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ABSTRACT 
The planar Ramsey number PR (H1, H2) is the smallest integer n such that any planar graph on n vertices contains a 
copy of H1 or its complement contains a copy of H2. It is known that the Ramsey number R(K4 − e, K6) = 21, and the 
planar Ramsey numbers PR(K4 − e, Kl) for l ≤ 5 are known. In this paper, we give the lower bounds on PR (K4 − e, Kl) 
and determine the exact value of PR (K4 − e, K6). 
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1. Introduction 
We consider only finite undirected graphs without loops 
or multiple edges. For a graph G with vertex set V(G) 
and edge set E(G), we denote the order and size of G by 
p(G) = |V(G)| and q(G) = |E(G)|, respectively. We refer to 
the regions defined by a plane graph as its faces. A face 
is said to be incident with the vertices and edges in its 
boundary. The length of a face is the number of edges 
with which it is incident. If a face has length α, we say it 
is an α-face. For a plane graph G, let f denote the number 
of faces, and fα the number of α-faces. Let d(v) denote the 
degree of a vertex v ∈ V(G), δ(G) the minimum degree of 
G. The neighborhood and the closed neighborhood of a 
vertex v ∈ V(G) are denoted by N(v) = {u∈ V(G)|uv ∈ 
E(G)} and N[v] = N(v)∪{v}, respectively. Let G ∪ H 
denote a disjoint sum of G and H, and nG is a disjoint 
sum of n copies of G. G

___

 denotes the complement of G. 
For W ⊆ V(G), let G〈W〉 denote the subgraph of G in-
duced by W, and W\v the subset of W obtained by re-
moving the vertex v. 

A graph G of order n will be called an (H1, H2; 
n)-graph if H1 ⊈ G and H2 ⊈ G

___

For the Ramsey number R(K4 − e, K6), McNamara 

proved that its exact value is 21 (cf. [4]). In this paper, 
we prove that PR(K4 − e, K6)=17 and PR(K4 − e, Kl) ≥ 3l 
+ ⌊(l − 1) / 4⌋−2. So, the values of PR (K4 − e, Kl) for l ≥ 
7 are still open. 

2. Preliminary Results 
Lemma 2.1. If G is a (K4 − e, Kl ; n)-P-graph, then δ(G) ≥ 
n − PR(K4 − e, Kl−1). 

Proof. Assume that δ(G) < n − PR(K4− e, Kl−1). Let v 
be a vertex of degree δ(G) and H = G〈V(G) − N[v]〉, then 
p(H) = n − δ(G) – 1 ≥ PR(K4 − e, Kl−1). Since K4 – e ⊈ H, 
we have Kl−1 ⊆ 

. If a (H1, H2; n)-graph is 
planar, we call it an (H1, H2; n)-P-graph. The planar 
Ramsey number PR(H1, H2) is the smallest integer n such 
that there is no (H1, H2; n)-P-graph. The definition of 
planar Ramsey number was firstly introduced by Walker 
[7]. Steinberg and Tovey [3] studied the case when both 
H1 and H2 are complete. For a connected graph H1 of 
order at least 5, Gorgol proved that PR (H1, Kl)=4l−3 [2]. 
Bielak and Gorgol [1] determined that PR (K4 − e, K3)= 7 
and PR(K4 − e, K4) = 10. It was shown that PR(K4 − e, K5) 
= 14 and PR(K4 − e, K6 − e) = 16 [5, 6].  

H
___

. The appropriate l−1 vertices of H 
together with v would yield a Kl in G

___

 

, a contradiction. So, 
δ(G) ≥ n − PR(K4 − e, Kl−1). 

Lemma 2.2 and 2.3 were proved in [5]. 
Lemma 2.2. If G is a planar graph such that K4 − e ⊈ 

G, then q(G) ≤ ⌊12(p(G) − 2) /5⌋. 
Lemma 2.3. If G is a (K4 – e, K4; 9)-P-graph, then 3K3 

⊆ G or G9-0 ⊆ G, where G9-0 is shown in Figure 2.1. 
By an argument similar to the one in the proof of paper 

[5], we can prove Lemma 2.4, 
 

 
Figure 2.1. The graphs G9-0. 
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Lemma 2.4. Let G be a (K4 – e, K5; n)-P-graph, 
a) If n = 12, then 4K3 ⊆ G, (G9-0 ∪ K3) ⊆ G or 

G12-i ⊆ G for 1 ≤ i ≤ 8, where G12-i  are shown in Fig-
ure 2.2, and 

If n = 13, then G is isomorphic to G13-0 or G13-0 + v3v4, 
where G13-0 is shown in Figure 2.3. 
 

 

 
Figure 2.2. The graphs G12-i for 1 ≤ i ≤ 8. 

 

 
 

Figure 2.3. The graphs G13-0. 

Lemma 2.5. If G is a (K4 − e, K6 ; 17)-graph with δ(G) 
= 4, then it is not a planar graph. 

Proof.  By contradiction, we assume that G is a (K4 – 
e, K6 ; 17)-P-graph with δ(G) = 4. Let v be a vertex of 
degree δ(G) and H = G⟨V(G) −N[v]⟩, then |V(H)| = 12. 
Let N(v) = {u1, u2, u3, u4}. Since K4 − e ⊈ G and δ (G) = 
4, we have 

Claim 1. G⟨N[v]⟩ can not lie in any α-face of H for α ≤ 
5 alone. 

Since H is a (K4 – e, K5 ; 12)-P-graph, by Lemma 
2.4(a), we have (G9-0∪K3) ⊆ H, G12-i ⊆ H (1 ≤ i ≤ 8) 
or 4K3 ⊆ H. 

Case 1. Suppose that (G9-0∪K3) ⊆ H. Let V(G9-0) = 
{vi | 1 ≤ i ≤ 9} shown in Figure 2.1. By Claim 1, both 
N[v] and K3 have to lie in same region of G9-0. By sym-
metry it is sufficient to consider that they lie in region I, 
II or III. If they lie in region II, since K4 − e ⊈ G, v6 is 
nonadjacent to any vertex of {v2, v3, v7, v8}. It is forced 
that d(v6) = 3, a contradiction. If they lie in region I or III, 
since K4 − e ⊈ G, v1 has to be adjacent to both a4 and a8 
(or a5 and a7). Without loss of generality, let v1v4, v1v8 ∈ 
E(G). Then v2 is nonadjacent to any vertex of {v3, v5, v6, 
v8, v9}. Hence d(v2) ≤ 3, a contradiction. 

Case 2. Suppose that H contains one subgraph of G12-i  
for 1 ≤ i ≤ 6. By Claim 1, H does not contain any sub-
graph of {G12-1, G12-2, G12-3, G12-4}. Hence there remain-
ing two subcases. 

Case 2.1. G12-5 ⊆ H. By Claim 1, G⟨N[v]⟩ have to lie 
in region I. Since K4 − e ⊈ G, v3 is nonadjacent to any 
vertex of {v7, v9, v11, v12}. Hence d(v3) = 3, a contradic-
tion. 

Case 2.2. G12-6 ⊆ H. By Claim 1, G⟨N[v]⟩ have to lie 
in region I. Since d(v1) ≥ 4 and K4 − e ⊈ G, v1 has to be 
adjacent to just one vertex of {v5, v6}, say v5. And v2 is 
nonadjacent to any vertex of {v4, v9, v10, v12}. Hence d(v2) 
= 3, a contradiction. 

Case 3. G12-7 ⊆ H. By Claim 1, G⟨N[v]⟩ have to lie 
in region I. Since d(v11) ≥ 4 and K4 −e ⊈ G, v11 has to be 
adjacent to just one vertex of {v9, v10}, say v10. Since d(v1) 
≥ 4 and K4 − e ⊈ G, v1 has to be adjacent to both v4 and 
v9. Let W7 = {v2, v3, v4, v5, v6, v7, v8}. By Claim 1 and K4 
− e ⊈ G, we have G⟨W7⟩ ≅ C7. 

Since K4 − e ⊈ G, G⟨N(v)⟩ is isomorphic to one graph 
of {4K1, 2K1∪K2, 2K2}. If G⟨N(v)⟩ is isomorphic to 4K1, 
then u1, u2, u3, u4, v1 and v10 would yield a K6 in G

___

, a 
contradiction. Hence G⟨N(v)⟩ is isomorphic to 2K1∪K2 
or 2K2. Without loss of generality, let u3u4 ∈ E(G). If 
there is one vertex of {u1, u2, u3, u4}, say u1 which is ad-
jacent to v4, then since K4 − e ⊈ G, u1 is adjacent neither 
to v2 nor to v6. Therefore since d(u1) ≥ 4, u1 is adjacent to 
at least one vertex of {v3, v5, v7, v8}. In any case, there 
exists one vertex of {v2, v6} whose degree is at most 3, a 
contradiction. Hence v4 is nonadjacent to any vertex of 
{u1, u2, u3, u4}. If u1u2 ∉ E(G), then u1, u2, u3, v4, v9 and 
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v11 would yield a K6 in G
___

, a contradiction. So, we have 
u1u2 ∈ E(G), that is, G⟨N(v)⟩ ≅ 2K2. 

Since δ(G) = 4, there are at least 8 edges between the 
vertices of {u1, u2, u3, u4} and W7\v4. Since K4 − e ⊈G, 
each vertex of W7\v4 is adjacent to at most two vertices of 

{u1, u2, u3, u4}. Hence there are just two vertices of 
W7\v4 which are adjacent to two vertices of {u1, u2, u3, 
u4}. By symmetry there are three cases. 

Case 3.1. Suppose that there is one vertex of {v3, v8} 
which is adjacent to u1 and u3 (or u2 and u4). Without loss 
of generality, let v3u1, v3u3 ∈ E(G). Then since d(v5) ≥ 4 
and K4 − e ⊈ G, v5 has to be adjacent to one vertex of {u2, 
u4}, say u2. Thus there is at least one vertex of {u1, u3, u4} 
whose degree is at most 3, a contradiction (see G17.1 in 
Figure 2.4). 

Case 3.2. Suppose that there is one vertex of {v5, v7} 
which is adjacent to u1 and u3 (or u2 and u4). Without loss 
of generality, let v5u1, v5u3∈E(G). Then since d(v3) ≥ 4 
and K4 − e ⊈ G, v3 has to be adjacent to one vertex of {u2, 
u4}, say u2. Thus there is at least one vertex of {u1, u3, u4} 
whose degree is at most 3, a contradiction(see G17..2 in Fig. 
2.4). 

Case 3.3. Suppose that both v2 and v6 are adjacent to 
two vertices of {u1, u2, u3, u4} respectively, say v2u1, 
v2u3∈ E(G), v6 is adjacent to one vertex of {u1, u2} and 
one vertex of {u3, u4}. Then since K4 − e ⊈G, there is at 
least one vertex of {u1, u2, u3, u4} whose degree is at most 
3, a contradiction (see G17.3 in Figure 2.4). 

Case 4. G12−8 ⊆ H. By Claim 1, G〈N[v]〉 have to lie in 
region I. Since d(v8) ≥ 4 and K4 − e ⊈ G, v8 has to be 
adjacent to v9. Since d(v10) ≥ 4 and K4 − e ⊈ G, v10  has 
to be adjacent to just one vertex of {v1, v4}. Similarly, v11 
has to be adjacent to just one vertex of {v1, v5}. Since K4− 
e ⊈ G, v1 is adjacent to at most one vertex of {v10, v11}. 
By symmetry it is sufficient to consider that v4v10, v1v11∈ 
E(G) or v4v10, v5v11∈ E(G). If v4v10, v1v11∈ E(G), then the 
proof is same as Case 3 (see G17.4 in Figure 2.5). So it 
remains that v4v10, v5v11∈ E(G). 

By Claim 1, we have v4v5 ∉ E(G) and v1 is non- 
adjacent to any vertex of {v6, v7}. Since K4 − e ⊈ G, 
G〈N(v)〉 is isomorphic to one graph of {4K1, 2K1∪K2, 
2K2}. If G〈N(v)〉 is isomorphic to 4K1, then u1, u2, u3, u4, 
v8 and v10 would yield a K6 in G

___

Case 4.1. Suppose that G〈N(v)〉 ≅ 2K1∪K2, say u3u4 
∈ E(G). If each vertex of {u1, u2, u3, u4} is adjacent 
neither to v4 nor to v5, then u1, u2, u3 (or u4), v4, v5 and v12 
would yield a K6 in 

, a contradiction. Hence 
G〈N(v)〉 is isomorphic to 2K1∪K2 or 2K2. 

G
___

, a contradiction. Hence there is at 
least one edge between vertex sets {u1, u2, u3, u4} and {v4, 
v5}. Assume that there is at least one edge between 
vertex sets {u1, u2} and {v4, v5}, say u1v4 ∈ E(G). Then 
since d(u1) ≥  4 and K4 − e ⊈G, u1 has to be adjacent to 
one vertices of {v3, v5, v7}. In any case, there exists at 
least one vertex of {v1, v6} whose degree is at most 3, a 

contradiction. Hence there is no edge between vertex sets 
{u1, u2} and {v4, v5}. Then there is at least one edge 
between vertex sets {u3, u4} and {v4, v5}, say u3v4∈ 
E(G). If u4v5 ∉ E(G), then u1, u2, u4, v4, v5 and v12 would 
yield a K6 in G

___

 

, a contradiction too. Hence we have u4v5 
∈ E(G) (see G17.5 in Figure 2.5). There also exists at 
least one vertex of {v1, v6, v7} whose degree is at most 3, 
a contradiction. 

Case 4.2. Suppose that G〈N(v)〉 ≅ 2K2, say u1u2, u3u4
∈ E(G). Since d(v1) ≥ 4 and  K4 –e ⊈G, v1 has to be 
adjacent to one vertex of {u1, u2} and one vertex of {u3, 
u4}, say v1u1, v1u3 ∈ E(G). Then since K4 − e ⊈G, v1 is 
adjacent neither to u2 nor to u4. If there is no edge 
between vertex sets {u2, u4} and {v4, v5}, then u2, u4, v4,  
 

 
Figure 2.4. The graphs G17.1−G17.3. 

 
 

 
Figure 2.5. The graphs G17.4−G17.6. 
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v5, v1 and v12 would yield a K6 in G
___

, a contradiction. 
Hence there is at least one edge between vertex sets {u2, 
u4} and {v4, v5}, say u2v4 ∈ E(G). Then since d(u2) ≥  4 
and K4 − e ⊈G,  u2 has to be adjacent to at least one 
vertex of {v3, v5, v7}(see G17.6 in Figure 2.5). In any case, 
we have d(v6) = 3, a contradiction. 

By an argument similar to the above proof, we can 
prove that 4K3 ⊈ H. However, the proof of 4K3 ⊈ H is 
more complicated than Case 3 or 4, and it is available 
from the authors. Hence the assumption does not hold. 

3. The Main Results 
Lemma 3.1. There is no (K4−e,K6;17)-P-graph. 

Proof. Assume that there is a (K4 − e, K6; 17)-P-graph 
G. Let v be a vertex of degree δ(G) and H = G(V(G)− 
N[v]). Since PR(K4 − e, K5) = 14, by Lemma 2.1, it 
follows δ(G) ≥ 3. By Lemma 2.2, q(G) ≤ ⌊12(17−2)/5⌋ = 
36 implying δ(G) ≤ 4. By Lemma 2.5, we have δ(G) ≠ 
4. It is forced that δ(G) = 3, thus p(H) = 13. 

Let N(v)={u1, u2, u3}. Since K4−e ⊈  G, we have 
|E(G(N(v)))| ≤ 1. Without loss of generality, let u1u2, u1u3 
∉ E(G). Since d(u1) ≥ 3 and K4 − e ⊈ G, N[v] can not lie 
in any triangle of H. By Lemma 2.4(b), H is isomorphic 
to G13-0 or G13-0+v3v4. If H ≅ G13-0, by symmetry it is 
sufficient to consider that N[v] lie in region I or II. If H ≅ 
G13-0 + v3v4, by symmetry it is sufficient to consider that 
N[v] lie in region I, II, III or IV (see Figure 2.3). If N[v] 
lie in region I, then u1,u2,v3,v5,v10 and v12 would yield a 
K6 in G

___

, a contradiction. If N[v] lie in region II, then u1, 
u2, v4, v6, v9 and v11 would yield a K6 in G

___

, a 
contradiction. If N[v] lie in region III or IV, then u1, u2, v2, 
v7, v8 and v13 would yield a K6 in G

___

Proof. Note that G13-0 shown in Figure 2.3 is a (K4 − e, 
K5; 13)-P-graph. Let G be a graph which is a union of 

⌊(l−1)/4⌋ copies of G13-0  and (l−4×⌊(l−1)/4⌋−1) copies 
of a triangle, then K4 – e ⊈ G. Since K5 ⊈ 

, a contradiction too. 
Theorem 3.2. If l ≥ 3, then PR(K4−e, Kl) ≥ 

3l+⌊(l−1)/4⌋−2. 

G
___
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