

The Planar Ramsey Numbers $PR(K_4-e, K_l)^*$

Yongqi Sun¹, Yali Wu¹, Rui Zhang¹, Yuansheng Yang²

¹School of Computer and Information Technology, Beijing jiaotong University, Beijing, China ²Department of Computer Science, Dalian University of Technology, Dalian, China Email: yqsun@bjtu.edu.cn, yangys@dlut.edu.cn

Received 2013

ABSTRACT

The planar Ramsey number $PR(H_1, H_2)$ is the smallest integer n such that any planar graph on n vertices contains a copy of H_1 or its complement contains a copy of H_2 . It is known that the Ramsey number $R(K_4 - e, K_6) = 21$, and the planar Ramsey numbers $PR(K_4 - e, K_l)$ for $l \le 5$ are known. In this paper, we give the lower bounds on $PR(K_4 - e, K_l)$ and determine the exact value of $PR(K_4 - e, K_6)$.

Keywords: Planar Graph; Ramsey Number; Forbidden Subgraph

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph G with vertex set V(G)and edge set E(G), we denote the order and size of G by p(G) = |V(G)| and q(G) = |E(G)|, respectively. We refer to the regions defined by a plane graph as its faces. A face is said to be incident with the vertices and edges in its boundary. The *length* of a face is the number of edges with which it is incident. If a face has length α , we say it is an α -face. For a plane graph G, let f denote the number of faces, and f_a the number of α -faces. Let d(v) denote the degree of a vertex $v \in V(G)$, $\delta(G)$ the minimum degree of G. The neighborhood and the closed neighborhood of a vertex $v \in V(G)$ are denoted by $N(v) = \{u \in V(G) | uv \in V(G) \}$ E(G) and $N[v] = N(v) \cup \{v\}$, respectively. Let $G \cup H$ denote a disjoint sum of G and H, and nG is a disjoint sum of n copies of G. \overline{G} denotes the complement of G. For W $\subseteq V(G)$, let G(W) denote the subgraph of G induced by W, and $W \setminus v$ the subset of W obtained by removing the vertex v.

A graph G of order n will be called an $(H_1, H_2; n)$ -graph if $H_1 \nsubseteq G$ and $H_2 \nsubseteq \overline{G}$. If a $(H_1, H_2; n)$ -graph is planar, we call it an $(H_1, H_2; n)$ -P-graph. The planar Ramsey number $PR(H_1, H_2)$ is the smallest integer n such that there is no $(H_1, H_2; n)$ -P-graph. The definition of planar Ramsey number was firstly introduced by Walker [7]. Steinberg and Tovey [3] studied the case when both H_1 and H_2 are complete. For a connected graph H_1 of order at least 5, Gorgol proved that $PR(H_1, K_1)$ =4l-3 [2]. Bielak and Gorgol [1] determined that $PR(K_4 - e, K_3)$ = 7 and $PR(K_4 - e, K_4)$ = 10. It was shown that $PR(K_4 - e, K_5)$ = 14 and $PR(K_4 - e, K_6 - e)$ = 16 [5, 6].

For the Ramsey number $R(K_4 - e, K_6)$, McNamara

proved that its exact value is 21 (cf. [4]). In this paper, we prove that $PR(K_4 - e, K_6)=17$ and $PR(K_4 - e, K_l) \ge 3l + \lfloor (l-1)/4 \rfloor -2$. So, the values of $PR(K_4 - e, K_l)$ for $l \ge 7$ are still open.

2. Preliminary Results

Lemma 2.1. If *G* is a $(K_4 - e, K_l; n)$ -P-graph, then $\delta(G) \ge n - PR(K_4 - e, K_{l-1})$.

Proof. Assume that $\delta(G) < n - PR(K_4 - e, K_{l-1})$. Let v be a vertex of degree $\delta(G)$ and $H = G \langle V(G) - N[v] \rangle$, then $p(H) = n - \delta(G) - 1 \ge PR(K_4 - e, K_{l-1})$. Since $K_4 - e \nsubseteq H$, we have $K_{l-1} \subseteq \overline{H}$. The appropriate l-1 vertices of H together with v would yield a K_l in \overline{G} , a contradiction. So, $\delta(G) \ge n - PR(K_4 - e, K_{l-1})$.

Lemma 2.2 and 2.3 were proved in [5].

Lemma 2.2. If *G* is a planar graph such that $K_4 - e \nsubseteq G$, then $q(G) \le \lfloor 12(p(G) - 2)/5 \rfloor$.

Lemma 2.3. If G is a $(K_4 - e, K_4; 9)$ -P-graph, then $3K_3 \subseteq G$ or $G_{9-0} \subseteq G$, where G_{9-0} is shown in **Figure 2.1**.

By an argument similar to the one in the proof of paper [5], we can prove Lemma 2.4,

Figure 2.1. The graphs G_{9-0} .

Copyright © 2013 SciRes.

Lemma 2.4. Let *G* be a $(K_4 - e, K_5; n)$ -P-graph,

a) If n = 12, then $4K_3 \subseteq G$, $(G_{9-0} \cup K_3) \subseteq G$ or $G_{12-i} \subseteq G$ for $1 \le i \le 8$, where G_{12-i} are shown in **Figure 2.2**, and

If n = 13, then *G* is isomorphic to G_{13-0} or $G_{13-0} + v_3v_4$, where G_{13-0} is shown in **Figure 2.3**.

Figure 2.2. The graphs G_{12-i} for $1 \le i \le 8$.

Figure 2.3. The graphs G_{13-0} .

Lemma 2.5. If *G* is a $(K_4 - e, K_6; 17)$ -graph with $\delta(G) = 4$, then it is not a planar graph.

Proof. By contradiction, we assume that G is a $(K_4 - e, K_6; 17)$ -P-graph with $\delta(G) = 4$. Let ν be a vertex of degree $\delta(G)$ and $H = G(V(G) - N[\nu])$, then |V(H)| = 12. Let $N(\nu) = \{u_1, u_2, u_3, u_4\}$. Since $K_4 - e \nsubseteq G$ and $\delta(G) = 4$, we have

Claim 1. G(N[v]) can not lie in any α -face of H for $\alpha \le 5$ alone.

Since *H* is a $(K_4 - e, K_5; 12)$ -P-graph, by Lemma 2.4(*a*), we have $(G_{9-0} \cup K_3) \subseteq H, G_{12-i} \subseteq H (1 \le i \le 8)$ or $4K_3 \subseteq H$.

Case 1. Suppose that $(G_{9-0} \cup K_3) \subseteq H$. Let $V(G_{9-0}) = \{v_i | 1 \le i \le 9\}$ shown in **Figure 2.1**. By Claim 1, both M[v] and K_3 have to lie in same region of G_{9-0} . By symmetry it is sufficient to consider that they lie in region I, II or III. If they lie in region II, since $K_4 - e \nsubseteq G$, v_6 is nonadjacent to any vertex of $\{v_2, v_3, v_7, v_8\}$. It is forced that $d(v_6) = 3$, a contradiction. If they lie in region I or III, since $K_4 - e \nsubseteq G$, v_1 has to be adjacent to both a_4 and a_8 (or a_5 and a_7). Without loss of generality, let v_1v_4 , $v_1v_8 \in E(G)$. Then v_2 is nonadjacent to any vertex of $\{v_3, v_5, v_6, v_8, v_9\}$. Hence $d(v_2) \le 3$, a contradiction.

Case 2. Suppose that H contains one subgraph of G_{12-i} for $1 \le i \le 6$. By Claim 1, H does not contain any subgraph of $\{G_{12-1}, G_{12-2}, G_{12-3}, G_{12-4}\}$. Hence there remaining two subcases.

Case 2.1. $G_{12-5} \subseteq H$. By Claim 1, $G\langle N[v] \rangle$ have to lie in region I. Since $K_4 - e \nsubseteq G$, v_3 is nonadjacent to any vertex of $\{v_7, v_9, v_{11}, v_{12}\}$. Hence $d(v_3) = 3$, a contradiction.

Case 2.2. $G_{12-6} \subseteq H$. By Claim 1, $G\langle N[v] \rangle$ have to lie in region I. Since $d(v_1) \ge 4$ and $K_4 - e \nsubseteq G$, v_1 has to be adjacent to just one vertex of $\{v_5, v_6\}$, say v_5 . And v_2 is nonadjacent to any vertex of $\{v_4, v_9, v_{10}, v_{12}\}$. Hence $d(v_2) = 3$, a contradiction.

Case 3. $G_{12.7} \subseteq H$. By Claim 1, G(N[v]) have to lie in region I. Since $d(v_{11}) \ge 4$ and $K_4 - e \nsubseteq G$, v_{11} has to be adjacent to just one vertex of $\{v_9, v_{10}\}$, say v_{10} . Since $d(v_1) \ge 4$ and $K_4 - e \nsubseteq G$, v_1 has to be adjacent to both v_4 and v_9 . Let $W_7 = \{v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$. By Claim 1 and $K_4 - e \nsubseteq G$, we have $G(W_7) \cong C_7$.

Since $K_4 - e \nsubseteq G$, G(N(v)) is isomorphic to one graph of $\{4K_1, 2K_1 \cup K_2, 2K_2\}$. If G(N(v)) is isomorphic to $4K_1$, then u_1, u_2, u_3, u_4, v_1 and v_{10} would yield a K_6 in \overline{G} , a contradiction. Hence G(N(v)) is isomorphic to $2K_1 \cup K_2$ or $2K_2$. Without loss of generality, let $u_3u_4 \in E(G)$. If there is one vertex of $\{u_1, u_2, u_3, u_4\}$, say u_1 which is adjacent to v_4 , then since $K_4 - e \nsubseteq G$, u_1 is adjacent neither to v_2 nor to v_6 . Therefore since $d(u_1) \ge 4$, u_1 is adjacent to at least one vertex of $\{v_3, v_5, v_7, v_8\}$. In any case, there exists one vertex of $\{v_2, v_6\}$ whose degree is at most 3, a contradiction. Hence v_4 is nonadjacent to any vertex of $\{u_1, u_2, u_3, u_4\}$. If $u_1u_2 \notin E(G)$, then u_1, u_2, u_3, v_4, v_9 and

 v_{11} would yield a K_6 in \overline{G} , a contradiction. So, we have $u_1u_2 \in E(G)$, that is, $G(N(v)) \cong 2K_2$.

Since $\delta(G) = 4$, there are at least 8 edges between the vertices of $\{u_1, u_2, u_3, u_4\}$ and $W_7 \setminus v_4$. Since $K_4 - e \nsubseteq G$, each vertex of $W_7 \setminus v_4$ is adjacent to at most two vertices of

 $\{u_1, u_2, u_3, u_4\}$. Hence there are just two vertices of $W_7 \setminus v_4$ which are adjacent to two vertices of $\{u_1, u_2, u_3, u_4\}$. By symmetry there are three cases.

Case 3.1. Suppose that there is one vertex of $\{v_3, v_8\}$ which is adjacent to u_1 and u_3 (or u_2 and u_4). Without loss of generality, let $v_3u_1, v_3u_3 \in E(G)$. Then since $d(v_5) \ge 4$ and $K_4 - e \not\subseteq G$, v_5 has to be adjacent to one vertex of $\{u_2, u_4\}$, say u_2 . Thus there is at least one vertex of $\{u_1, u_3, u_4\}$ whose degree is at most 3, a contradiction (see $G_{17.1}$ in **Figure 2.4**).

Case 3.2. Suppose that there is one vertex of $\{v_5, v_7\}$ which is adjacent to u_1 and u_3 (or u_2 and u_4). Without loss of generality, let v_5u_1 , $v_5u_3 \in E(G)$. Then since $d(v_3) \ge 4$ and $K_4 - e \notin G$, v_3 has to be adjacent to one vertex of $\{u_2, u_4\}$, say u_2 . Thus there is at least one vertex of $\{u_1, u_3, u_4\}$ whose degree is at most 3, a contradiction(see $G_{17..2}$ in Fig. 2.4).

Case 3.3. Suppose that both v_2 and v_6 are adjacent to two vertices of $\{u_1, u_2, u_3, u_4\}$ respectively, say v_2u_1 , $v_2u_3 \in E(G)$, v_6 is adjacent to one vertex of $\{u_1, u_2\}$ and one vertex of $\{u_3, u_4\}$. Then since $K_4 - e \not\subseteq G$, there is at least one vertex of $\{u_1, u_2, u_3, u_4\}$ whose degree is at most 3, a contradiction (see $G_{17.3}$ in **Figure 2.4**).

Case 4. $G_{12-8} \subseteq H$. By Claim 1, $G\langle N[v] \rangle$ have to lie in region I. Since $d(v_8) \ge 4$ and $K_4 - e \not\subseteq G$, v_8 has to be adjacent to v_9 . Since $d(v_{10}) \ge 4$ and $K_4 - e \not\subseteq G$, v_{10} has to be adjacent to just one vertex of $\{v_1, v_4\}$. Similarly, v_{11} has to be adjacent to just one vertex of $\{v_1, v_5\}$. Since $K_4 - e \not\subseteq G$, v_1 is adjacent to at most one vertex of $\{v_{10}, v_{11}\}$. By symmetry it is sufficient to consider that $v_4v_{10}, v_1v_{11} \in E(G)$ or $v_4v_{10}, v_5v_{11} \in E(G)$. If $v_4v_{10}, v_1v_{11} \in E(G)$, then the proof is same as Case 3 (see $_{G17.4}$ in **Figure 2.5**). So it remains that $v_4v_{10}, v_5v_{11} \in E(G)$.

By Claim 1, we have $v_4v_5 \notin E(G)$ and v_1 is non-adjacent to any vertex of $\{v_6, v_7\}$. Since $K_4 - e \notin G$, $G\langle N(v)\rangle$ is isomorphic to one graph of $\{4K_1, 2K_1 \cup K_2, 2K_2\}$. If $G\langle N(v)\rangle$ is isomorphic to $4K_1$, then u_1, u_2, u_3, u_4, v_8 and v_{10} would yield a K_6 in \overline{G} , a contradiction. Hence $G\langle N(v)\rangle$ is isomorphic to $2K_1 \cup K_2$ or $2K_2$.

Case 4.1. Suppose that $G(N(v)) \cong 2K_1 \cup K_2$, say $u_3u_4 \in E(G)$. If each vertex of $\{u_1, u_2, u_3, u_4\}$ is adjacent neither to v_4 nor to v_5 , then u_1, u_2, u_3 (or u_4), v_4, v_5 and v_{12} would yield a K_6 in \overline{G} , a contradiction. Hence there is at least one edge between vertex sets $\{u_1, u_2, u_3, u_4\}$ and $\{v_4, v_5\}$. Assume that there is at least one edge between vertex sets $\{u_1, u_2\}$ and $\{v_4, v_5\}$, say $u_1v_4 \in E(G)$. Then since $d(u_1) \geq 4$ and $K_4 - e \not\subseteq G$, u_1 has to be adjacent to one vertices of $\{v_3, v_5, v_7\}$. In any case, there exists at least one vertex of $\{v_1, v_6\}$ whose degree is at most 3, a

contradiction. Hence there is no edge between vertex sets $\{u_1, u_2\}$ and $\{v_4, v_5\}$. Then there is at least one edge between vertex sets $\{u_3, u_4\}$ and $\{v_4, v_5\}$, say $u_3v_4 \in E(G)$. If $u_4v_5 \notin E(G)$, then u_1, u_2, u_4, v_4, v_5 and v_{12} would yield a K_6 in \overline{G} , a contradiction too. Hence we have $u_4v_5 \in E(G)$ (see $G_{17.5}$ in **Figure 2.5**). There also exists at least one vertex of $\{v_1, v_6, v_7\}$ whose degree is at most 3, a contradiction.

Case 4.2. Suppose that $G(N(v)) \cong 2K_2$, say u_1u_2 , $u_3u_4 \in E(G)$. Since $d(v_1) \geq 4$ and $K_4 - e \not\subseteq G$, v_1 has to be adjacent to one vertex of $\{u_1, u_2\}$ and one vertex of $\{u_3, u_4\}$, say v_1u_1 , $v_1u_3 \in E(G)$. Then since $K_4 - e \not\subseteq G$, v_1 is adjacent neither to u_2 nor to u_4 . If there is no edge between vertex sets $\{u_2, u_4\}$ and $\{v_4, v_5\}$, then u_2, u_4, v_4 ,

Figure 2.4. The graphs $G_{17.1}$ – $G_{17.3}$.

Figure 2.5. The graphs $G_{17.4}$ – $G_{17.6}$.

Copyright © 2013 SciRes.

 v_5 , v_1 and v_{12} would yield a K_6 in \overline{G} , a contradiction. Hence there is at least one edge between vertex sets $\{u_2, u_4\}$ and $\{v_4, v_5\}$, say $u_2v_4 \in E(G)$. Then since $d(u_2) \ge 4$ and $K_4 - e \ G$, u_2 has to be adjacent to at least one vertex of $\{v_3, v_5, v_7\}$ (see $G_{17.6}$ in **Figure 2.5**). In any case, we have $d(v_6) = 3$, a contradiction.

By an argument similar to the above proof, we can prove that $4K_3 \nsubseteq H$. However, the proof of $4K_3 \nsubseteq H$ is more complicated than Case 3 or 4, and it is available from the authors. Hence the assumption does not hold.

3. The Main Results

Lemma 3.1. There is no $(K_4-e, K_6; 17)$ -P-graph.

Proof. Assume that there is a $(K_4 - e, K_6; 17)$ -P-graph G. Let v be a vertex of degree $\delta(G)$ and H = G(V(G) - N[v]). Since $PR(K_4 - e, K_5) = 14$, by Lemma 2.1, it follows $\delta(G) \geq 3$. By Lemma 2.2, $q(G) \leq \lfloor 12(17-2)/5 \rfloor = 36$ implying $\delta(G) \leq 4$. By Lemma 2.5, we have $\delta(G) \neq 4$. It is forced that $\delta(G) = 3$, thus p(H) = 13.

Let $N(v)=\{u_1, u_2, u_3\}$. Since $K_4-e \nsubseteq G$, we have $|E(G(N(v)))| \le 1$. Without loss of generality, let $u_1u_2, u_1u_3 \notin E(G)$. Since $d(u_1) \ge 3$ and $K_4-e \nsubseteq G$, N[v] can not lie in any triangle of H. By Lemma 2.4(b), H is isomorphic to G_{13-0} or $G_{13-0}+v_3v_4$. If $H \cong G_{13-0}$, by symmetry it is sufficient to consider that N[v] lie in region I or II. If $H \cong G_{13-0}+v_3v_4$, by symmetry it is sufficient to consider that N[v] lie in region I, II, III or IV (see **Figure 2.3**). If N[v] lie in region I, then u_1,u_2,v_3,v_5,v_{10} and v_{12} would yield a K_6 in \overline{G} , a contradiction. If N[v] lie in region III, then u_1,u_2,v_3,v_4,v_6,v_9 and v_{11} would yield a K_6 in \overline{G} , a contradiction. If N[v] lie in region III or IV, then $u_1,u_2,v_2,v_3,v_4,v_6,v_8$ and v_{13} would yield a K_6 in \overline{G} , a contradiction too.

Theorem 3.2. If $l \ge 3$, then $PR(K_4-e, K_l) \ge 3l+|(l-1)/4|-2$.

Proof. Note that G_{13-0} shown in **Figure 2.3** is a $(K_4 - e, K_5; 13)$ -P-graph. Let G be a graph which is a union of

 $\lfloor (l-1)/4 \rfloor$ copies of G_{13-0} and $(l-4 \times \lfloor (l-1)/4 \rfloor - 1)$ copies of a triangle, then $K_4 - e \nsubseteq G$. Since $K_5 \nsubseteq \overline{G}_{13-0}$, G contains independent set of size at most l-1. Hence G is a $(K_4 - e, K_1; n)$ -P-graph, where $n=3l+\lfloor (l-1)/4 \rfloor - 3$.

By Lemma 3.1 and Theorem 3.2, taking l = 6, we have **Theorem 3.3.** $PR(K_4 - e, K_6) = 17$.

Furthermore, we have the following conjecture,

Conjecture 3.4. If $l \ge 3$, then $PR(K_4-e, K_1) = 3l + |(l-1)/4| - 2$.

By Bielak and Gorgol [1], Sun et al. [5] and Theorem 3.3, the conjecture is true for $l \le 6$.

REFERENCES

- H. Bielak and I. Gorgol, "On Planar Ramsey Number for a Small and a Complete Graph," *Manuscript*, 1997.
- [2] I. Gorgol, "Planar Ramsey Numbers," Discussiones Mathematicae Graph Theory, Vol. 25, No. 1-2, 2005, pp. 45-50. doi:10.7151/dmgt.1258
- [3] R. Steinberg and C. A. Tovey, "Planar Ramsey Number," Journal of Combinatorial Theory, Series B, Vol. 59, No. 2, 1993, pp. 288-296. doi:10.1006/jctb.1993.1070
- [4] S. P. Radziszowski, "Small Ramsey Numbers," Electronic Journal of Combinatorics, http://www.combin atorics.org/, #R13, 2011, p. 84.
- [5] Y. Q. Sun, Y. S. Yang, X. H. Lin and J. Qiao, "The Planar Ramsey Number *PR* (*K*₄ *e*, *K*₅)," *Discrete Mathematics*, Vol. 307, No. 1, 2007, pp. 137-142. doi:10.1016/j.disc.2006.05.034
- [6] Y. Q. Sun, Y. S. Yang and Z. H. Wang, "The Planar Ramsey Number $PR(K_4 e, K_k e)$," ARS Combinatoria, Vol. 88, 2008, pp. 3-20.
- [7] K. Walker, "The Analog of Ramsey Numbers for Planar Graphs," *Bulletin of the London Mathematical Society*, Vol. 1, No. 2, 1969, pp. 187-190. doi:10.1112/blms/1.2.187