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ABSTRACT

We investigate the use of complex network similarity for the identification of atrial fibrillation. The similarity of the
network is estimated via the joint recurrence plot and Hamming distance. Firstly, we transform multi-electrodes epicar-
dium signals recorded from dogs into the recurrence complex network. Then, we extract features representing its simi-
larity. Finally, epicardium signals are classified utilizing the classification and regression tree with extracted features.
The method is validated using 1000 samples including 500 atrial fibrillation cases and 500 normal sinus ones. The sen-
sitivity, specificity and accuracy of the identification are 98.2%, 98.8% and 98.5% respectively. This experiment indi-

cates that our approach may lay a foundation for the prediction of the onset of atrial fibrillation.
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1. Introduction

Atrial fibrillation (AF) is a common arrhythmia pheno-
menon in clinic [1,2]. During AF, chaotic electrical ac-
tivities take place in the heart which result in an irregular
heart rhythm. AF deteriorates the function of the whole
heart and may cause embolic events and stroke which
will induce high rates of morbidity and mortality. So it is
important to detect AF and prevent it from becoming
more serious.

With the development of nonlinear dynamics, the
complex network [3-8] has become a popular method to
analyze the dynamical properties of complex systems in
the real world. Because the heart has been proven to a
complex system, the heart electrical activity can be ana-
lyzed by using complex networks.

In [9], the distribution entropy of the point density in
the two-dimensional reconstructed phase space was cal-
culated as the feature of electrocardiogram to detect car-
diac arrhythmia and the sensitivity, specificity and accu-
racy of the detection were 86.0%, 96.0% and 92.7% re-
spectively. Because of the low sensitivity, a novel me-
thod needs to be proposed.

As we have known, for complex networks of chaotic
electrical activities, the similarity between two networks
will become weaker, so features representing the similar-
ity between two recurrence complex networks can be
calculated to identify AF. This will be proven with the
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experiment.

2. Methods
2.1. Recurrence Complex Network

About how to construct complex networks from time
series there have been already some approaches proposed.
For example, Zhang and Small [3] introduced an algo-
rithm to transform pseudo periodic time series into the
complex network with each cycle of pseudo periodic
series represented as a basic node. Lacasa et al. [4] pro-
posed the visibility graph to map fractal time series into a
network based on “visibility”. Yang and Yang [5] pro-
posed to build the network from the correlation matrix of
the time series. Though there are no embedding steps in
the network construction algorithms mentioned above, it
may become difficult to get necessary information from a
high dimensional system. To remedy this defect, the re-
currence complex network was proposed.

The recurrence network [6-9] constructs complex
networks from a fractal time series. Each vector point of
the reconstructed phase space is represented by a single
node and the edge between two nodes is determined by
the phase space distance. The adjacency matrix of the
recurrence network is interpreted from the recurrence
plot.

The recurrence plot starts from the phase space recon-
struction which can be described as below. Take a fractal
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time series x(f)={x(t,),x(t,)---x(ty)} as an example,
where N is the length of the time series. If the embedding
delay time is selected as 7 and the embedding dimension
selected as m, the vector point in the phase space can be
represented as:

X@)={x({t+71),x(t+27)---x(t+(m—1)7)} . Then the
phase space distance between vector points X (i) and X(j)
is defined as:

dX(). X)) = D [X@) - X)) (M
i,j=1
Thus the recurrence plot of the time series x(¢) will be
represented as:

Lif d(X(@),X(j) <r , ©)
0,otherwise

R, (x(®) ={

where r is selected as the standard deviation of
d(X(@),X(j)). Then the adjacent matrix A will be de-
scribed as:

A ;=R ;(x(®)-86,;, 3)

where § is the identity matrix.

2.2. Feature Extraction

The features that represent the similarity between two
complex networks are calculated based on the joint re-
currence plot and Hamming distance. Firstly, we divide
the multi-dimensional time series into shorter segments
and reconstruct their phase space. Then, recurrence com-
plex networks are constructed using Equations (2) and
(3). The joint recurrence plot [10,11] is applied to test the
similarity of two networks, which is defined as:

IR, (" (0. X (0)=A, ;(x" (0)- A, (' (1), (4)

where the time series x*(r), x'(s) are from the same
divided segment, k£ and [ correspond to the kth and /th
time series.

If and only if the value is one at the node (7, j) in both
recurrence complex networks, the value of the node (7, )
in the joint recurrence plot is one. S = 0.5 * n(n — 1) is
defined as the size of the joint recurrence plot, where n is
the number of time series in the segment, g, and g,
are the recurrence ration of the recurrence plots
A j.(xk () and A, j(xi(t)) respectively. Z [10] is de-
fined as:

IR, (0.2 (1)~ Sq,
2: ::l>j . (5)
- \/quq](l—qqu)

In order to analyze the similarity between two com-
plex networks, Z is normalized and shown in the form of
pseudo-color map. As an example, pseudo-color maps of
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Z for AF and normal sinus are shown in Figure 1.

It is seen from Figure 1 that there exists a great gap of
Z between nodes in diagonal and non diagonal rows.
Thus a ration of the mean value of Z is defined as:

1 n

A

nkZ::, k.l
sz,l

RCN =— (6)

I’l(l’l - 1) k#l

The bigger RCN is, the weaker the similarity is.

Hamming distance is also used to test the similarity of
two networks, it measures the edges that have to be
changed to transform one network into the other. It is
described as:

dARAD = YA, ®B-A,0. D

Based on Hamming distance, other three features are
extracted to test the similarity of networks, which are the
global mean Hamming distance (MH), the peak Ham-
ming distance (PL) and the entropy of Hamming distance
distribution (ENTR) respectively. Their definitions will
be introduced in the below.

R is defined as the length of the reconstructed time se-
ries and Hamming distance for two constructed networks
are calculated using Equation (7). Thus the definition of
MH can be described as:

MH = %Zd(A(k), A~ (8)
n=n g, R

MH responses the global mean Hamming distance of
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Figure 1. The pseudo-color map of Z calculated from (a) AF
segment and (b) normal sinus segment.
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each segment, while L represents the local mean Ham-
ming distance for each network constructed from the
same segment. The probability distribution of L is calcu-
lated and rounded. It can be shown in bar plot. PL is de-
fined as the distance which has the most probability:

PL =argmax; p(L), )

where L, :lZd(A(k),A(l))% and p(L) is the corre-
n g

sponding probability. For example, the distribution of L
is shown in Figure 2.

The feature that measures the similarity is the entropy
of Hamming distance distribution (ENTR). It is defined
as:

ENTR ==Y L*log(p(L)). (10)

2.3. Classification and Regression Tree

The CART [12] approach is used in our research for the
identification of AF with extracted features. The CART
classification model utilizes tree-like structures to assign
samples based on the set of feature quantifiers. It divide
samples in parent nodes into descendent child nodes
based on the if-then rule. The rule is obtained by training
the sample set.

In the CART model, each parent node is optimally
partitioned. The classification accuracy is measured by
the decrease of the impurity [12] which is defined as:

Aim(s",tt) = im(tt) — p,im(tt, ) — ppim(tt,),  (11)

where p; denotes the proportion of cases in the left child
node f7; to those in the parent node # while pr denotes
the proportion of cases in the right child node ## to those
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Figure 2. The distribution of L of (a) normal sinus segment
and (b) AF segment.
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in the parent node #¢. im is the impurity function which is
commonly selected as Gini diversity index criterion.

The best split s* is selected to maximize Aim(s", 1)
and s* is obtained by solving

Aim(s",tt) = arg max Aim(s,1t) —
arg max, (im(tt)— p,im(tt, ) — ppim(tty))

(12)

3. Experiments and Results

The method is implanted in Mat lab R2011b and the
platform is a computer workstation with a 3.07 GHz
CPU and 32 G memory.

The data are from dog experiments, in which the per-
fusion of acetylcholine is used to induce AF in anesthe-
tized open-chest dogs with the electrical stimulation of
left atrium appendage. 128 unipolar electrodes are placed
on the atrial epicardial surface and thus a recording of
128 channels is obtained.

Signals are filtered between 3.5 - 600 Hz, and the
sampling frequency is 2 kHz with 16-bit resolution. Due
to that the anterior right atrium signals can well represent
atrial activities, 44 recordings from the right atrium sur-
face, marked from 1 to 44, are used to construct the re-
currence complex networks. Signals are divided into
short segments which are used as samples in the classifi-
cation experiment.

The classification and regression tree integrated with
10-fold cross-validation is used in our study. The classi-
fication performance parameters used to measure the
performance of methods are sensitivity (SE), specificity
(SP) and accuracy (4C). They are defined as:

E— TP . Sp= TN ,
TP+ FN TN + FP
TP+TN
= - : (13)
TP+ FN+TN + FP

where TP is the number of AF cases being correctly rec-
ognized as AF, FN is the number of AF cases being
wrongly recognized as normal sinus ones, TN is the
number of normal sinus cases being truly recognized as
normal sinus ones, and 7P is the number of normal sinus
cases being wrongly recognized as AF ones.

1000 samples are used in the classification experiment
with 500 AF cases and 500 normal sinus ones and the
network similarity parameters are calculated as classifi-
cation features. The time interval of the segment may
lead to the difference of the classification performance.
Here we compare the classification results with various
time intervals. Table 1 shows the classification perfor-
mance with the interval of 100, 150, 200 and 250 ms
respectively. The time interval is limited to 250 ms be-
cause of the large computing amount.

It is shown in Table 1 that the classification perfor-
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Table 1. The classification performance with various inter-

vals.
Interval (ms) SE (%) SP (%) AC (%)
100 54.6 85.2 69.3
150 59.1 82.5 70.0
200 61.1 71.8 65.7
250 72.6 82.4 77.7

mance is not satisfied for all time intervals.

However, with the increase of the time interval, the
performance becomes better (except SP). If we enlarge
the time interval to get a better result, the computing
amount will be much bigger. Therefore, in order to en-
large the time interval with the computing amount re-
maining unchanged, we have to down sample signals.
The down sampling frequency is determined by the
power spectral analysis. We calculate the power spec-
trum of signals and find that the frequency range of sig-
nals is about 0 - 200 Hz, so the down sampling frequency
is determined as 400 Hz according to the Nyquist Crite-
ria.

We compare the classification performance with the
down sampling frequency of 400 Hz and the time inter-
val of 500, 750, 1000 and 1250 ms respectively. The re-
sults are shown in Figure 3. It has shown that the optimal
result is obtained with the interval of 750 ms. It illu-
strates that it’s not the longer the time interval is, the bet-
ter is the performance. The classification performance
will become worse with the time interval longer than 750
ms.

The classification reliability is also compared with
various embedding delay time 7. The result is shown in
Figure 4. It has been illustrated that the more reliable
identification of AF is obtained with 7 of 6.

Table 2 shows comparison results of our method with
the method in [9]. The significant improvement in the
sensitivity, specificity and accuracy has been seen in our
method compared with the method in [9]. For example,
our method has 12.2% improvement in the sensitivity.

4. Conclusions and Discussions

In our study, we utilize the recurrence complex network
to extract similarity parameters between two recurrence
complex networks to recognize AF segments from nor-
mal sinus cases. In the classification experiments with
down sampling frequency of 400 Hz and various time
intervals, the best classification performance is obtained
with the time interval selected as 750 ms, and the sensi-
tivity, specificity and accuracy are 98.2%, 98.8% and
98.5% respectively.

The improved classification performance means that
our approach can detect AF more accurately and sensi-
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Figure 3. The classification performance with down sam-
pling frequency of 400 Hz and various time intervals.
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Figure 4. The classification performance with various delay
time 7.

Table 2. The classification performance comparison.

Method SE (%) SP (%) AC (%)
Our method 98.2 98. 8 98.5
Method in [9] 86.0 96.0 92.7

tively. However, the improvement of the performance
increases the computing amount. For signals used in this
study are 44 dimensions, the computing amount is much
larger than that of method in [9].

Besides the computing amount, there are still two dis-
advantages in our method. One is that the method ignores
the other cardiac arrhythmia phenomena, which will de-
teriorate the validity of our method. The other is that it is
unknown whether or not the approach is suitable for hu-
man body, which will be our future studies.
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