
straints.

On the other side, GA is the most widely used method
to solve WPP optimization [1]. Guyaguler et al. [6] de-
veloped a hybrid method of GA linked with polytope
search and coupled with a proxy generated by kriging.
The objective function in this work was to maximize net
present value by finding the optimum injection well loca-
tions. The output of this work indicates that using kriging
as a proxy with the hybrid optimization framework re-
duced the computational expense considerably. This
work was extended by Badru and Kabir [2] by including
horizontal wells and linking the hybrid GA with experi-
mental design to find the impact of uncertainty on recov-
ery and the number of wells required. In 2006, Bangerth
et al. [3] compared GA with four algorithms designed to
solve WPP. GA was also compared with Covariance
Matrix Adaptation-Evolution Strategy by Ding [5] to
optimize well locations for different types of wells with
calculated productivity index as the objective function.
Onwunalu et al. [7] used GA combined with statistical
proxy to establish a relationship between the variables
and the objective function using unsupervised learning
techniques.

ACES

G. ALQAHTANI

Some of the articles cited above report computational
results using either GA or IP, but we are not aware of a
study that compares both. In this paper, we use GA and
IP to solve instances of WPP, and report the computa-
tional results of those tests.

Specifically, our test reservoir sits on an mxn grid,

where each of the mn sites in the grid represents a pos-
sible location for a well. For each (i, j) el xJ, where
| ={1,--~,m} and J :{l,m,n} , a production total
Pi.j) is associated with the site, and each pair of sites
chosen needs to be at least D grid units apart from
each other. Finally, the maximum number of well loca-
tions selected, N, is predetermined.

2. Evolutionary Metaheuristics

Evolutionary Metaheuristics use ideas of biology and
Darwin’s theory of evolution, such as reproduction, mu-
tation, and “survival of the fittest”, to provide solutions
to problems that arise in other fields of study. Because
one of the most used types of evolutionary metaheuristics
in petroleum engineering is genetic algorithms, we de-
veloped a GA to tackle our problem of interest (for de-
tails on the structure and use of GA in general, see [10]).

2.1. Definition of Terms and Variables

Our GA starts with an initial population that is improved
through crossover, local search, mutation, and the addi-
tion of new members to the population, which we call
intruders. After a generation, the best fit individuals of
the population are selected, the others are discarded, and
a new generation begins. The algorithm runs for a prede-
termined number of generations, ng , and returns the
fittest individuals of the final population. The fitness of
an individual, here, is the total oil production associated
with it.

An individual Yy’ is represented by an N -array of
ordered pairs (which we call coordinates), and denoted

as

Vo= (0 0o 1) (i 3 ')
where (iy, Jy)Z , ke{l,---,N}, represent the locations
on the grid of the wells defined by y*. Associated with
y*, the value p, is the total oil production that results
from choosing this individual, given by Equation (1).

_ N
pz - Z k=1 p(-k)z (1)

I

We denote the mxn production totals matrix by P,
i.e., an element of row i and column j of p is
Pii.j) » and we define p,, =0 Welet q be the sorted
vector of the elements of P and its corresponding co-
ordinates:

q :((ql’(rlasl))’(qzv(rzvsz))v'"a(qmna(rmnvsmn)))

Copyright © 2013 SciRes.

ET AL. 31

where
a, Zqz Z'“qun’

% = Py >

and

{(I’l,sl),...,(rmn,smn)} —1xJ.

2.2. The Genetic Algorithm

The high level structure of our GA is as follows:

WPP-GA(P,m,n, D, N,ng, np, ne,n;, A)

1 for z:=1 to n, + 2n, +n; do
2 for k:=1 to N do

3 | (ik, dir)* = (0,0);

4 end

5 end

6 INITIAL-POPULATION;
7 for g :=1 to n, do

8 CROSSOVER;

9 LOCAL-SEARCH;

10 MUTATION;

11 SELECTION;

12 end

13 return y';

At each generation g, n, is the number of indi-
viduals in the initial population, n, is the number of
crossover operations performed, and n, is the number
of intruders created. The value A is used in the
sub-routine LOCAL-SEARCH, and will be explained
later.

Lines 1 - 5 initialize the variables of the algorithm,
which are the individuals of the population, at zero. Line
6 creates the initial population, and lines 7 - 12 perform
evolutionary sub-routines for ny generations. Finally,
line 13 returns the best fit individual found.

Throughout the algorithm, and for all individuals con-
sidered, it is verified whether the distance of all locations
in the grid associated with the individual satisfy the
minimum distance constraint. When it does, we say that
the individual is feasible. This verification is done using
the following sub-routine.

CHECK-FEASIBILITY (')

1 fi=1
2 for k:=2 to N do

3 | if (ix,jk)" = (0,0) then

1 | continue;

5 end

6 (i, 1) = (i,)"

7 for (:=1tok—1do

8 if (i, jo)' = (0,0) then
9 | continue;

10 end

1 (12, 72) := (ie, je)'s

12 if /(i1 —i2)? + (j1 — j2)? < D then
13 f=0

14 break;

15 end

16 end

17 if f = 0 then

18 | break;

19 end

20 end

21 return f;

ACES

32 G. ALQAHTANI

This routine takes as input an individual, yt , and re-
turns 1 if the individual is feasible, or 0 otherwise. The
procedure simply computes the Euclidean distance be-
tween every pair of coordinates that define the individual,
and checks whether the distance is at least D .

INITIAL-POPULATION(P,m,n, D, N, n,)

1 (i, 50! = ()

5Y (5598

3 for k :=2 to mn do

4 yU = ((ilsjl)lv“‘7(ii—l!j5—l>1!(7‘kvsk)i
(oo (0,0));

if CHECK-FEASIBILITY (3°) = 1 then

5
6 (ie, jo)* := (ri, si);
7 =041
8 end
9 if £ > N then

10 | break;

11 end

12 end

13 for z :=2 ton, do
14 (i1,51)7 == (rand({1,...,m}),rand({1,...,n}));

15 iOg=12¢

16 for k:=1 to 10N do

17 * :=rand({1,...,m});

18 j*=rand({1,...,n});

19 y0 = (i, 51)% - -5 (e, Jee)?, (7, 57),
(0,0),...,(0,0));

20 if CHECK-FEASIBILITY (3°) = 1 then

21 (e, Jo)* = (&%, 5*);

22 (:=0+1;

23 end

24 if £ > N then

25 | break;

26 end

27 end

28 end

29 return y!,... y";

The routine INITIAL-POPULATION can be divided
into two main blocks: lines 1 - 12 and 13 - 29. The first
block creates a “greedy” solution to the problem by
choosing the coordinates of y', the first individual of
the population, based on the vector q of sorted values
of P . The second block creates the rest of the initial
population by selecting random locations on the grid
(using the function rand(A), which returns a random
element of a finite set A), with the condition that each
individual created is feasible.

We note that, for large values of N, it may be hard,
and perhaps even impossible, to find N locations on
the grid such that the minimum distance between each
pair of locations is D . Our algorithm makes 10N at-
tempts to find such locations, and, in the case that it is
not successful, some of the coordinates of the individual
being created remain as (0,0).

The sub-routine CROSSOVER performs the repro-
duction of individuals. In this routine, two individuals of
the population y',---,y"™ are selected at random (lines
2 - 3), and the crossover point, represented by d , is also
selected at random (line 4). In lines 5 - 12, the crossover
occurs, and two new individuals are created. These new

Copyright © 2013 SciRes.

ET AL.

individuals are then checked for feasibility, and, in the
case that they are not feasible, they are “erased” from the
population by setting all of their coordinates to (0,0)

(lines 13 - 21). The procedure is repeated "¢ times, and
the routine creates 2" new individuals.

CROSSOVER(P, D, N, n,,n.,y', ..., y"™)

1 for k:=1 ton.do

2 ay :=rand({1,...,n,});

3 | ap:=rand({l,...,n,} \ {a1});
4 | d:=rand({1,...,N});

5 for (:=1 tod do

6 (ie, o) = (ie, jo)™;
7 (3¢ §o)** := (ie, o)

8 end

9

for (:=d+1 to N do
(ie o)1 1= (ie, o)
(ie 3o)** = (ie, o)™

12 end

13 if CHECK-FEASIBILITY(@/%’]) = 0 then
for (:=1 to N do

| e jo)? 1 1= (0,0);

end

17 end

18 if CHECK-FEASIBILITY (y%) = 0 then
for (:=1 to N do

| (e, o) == (0,0);

end

)21"

22 end
23 end
24 return y71,,+17 . 7:Un,,+2n(;

Our GA then performs a local search in the grid, in the
geographical sense, to try to improve every individual of
the population.

LOCAL-SEARCH(P, D, N, n,,ne, A, y', ..., y"+2m)

1 for z:=1 ton, + 2n. do

2 C:=rand({1,...,N});

3 if (i¢, jo)* = (0,0) then

4 | continue;

5 end

6 | (1"5%) = (ie, jo);

7 by :=0;

8 by :=0;

9 for d, :== —A to A do

10 if i* +dy <1 or i* +d; > m then

1 | continue;

12 end

13 for dy := —A to A do

14 if j*+dy <1 or j*+dy > n then

15 | continue;

16 end

17 if D tdy,jod) < D(iv+b.j*+by) then

18 | continue;

19 end

20 Y0 = ((i, 51)%s - - -y (Ge—1, Joo1)?, (i +dy, 75 +da),
(Ge415 Jer1)?s - -+, (n, JN)P);

21 if CHECK-FEASIBILITY(3°) = 1 then

22 by = dy;

23 by := do;

24 end

25 end

26 end

21 | (i, o) = (0 + by, j* + ba);

28 end

29 return y', ...yt

In line 2, a coordinate /¢ of individual y* is chosen

ACES

G. ALQAHTANI

at random, and, in case it is not (0,0) , a local search in
the reservoir grid, within a square of area (2A+1)2
centered at (i, j,)°, is performed to try to find a loca-
tion in the search area such that, if substituted in place of
(',, j,)Z will maintain feasibility of the individual and
increase its associated p, value the most. The routine
performs this local search for y',--, ynp+ " and returns
their updated values.

The next genetic operator is mutation, which, again, is
performed for every individual of the population

1 Np+2n
Yooyt

MUTATION(P, D, N, ny, nc, y', ..., y"»+2m)

1 for z:=1to np+2nc do

2 € =rand({1,...,N});

3 =rand({1,...,m});

4 | g i=rand({l,...,n});

5 if p(L) < Pliy,jo)- then
6 | continue;

7 end

8

ko

¥ = (L 0)% - (i¢-1, Je-1)?, (3%, 5%),
(Ger1s Jer1)?, - -+ (in, IN)7);
9 if CHECK-FEASIBILITY(yO) = 1 then
10 | (e go)* = (*,5%);
11 end

12 end
3 return y', ...,y

-

npt2ne.

This routine picks a coordinate ¢ from individual
y? at random and replaces it with another coordinate
picked at random in the entire grid. If the replacement
keeps y* feasible and improves the value of p,, then
y* is updated; otherwise, y* remains unchanged.

Our last genetic operator, INTRUDERS, creates n,
individuals that enter the population “from outside”. The
intention of this procedure is to add variability to the
population thus far created.

INTRUDERS(P, D, N, n,, ne, n;)

1 for z :=n, +2n.+ 1 to n, + 2n, +n; do

2 | w:=rand({1,...,min{10N, mn}});

3 (il:jl)z = (ruvsu>§

4 2= 2:

5 for k — 1 1o 100N do

6 w:=rand({1,...,min{10N, mn}});

7 T =T

8 =1y

9 YO = (i, 51)%, - (e, Jeor)?, (6, 5%),
(0,0),...,(0,0));

10 if CHECK-FEASIBILITY (y°) = 1 then

1 (ie, Jo)* = (&, J°);

12 =041,

s end

14 if £ > N then

15 | break;

16 end

17 end

18 end

19 return yn,,+2n +l ynz p+2nc +ni.

This routine is similar to INITIAL-POPULATION.
The main differences are in lines 2 and 6, where the

Copyright © 2013 SciRes.

ET AL. 33

choice of the coordinates of the new individuals is more
selective: they are chosen among the top 10N values of
the P matrix. Thus, this routine brings to the popula-
tion not only variability, but also members with high
fitness.

Our final sub-routine selects and preserves the n_, best
fit individuals from the entire population y1 L, y"”+ZnC+ni S
which will become the initial population of the next gen-

eration.

SELECTION(P,y!,. .. yrw+2netni)

1 sort y', ...,y 2"+ in decreasing order of
peyz €41,...,np + 20, + 0}

2 for z :=n, +1 ton, +2n. +n; do

3 for k:=1to N do

4 ‘ (7kjk)z = (00)7

5 end

¢ end

7 return y!, ... yet2netni

The sorting procedure in line 1 is, in fact, a renumber-
ing of the individuals y',---,y"™"”™"™ based on the
values p,, Ze {l,m,np +2n, +ni} . As a clarifying
example, suppose we give as input to this line
Y =((1.2).(3.4), ¥*=((5.6).(7.8)).and
y*=((9,10),(11,12)) , with p, =10 s P.=30, and
p, =20. Then the output will be y' —((5 6),(7, 8))
y’ =((9.10),(11,12)), and y’ = 12ﬂ) (3.4)). Lines 2
- 7 simply erase variables Y™ H ot and keep
y',---,¥y"™ which are the surviving 1nd1v1duals that will
start a new generation. (In case g =n,, then there will
not be another generation, and WPP-GA will return y,,
the individual with the best fitness found after n; gen-
erations.)

A careful analysis of WPP-GA and its sub-routines
shows that the algorithm terminates, but not necessarily
with an optimal solution to the problem, i.e., an individ-
ual whose fitness is the highest possible.

3. Mathematical Optimization

Mathematical Optimization approaches quantitative
problems using tools such as linear algebra, calculus, and
graph theory. In a sense, it is a more sophisticated me-
thod than Evolutionary Metaheuristics, and, in practice,
usually requires bigger and more structured algorithms to
solve a given problem.

The main advantage of using mathematical optimiza-
tion, and, in our particular case, IP, is that a solution may
be proven to be optimal, as opposed to GA, which does
not guarantee optimality of the best solution found.

It is common practice, in IP, to formulate problems by
defining an objective function to be maximized (or mi-
nimized), subject to constraints that define the problem in
question. Here, the formulation of WPP is as follow:

ACES

34 G. ALQAHTANI

maximize Y. Py Xi.i)
(i,j)€|><J

(i, 1) (i, J,) € 1 %3
\/(il_i2)2+(jl_j2)2 <D

(i,j)eIxJ,

subject to X; ;) + X j,) <L

Xi.j) € {0,1}

where a variable X j represents the location (i, j) in
the oil reservoir grid, and is equal to 1 if the location is
chosen, or 0 otherwise. Hence, a feasible solution to this
problem is a mn -vector of 0’s and 1’s that satisfies all
constraints defined in the formulation shown. Note that
this is a completely different way of representing a solu-
tion, in comparison with our GA. Nonetheless, the values
of the objective function, here, and the fitness of the in-
dividuals, in the GA, are comparable, since they have the
same meaning.

To solve our instances with the IP approach, we use a
commercial solver based on branch-and-cut that can
handle large-scale optimization problems. For details on
branch-and-cut, the reader is referred to [11].

4. Computational Tests

We ran our computational tests in the Texas Tech High
Performance Computing Center’s 3.0 GHz CPUs with 16
GB RAM nodes. For the tests using IP, we used CPLEX
12 with default settings, except for the search strategy,
which was set to Traditional Branch-and-Cut, and the
relative and absolute gap tolerances, which were set to
zero. Every test had a time limit of 3600 seconds.

Our test grid has m=n=100, and we set the values
of D to 8,12,16, and 20. For each of these values,
we tried to solve WPP with N set to 10,20,---, up to
the point at which either the time limit was reached, or
the value of N was not reached, i.e., neither method
was able to find a solution that represented N well lo-
cations. For the GA, we set n, =10000, n, =1000,
n. =100, n,=10,and A=10 for all tests.

The values of the P matrix were obtained with the
commercial reservoir simulator Eclipse, using the Qual-
ity Maps approach (see [12] for details). Some main cha-
racteristics of our heterogeneous and anisotropic reser-
voir are: initial pressure of 4000 psi, porosity of 22%,
and horizontal permeability average of 175mD with
standard deviation of 91.1mD. The distance between
two closest grid points is 300 ft, and the thickness of
the reservoiris 75 ft.

Table 1 shows the results obtained using both GA and
IP. The columns “Best Sol’ n” displays the value of the
best solutions found by both methods. (Note: in GA, this
value is called the fitness of the best individual, whereas
in IP it is called the objective function value of the best
solution. We will use the latter expression in our analy-
sis.) “Time” shows the computational time, in seconds,

Copyright © 2013 SciRes.

ET AL.

required for the test to finish. We note that, because of
the settings used in CPLEX, all solutions obtained using
IP are provably optimal precisely when the time is less
than 3600 seconds. The column “Card” shows the cardi-
nality of the solution found, i.e., the number of well loca-
tions associated with that solution. Finally, “Gap” refers
to the relative percentage difference between the GA and
IP best solutions, and is computed using Equation (2).

_ Best Sol’'n with IP — Best Sol’n with GA)

Gap p
Best Sol’n with IP

100
2
From Table 1, it is clear that the problem gets harder
as the values of D and N increase. On the IP section
of the table, this is reflected in the time required to solve
the instances. On the GA side, both the computational
time and the cardinality of the best solution show the
increase in the difficulty of the problem. For instance, for
D=8 and N >120, the best solution that GA can find
has cardinality 117, although solutions with greater car-
dinality (and better objective function value) do exist, as
the IP results show.

Overall, IP was capable of finding better solutions than
GA, and, most of the time, was faster. In every test, the
best solution found by IP had an objective function value
at least as good as the one found by the GA. In 8 cases,
both methods found an optimal solution to the problem,
and in 11 other cases, the gap between the two methods
was less than 1%. This shows that GA can be effective
for instances that are less challenging, but, for the harder
instances, IP was notably more successful than GA.

The merit of being faster and finding better solutions is
due not only to the differences in approaching the prob-
lem (IP vs. GA), but also a result of the algorithms used
to solve the instances. While our GA has less than 500
lines of code, CPLEX is the product of professional
software developers who worked on it for decades. The
seemingly small values in the last columns reflect this
contrast of algorithms: a gap as small as 0.1% can be
very difficult to close, and thus finding a sub-optimal
solution can be a much easier task than finding an opti-
mal one. Moreover, the fact that CPLEX can guarantee
the optimality of a solution is a feature that a GA does
not have. It is only in comparison studies such as the
present study, that one can visualize the effectiveness of
a GA, in finding optimal solutions. Finally, we note that
CPLEX is a multi-purpose solver that can handle a vast
number of different problems, while our GA was devel-
oped specifically to tackle WPP.

5. Conclusions and Further Research

In this study, we compared the performance of GA and
IP to solve instances of the problem of placing vertical
wells in an mxn grid that sits on a reservoir, with the

ACES

G. ALQAHTANI

Table 1. Summary of results using GA and IP.

GA 1P
D N Gap
Best SoI'n Time Card BestSol’n Time Card

10 55,187,158 112 10 55,187,158 33 10 0.00

20 68,445,523 122 20 68,568,163 43 20 0.18
30 77,462,025 124 30 77,462,025 48 30 0.00
40 85,106,849 142 40 85,112,969 49 40 0.01
50 92,306,494 150 50 92,306,494 54 50 0.00
60 99,004,082 208 60 99,132,004 52 60 0.13
70 104,894,614 191 70 105,383,497 57 70 0.46
80 110,598,373 263 80 111,275,555 54 80 0.61
90 115,751,327 320 90 116,836,492 74 90 0.93
100 120,097,642 472 100 121,998,756 76 100 1.56
110 121,859,490 568 110 126,733,273 97 110 3.85
120 124,017,004 690 117 130,778,001 149 120 5.17
130 124,017,004 762 117 134,144,399 284 130 7.55

140 124,017,004 859 117 136,147,901 3,600 140 8.91

10 47,495,649 111 10 47,495,649 106 10 0.00

20 56,566,624 129 20 56,566,624 130 20 0.00

30 63,899,845 139 30 63,928,663 129 30 0.05

12 40 70,334,844 182 40 70,392,256 141 40 0.08

50 75,637,819 214 50 76,120,456 181 50 0.63
60 77,731,339 356 56 80,639,104 263 60 3.61

70 77,064,512 422 56 82,588,104 3,600 68 6.69

10 40,836,652 115 10 40,836,652 183 10 0.00

20 48,708,586 126 20 48,708,586 243 20 0.00

16 30 54,792,273 150 30 54,803,004 322 30 0.02

40 56,570,909 240 34 58,673,867 1,534 40 3.58

50 56,758,783 326 35 58,604,640 3,600 40 3.25

10 36,921,362 113 10 36,921,362 363 10 0.00

20 20 43,793,101 135 20 43,829,509 333 20 0.08

30 45,037,857 229 23 46,605,956 1,092 28 3.36

objective of extracting the maximum amount of oil from
the reservoir. Our results indicate that GA can be effec-
tive for easier instances, but it lacks performance for
harder ones. In comparison, CPLEX (which takes the IP
approach) always found a solution at least as good as our
GA, and most of the time faster. Moreover, IP has the
advantage of finding provably optimal solutions, while

Copyright © 2013 SciRes.

ET AL. 35

GA is not able to guarantee that a solution is optimal.

The GA presented here can, of course, be modified
and have its performance enhanced, either by actually
changing the algorithm, or by simply adjusting its pa-
rameters. Similarly, the solution via IP can be made
faster by considering different formulations of the prob-
lem and tuning some parameters on CPLEX. To maintain
both approaches simplely, we chose not to vary those
parameters, to provide a basic GA, and to use a straight-
forward formulation for our IP approach.

As further research, we suggest the study of non-con-
ventional wells placement, a more challenging problem,
since it involves wells that are not necessarily vertical,
and thus may require a 3D-grid as the set of possible lo-
cations for the wells.

6. Acknowledgements

The authors acknowledge the High Performance Com-
puting Center at Texas Tech University at Lubbock for
providing resources that have contributed to the research
results reported within this paper.
URL: http://www.hpcc.ttu.edu

We thank Dr. Jerome Onwunalu’s for guidance and
support, and for providing a GA code used in preliminary
tests.

This research was partially supported by the Office of
Naval Research (ONR) through grant N000141310041 to
de Farias.

REFERENCES

[11 G. AlQahtani, R. Vadapalli, S. Siddiqui and S. Bhatta-
charya, “Well Optimization Strategies in Conventional
Reservoirs,” Proceedings of SPE Saudi Arabia Section
Technical Symposium and Exhibition, Al-Khobar, 8-11
April 2012, 13 Pages.
http://dx.doi.org/10.2118/160861-MS

[2] O. Badru and C. S. Kabir, “Well Placement Optimization
in Field Development,” SPE Annual Technical Confer-
ence and Exhibition, Denver, 5-8 October 2003, 9 Pages.

[3] W. Bangerth, H. Klie, M. F. Wheeler, P. L. Stoffa and M.
K. Sen, “On Optimization Algorithms for the Reservoir
Oil Well Placement Problem,” Computational Geosci-
ences, Vol. 10, No. 3, 2006, pp. 303-319.
http://dx.doi.org/10.1007/s10596-006-9025-7

[4] A. S. Cullick, S. Vasantharajan and M. W. Dobin, “De-
termining Optimal Well Locations from a 3D Reservoir
Model,” US Patent No. US6549879 B1, 2003.

[5] D.Y. Ding, “Optimization of Well Placement Using Evo-
lutionary Algorithms,” SPE EAGE Annual Technical
Conference and Exhibition, Rome, 9-12 June 2008, p.
912.

[6] B. Guyaguler, R. N. Horne, L. L. Rogers and J. J.
Rosenzweig, “Optimization of Well Placement in a Gulf
of Mexico Waterflooding Project,” SPE Annual Technical
Conference and Exhibition, Vol. 5, No. 3, 2000, pp. 110-

ACES

36

(7]

G. ALQAHTANI

118.

J. Onwunalu, M. Litvak, L. J. Durlofsky and K. Aziz,
“Application of Statistical Proxies to Speed up Field De-
velopment Optimization Procedures,” International Con-
ference and Exhibition, Abu Dhabi, 3-6 November 2008,
14 Pages.

G. W. Rosenwald and D. W. Green, “A Method for De-
termining the Optimum Location of Wells in a Reservoir
Using Mixed-Integer Programming,” SPE Journal, Vol.
14, No. 1, 1974, 12 Pages.

S. Vasantharajan and A. S. Cullick, “Well Site Selection
Using Integer Programming Optimization,” Proceedings
of IAMG’97, 22-26 September 1997, pp. 421-426.

Copyright © 2013 SciRes.

(10]

(11]

[12]

ET AL.

R. Haupt and S. Haupt, “Practical Genetic Algorithms,”
John Wiley and Sons, Hoboken, 2004.

G. L. Nemhauser and L. A. Wolsey, “Integer and Com-
binatorial Optimization,” John Wiley and Sons, Hoboken,
1988.

P. S. Cruz, R. N. Horne and C. V. Deutsch, “The Quality
Map: A Tool for Reservoir Uncertainty Quantification
and Decision Making,” SPE Annual Technical Confer-
ence and Exhibition, Vol. 7, No. 1, 2004, 9 Pages.

ACES

