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ABSTRACT

The planar Ramsey number PR (H,, H,) is the smallest integer n such that any planar graph on » vertices contains a
copy of H; or its complement contains a copy of H,. It is known that the Ramsey number R(K,— e, K¢) = 21, and the
planar Ramsey numbers PR(K,— e, K)) for / <5 are known. In this paper, we give the lower bounds on PR (K;— e, K))

and determine the exact value of PR (K4 — e, Kg).
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1. Introduction

We consider only finite undirected graphs without loops
or multiple edges. For a graph G with vertex set V(G)
and edge set £(G), we denote the order and size of G by
p(G) = (G)| and ¢(G) = |E(G)|, respectively. We refer to
the regions defined by a plane graph as its faces. A face
is said to be incident with the vertices and edges in its
boundary. The length of a face is the number of edges
with which it is incident. If a face has length a, we say it
is an a-face. For a plane graph G, let f'denote the number
of faces, and f, the number of a-faces. Let d(v) denote the
degree of a vertex v € V(G), (G) the minimum degree of
G. The neighborhood and the closed neighborhood of a
vertex v € V(G) are denoted by N(v) = {ue V(G)uv €
E(G)} and N[v] = N(v)U {v}, respectively. Let G U H
denote a disjoint sum of G and H, and nG is a disjoint
sum of n copies of G. G denotes the complement of G.
For W S W(G), let G{(W) denote the subgraph of G in-
duced by W, and W\v the subset of W obtained by re-
moving the vertex v.

A graph G of order n will be called an (H;, H;
n)-graph it Hy 4 G and H, 4 G. If a (H,, Hy; n)-graph is
planar, we call it an (H,, H,; n)-P-graph. The planar
Ramsey number PR(H, H>) is the smallest integer n such
that there is no (H,, H,; n)-P-graph. The definition of
planar Ramsey number was firstly introduced by Walker
[7]. Steinberg and Tovey [3] studied the case when both
H, and H, are complete. For a connected graph H; of
order at least 5, Gorgol proved that PR (H;, K))=41-3 [2].
Bielak and Gorgol [1] determined that PR (K;— e, K3)=7
and PR(K4— e, K4) = 10. It was shown that PR(K,— e, K5)
=14 and PR(K;— e, Ks— ) =16 [5, 6].

For the Ramsey number R(K; — e, Ks), McNamara
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proved that its exact value is 21 (cf. [4]). In this paper,
we prove that PR(K,— e, K4)=17 and PR(K,— e, K}) > 3!
+ [(/ = 1)/4]-2. So, the values of PR (K,— e, K;) for [ >
7 are still open.

2. Preliminary Results

Lemma 2.1. If G is a (K4 — ¢, K;; n)-P-graph, then §(G) >
n— PR(K4_ e, Klfl).

Proof. Assume that 3(G) <n — PR(Ks— e, Ki). Let v
be a vertex of degree J(G) and H = G{V(G) — N[v]), then
p(H)=n—-06(G)—1>PR(Ks— e, K; ). Since K,—e € H,
we have K, & H. The appropriate /-1 vertices of H
together with v would yield a K; in G, a contradiction. So,
5(G) >n— PR(K4_ e, Kl*1)~

Lemma 2.2 and 2.3 were proved in [5].

Lemma 2.2. If G is a planar graph such that K,— ¢ 4
G, then ¢(G) < | 12(p(G) — 2) /5].

Lemma 2.3. If G is a (K, — e, K4; 9)-P-graph, then 3Kj;
€ GorGyy & G, where Gogis shown in Figure 2.1.

By an argument similar to the one in the proof of paper
[5], we can prove Lemma 2.4,
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Figure 2.1. The graphs Go_y.
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Lemma 2.4. Let G be a (K;— e, Ks; n)-P-graph,

a) If n =12, then 4K3 S G, (Goy U K3) & G or
Gy & Gfor 1< i <8, where Gyp; are shown in Fig-
ure 2.2, and

If n = 13, then G is isomorphic to Gz or Gz + Vv,
where G; is shown in Figure 2.3.
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Figure 2.2. The graphs Gy, for 1 <i<8.

Figure 2.3. The graphs G;..
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Lemma 2.5. If G is a (K;— e, K4 ; 17)-graph with 6(G)
=4, then it is not a planar graph.

Proof. By contradiction, we assume that G is a (K4 —
e, K¢ ; 17)-P-graph with 6(G) = 4. Let v be a vertex of
degree J(G) and H = G(V(G) —N[v]), then |V(H)| = 12.
Let N(v) = {u, uy, us, us}. Since Ky— e 4 G and J (G) =
4, we have

Claim 1. G(N[v]) can not lie in any a-face of H for a <
5 alone.

Since H is a (K4 — e, K5 ; 12)-P-graph, by Lemma
2.4(a), we have (Go)UK3) © H, G, © H(1<i<3Q)
or4K; © H.

Case 1. Suppose that (G UK3) & H. Let M(Go) =
{vi| 1< i <9} shown in Figure 2.1. By Claim 1, both
N[v] and K; have to lie in same region of Gy By sym-
metry it is sufficient to consider that they lie in region I,
II or III. If they lie in region II, since K;— e 4 G, v is
nonadjacent to any vertex of {v,, v, v5, vg}. It is forced
that d(ve) = 3, a contradiction. If they lie in region I or III,
since K4, — e € G, v, has to be adjacent to both a4 and ag
(or as and a,). Without loss of generality, let vivy, vivg €
E(G). Then v, is nonadjacent to any vertex of {v;, vs, vs,
vg, Vo). Hence d(v;) < 3, a contradiction.

Case 2. Suppose that H contains one subgraph of Gy,
for 1 <i < 6. By Claim 1, H does not contain any sub-
graph of {G,.1, G2, G123, Gio.4). Hence there remain-
ing two subcases.

Case 2.1. G55 & H. By Claim 1, G(N[v]) have to lie
in region 1. Since K; — ¢ ¢ G, v;is nonadjacent to any
vertex of {v;, vo, V1, vi2}. Hence d(v;) = 3, a contradic-
tion.

Case 2.2. G5, & H. By Claim 1, G(N[v]) have to lie
in region I. Since d(v) >4 and K, —e ¢ G, v, has to be
adjacent to just one vertex of {vs, v¢}, say vs. And v, is
nonadjacent to any vertex of {v,, vo, V0, v12}. Hence d(v,)
=3, a contradiction.

Case 3. Gj».; & H. By Claim 1, G(N[v]) have to lie
in region 1. Since d(v;;) >4 and K4 —e ¢ G, v|; has to be
adjacent to just one vertex of {vy, vi¢}, say vyo. Since d(v;)
>4 and K,— e ¢ G, v, has to be adjacent to both v, and
Vo. Let W7 = {Vz, V3, V4, Vs, Vg, V7, Vg}. By Claim 1 and K4
—e ¢ G, wehave G(W5) = C;.

Since Ky —e ¢ G, G{(N(v)) is isomorphic to one graph
of {4K;, 2K, UK,, 2K>}. If G{N(v)) is isomorphic to 4K,
then uy, u, us, us, v; and vyo would yield a Kg in G, a
contradiction. Hence G(N(v)) is isomorphic to 2K; UK,
or 2K,. Without loss of generality, let usuy, € E(G). If
there is one vertex of {u;, u,, u3, us}, say u; which is ad-
jacent to vy, then since Ky, —e ¢ G, u; is adjacent neither
to v, nor to v¢. Therefore since d(u,) > 4, u, is adjacent to
at least one vertex of {v3, vs, v5, vg}. In any case, there
exists one vertex of {v,, vs} whose degree is at most 3, a
contradiction. Hence v, is nonadjacent to any vertex of
{uy, uy, uz, us}. If uju, € E(G), then uy, u,, us, vs4, vo and
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v, would yield a Ky in G, a contradiction. So, we have
mu, € E(G), that is, G(N(v)) = 2K,.

Since J(G) = 4, there are at least 8 edges between the
vertices of {u, uy, us, us} and W,\v,. Since Ky — e 4G,
each vertex of W;\v, is adjacent to at most two vertices of

{uy, uy, uz, usy. Hence there are just two vertices of
W:\v4 which are adjacent to two vertices of {u;, u,, us,
us}. By symmetry there are three cases.

Case 3.1. Suppose that there is one vertex of {vs, vg}
which is adjacent to u; ,g 3 (01 u; and uy). Without loss
of generality, let vsu,, vsu3 € E(G). Then since d(vs) = 4
and K, — e & G, vs has to be adjacent to one vertex of {u,,
uy}, say u,. Thus there is at least one vertex of {u, us, us}
whose degree is at most 3, a contradiction (see Gy7; in
Figure 2.4).

Case 3.2. Suppose that there is one vertex of {vs, v;}
which is adjacent to u; and u; (or u, and u,). Without loss
of generality, let vsu;, vsu3€E(G). Then since d(v;) > 4
and K, — e £ G, v; has to be adjacent to one vertex of {u»,
uy}, say u,. Thus there is at least one vertex of {u, us, us}
whose degree is at most 3, a contradiction(see G7., in Fig.
2.4).

Case 3.3. Suppose that both v, and v are adjacent to
two vertices of {u;, uy, us, u4} respectively, say vou,
;€ E(G), v is adjacent to one vertex of {u;, u,} and
one vertex of {us, uy}. Then since K; — e £G, there is at
least one vertex of {uy, uy, u3, us} whose degree is at most
3, a contradiction (see G173 in Figure 2.4).

Case 4. G1,3 © H. By Claim 1, G{N[v]) have to lie in
region 1. Since d(vg) > 4 and Ky — e £ G, vg has to be
adjacent to vy. Since d(v9) > 4 and K4 — e £ G, vyy has
to be adjacent to just one vertex of {vi, v4}. Similarly, vy,
has to be adjacent to just one vertex of {v,, vs}. Since K4~
e & G, v, is adjacent to at most one vertex of {vio, vii}.
By symmetry it is sufficient to consider that v4vyg, viv;1€
E(G) Or V4Vq0, V5V11E€ E(G) If V4Vio, VIV1HE E(G), then the
proof is same as Case 3 (see G174 in Figure 2.5). So it
remains that v4vyq, vsv11 € E(G).

By Claim 1, we have vyvs € E(G) and v; is non-
adjacent to any vertex of {vs, v;}. Since K4y — e & G,
G(N(v)) is isomorphic to one graph of {4K,, 2K;UK,,
2K,}. If G(N(v)) is isomorphic to 4K, then u,, u,, us, g,
vs and v, would yield a Kg in G, a contradiction. Hence
G{N(v)) is isomorphic to 2K; U K, or 2K,.

Case 4.1. Suppose that G(N(v)) = 2K, UK, say usuy
€ E(G). If each vertex of {u), up, u3, us} is adjacent
neither to v4 nor to vs, then u, u,, us (Or uy), v4, vs and vy,
would yield a K in G, a contradiction. Hence there is at
least one edge between vertex sets {u, uy, u3, u4} and {vy,
vst. Assume that there is at least one edge between
vertex sets {uj, u} and {v,, vs}, say u;v4 € E(G). Then
since d(u;) > 4 and K4 — e 4G, u; has to be adjacent to
one vertices of {vs;, vs, v;}. In any case, there exists at
least one vertex of {v|, v¢} whose degree is at most 3, a
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contradiction. Hence there is no edge between vertex sets
{uy, uy} and {v4, vs}. Then there is at least one edge
between vertex sets {us, usq} and {v4, vs}, say w3y €
E(G). If ugvs € E(G), then u, uy, uy, v4, vs and vy, would
yield a Kgin G, a contradiction too. Hence we have u4vs
€ E(G) (see Gyy5 in Figure 2.5). There also exists at
least one vertex of {vi, vs, v;} whose degree is at most 3,
a contradiction.

Case 4.2. Suppose that G{N(v)) = 2K, say uju,, usuy
€ E(G). Since d(v))> 4 and K, —e 4G, v; has to be
adjacent to one vertex of {uy, u,} and one vertex of {u;,
us}, say viuy, viuz € E(G). Then since K4— e 4G, v, is
adjacent neither to u, nor to uy. If there is no edge
between vertex sets {u,, us} and {v4, vs}, then uy, ug, v,

vg™~_Us 1‘7 Ug
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Figure 2.5. The graphs G74—G\7¢.
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vs, vi and vy, would yield a Ky in G, a contradiction.
Hence there is at least one edge between vertex sets {u5,
us} and {vy, vs}, say upvy € E(G). Then since d(u,) > 4
and K, — e 9G, u, has to be adjacent to at least one
vertex of {vs, vs, v7}(see G746 in Figure 2.5). In any case,
we have d(vg) = 3, a contradiction.

By an argument similar to the above proof, we can
prove that 4K3 ¢ H. However, the proof of 4K; ¢ H is
more complicated than Case 3 or 4, and it is available
from the authors. Hence the assumption does not hold.

3. The Main Results

Lemma 3.1. There is no (K;—e,K¢;17)-P-graph.

Proof. Assume that there is a (Ky— e, K¢; 17)-P-graph
G. Let v be a vertex of degree J(G) and H = G(V(G)—
N[v]). Since PR(K; — e, Ks) = 14, by Lemma 2.1, it
follows §(G) > 3. By Lemma 2.2, ¢(G) < [12(17-2)/5] =
36 implying d(G) < 4. By Lemma 2.5, we have 6(G) #
4. Tt is forced that 6(G) = 3, thus p(H) = 13.

Let N(v)={ui, u,, u3}. Since K,—e ¢ G, we have
|[E(G(N(v)))| < 1. Without loss of generality, let u;u,, uju;
¢ E(G). Since d(u,) >3 and K,— e € G, N[v] can not lie
in any triangle of H. By Lemma 2.4(b), H is isomorphic
to G13_0 or G13_0+V3V4. If H= G13_0’ by Symmetry it is
sufficient to consider that N[v] lie in region [ or II. If H =
G130+ v3v4, by symmetry it is sufficient to consider that
NIv] lie in region I, II, IIT or IV (see Figure 2.3). If N[v]
lie in region I, then uy,up,v3,vs,v1o and vy, would yield a
K, in G, a contradiction. If N[v] lie in region II, then u,
Uy, Vi, Ve, Vo and v;; would yield a Kg in G, a
contradiction. If N[v] lie in region III or IV, then u,, u,, v,
v7, vgand vi3 would yield a Kgin G, a contradiction too.

Theorem 3.2. If / > 3, then PR(Kj—e, K)) >
3 (F1)/4]-2.

Proof. Note that G539 shown in Figure 2.3 is a (K4 — e,
Ks; 13)-P-graph. Let G be a graph which is a union of
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L(I-1)/4] copies of Gi39 and (I-4 X | (I-1)/4]-1) copies
of a triangle, then K; — ¢ ¢ G. Since K5 ¢ G349, G
contains independent set of size at most / — 1. Hence G is
a (K4~ e, K;; n)-P-graph, where n=3/+| (I-1)/4]-3.

By Lemma 3.1 and Theorem 3.2, taking / = 6, we have

Theorem 3.3. PR(K,— e, Kg) = 17.

Furthermore, we have the following conjecture,

Conjecture 3.4. If [ > 3, then PR(K,—e, K| =
3H(I-1)/4]-2.

By Bielak and Gorgol [1], Sun et al. [5]and Theorem
3.3, the conjecture is true for / < 6.
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