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time series 1 2( ) { ( ), ( ) ( )}Nx t x t x t x t   as an example, 
where N is the length of the time series. If the embedding 
delay time is selected as τ and the embedding dimension 
selected as m, the vector point in the phase space can be 
represented as:  

( ) { ( ), ( 2 ) ( ( 1) )}t x t τ x t τ x t m τ    X  . Then the 
phase space distance between vector points X(i) and X(j) 
is defined as: 





m

ji

jijid
1,

)()())(),(( XXXX .          (1) 

Thus the recurrence plot of the time series x(t) will be 
represented as: 



 


otherwise,0

))(),((if,1
))(x(

rjid
tji,

XX
R ,      (2) 

where r is selected as the standard deviation of 
))(X),(X( jid . Then the adjacent matrix A will be de- 

scribed as: 

jijiji tx ,,, ))(( δ RA ,            (3) 

where  is the identity matrix. 

2.2. Feature Extraction 

The features that represent the similarity between two 
complex networks are calculated based on the joint re-
currence plot and Hamming distance. Firstly, we divide 
the multi-dimensional time series into shorter segments 
and reconstruct their phase space. Then, recurrence com-
plex networks are constructed using Equations (2) and 
(3). The joint recurrence plot [10,11] is applied to test the 
similarity of two networks, which is defined as: 

, , ,( ( ), ( )) ( ( )) ( ( ))k l k l
i j i j i jx t x t x t x t JR A A ,     (4) 

where the time series )(tx k , )(tx l  are from the same 
divided segment, k and l correspond to the kth and lth 
time series. 

If and only if the value is one at the node (i, j) in both 
recurrence complex networks, the value of the node (i, j) 
in the joint recurrence plot is one. S = 0.5 * n(n − 1) is 
defined as the size of the joint recurrence plot, where n is 
the number of time series in the segment, kq  and lq  
are the recurrence ration of the recurrence plots  

. ( ( ))k
i j x tA  and , ( ( ))i

i j x tA  respectively. Z [10] is de- 
fined as: 

,

,

( ( ), ( ))

(1 )

k l
i j k l

i j
k l

k l k l

x t x t Sq q

Sq q q q








JR

Z .       (5) 

In order to analyze the similarity between two com- 
plex networks, Z is normalized and shown in the form of 
pseudo-color map. As an example, pseudo-color maps of 

Z for AF and normal sinus are shown in Figure 1. 
It is seen from Figure 1 that there exists a great gap of 

Z between nodes in diagonal and non diagonal rows. 
Thus a ration of the mean value of Z is defined as:  

,
1

,

1

1

( 1)

n

k l
k

k l
k l

n
RCN

n n













Z

Z
.           (6) 

The bigger RCN is, the weaker the similarity is. 
Hamming distance is also used to test the similarity of 

two networks, it measures the edges that have to be 
changed to transform one network into the other. It is 
described as: 

, ,(A( ), A( )) A ( ) A ( )i j i jd k l k l  .      (7) 

Based on Hamming distance, other three features are 
extracted to test the similarity of networks, which are the 
global mean Hamming distance (MH), the peak Ham- 
ming distance (PL) and the entropy of Hamming distance 
distribution (ENTR) respectively. Their definitions will 
be introduced in the below. 

R is defined as the length of the reconstructed time se- 
ries and Hamming distance for two constructed networks 
are calculated using Equation (7). Thus the definition of 
MH can be described as:  

,

1 1
( ( ), ( ))

* k l

MH d k l
n n R

  A A .        (8) 

MH responses the global mean Hamming distance of 
 

 

Figure 1. The pseudo-color map of Z calculated from (a) AF 
segment and (b) normal sinus segment. 
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each segment, while L represents the local mean Ham- 
ming distance for each network constructed from the 
same segment. The probability distribution of L is calcu- 
lated and rounded. It can be shown in bar plot. PL is de- 
fined as the distance which has the most probability: 

)(maxarg LpPL L ,             (9) 

where

 

1 1
( ( ), ( ))k

k

L d k l
n R

  A A  and p(L) is the corre- 

sponding probability. For example, the distribution of L 
is shown in Figure 2. 

The feature that measures the similarity is the entropy 
of Hamming distance distribution (ENTR). It is defined 
as: 

* log( ( ))ENTR L p L  .          (10) 

2.3. Classification and Regression Tree 

The CART [12] approach is used in our research for the 
identification of AF with extracted features. The CART 
classification model utilizes tree-like structures to assign 
samples based on the set of feature quantifiers. It divide 
samples in parent nodes into descendent child nodes 
based on the if-then rule. The rule is obtained by training 
the sample set. 

In the CART model, each parent node is optimally 
partitioned. The classification accuracy is measured by 
the decrease of the impurity [12] which is defined as: 

*( , ) ( ) ( ) ( )L L R Rim s tt im tt p im tt p im tt    ,   (11) 

where pL denotes the proportion of cases in the left child 
node ttL to those in the parent node tt while pR denotes 
the proportion of cases in the right child node ttR to those 
 

 

Figure 2. The distribution of L of (a) normal sinus segment 
and (b) AF segment. 

in the parent node tt. im is the impurity function which is 
commonly selected as Gini diversity index criterion. 

The best split s* is selected to maximize ),( * ttsim
and s* is obtained by solving 

*( , ) arg max Δ ( , )

arg max ( (tt) ( ) ( ))
s

s L L R R

im s tt im s tt

im p im tt p im tt

  

 
     (12) 

3. Experiments and Results 

The method is implanted in Mat lab R2011b and the 
platform is a computer workstation with a 3.07 GHz 
CPU and 32 G memory. 

The data are from dog experiments, in which the per- 
fusion of acetylcholine is used to induce AF in anesthe- 
tized open-chest dogs with the electrical stimulation of 
left atrium appendage. 128 unipolar electrodes are placed 
on the atrial epicardial surface and thus a recording of 
128 channels is obtained. 

Signals are filtered between 3.5 - 600 Hz, and the 
sampling frequency is 2 kHz with 16-bit resolution. Due 
to that the anterior right atrium signals can well represent 
atrial activities, 44 recordings from the right atrium sur- 
face, marked from 1 to 44, are used to construct the re- 
currence complex networks. Signals are divided into 
short segments which are used as samples in the classifi- 
cation experiment. 

The classification and regression tree integrated with 
10-fold cross-validation is used in our study. The classi- 
fication performance parameters used to measure the 
performance of methods are sensitivity (SE), specificity 
(SP) and accuracy (AC). They are defined as: 

TP
SE

TP FN



, 

TN
SP

TN FP



, 

TP TN
AC

TP FN TN FP




  
,           (13) 

where TP is the number of AF cases being correctly rec- 
ognized as AF, FN is the number of AF cases being 
wrongly recognized as normal sinus ones, TN is the 
number of normal sinus cases being truly recognized as 
normal sinus ones, and TP is the number of normal sinus 
cases being wrongly recognized as AF ones. 

1000 samples are used in the classification experiment 
with 500 AF cases and 500 normal sinus ones and the 
network similarity parameters are calculated as classifi-
cation features. The time interval of the segment may 
lead to the difference of the classification performance. 
Here we compare the classification results with various 
time intervals. Table 1 shows the classification perfor- 
mance with the interval of 100, 150, 200 and 250 ms 
respectively. The time interval is limited to 250 ms be- 
cause of the large computing amount. 

It is shown in Table 1 that the classification perfor-  
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Table 1. The classification performance with various inter- 
vals. 

Interval (ms) SE (%) SP (%) AC (%) 

100 54.6 85.2 69.3 

150 59.1 82.5 70.0 

200 61.1 71.8 65.7 

250 72.6 82.4 77.7 

 
mance is not satisfied for all time intervals. 

However, with the increase of the time interval, the 
performance becomes better (except SP). If we enlarge 
the time interval to get a better result, the computing 
amount will be much bigger. Therefore, in order to en- 
large the time interval with the computing amount re- 
maining unchanged, we have to down sample signals. 
The down sampling frequency is determined by the 
power spectral analysis. We calculate the power spec- 
trum of signals and find that the frequency range of sig- 
nals is about 0 - 200 Hz, so the down sampling frequency 
is determined as 400 Hz according to the Nyquist Crite- 
ria. 

We compare the classification performance with the 
down sampling frequency of 400 Hz and the time inter- 
val of 500, 750, 1000 and 1250 ms respectively. The re- 
sults are shown in Figure 3. It has shown that the optimal 
result is obtained with the interval of 750 ms. It illu- 
strates that it’s not the longer the time interval is, the bet- 
ter is the performance. The classification performance 
will become worse with the time interval longer than 750 
ms. 

The classification reliability is also compared with 
various embedding delay time τ. The result is shown in 
Figure 4. It has been illustrated that the more reliable 
identification of AF is obtained with τ of 6. 

Table 2 shows comparison results of our method with 
the method in [9]. The significant improvement in the 
sensitivity, specificity and accuracy has been seen in our 
method compared with the method in [9]. For example, 
our method has 12.2% improvement in the sensitivity. 

4. Conclusions and Discussions 

In our study, we utilize the recurrence complex network 
to extract similarity parameters between two recurrence 
complex networks to recognize AF segments from nor- 
mal sinus cases. In the classification experiments with 
down sampling frequency of 400 Hz and various time 
intervals, the best classification performance is obtained 
with the time interval selected as 750 ms, and the sensi- 
tivity, specificity and accuracy are 98.2%, 98.8% and 
98.5% respectively. 

The improved classification performance means that 
our approach can detect AF more accurately and sensi-  

 

Figure 3. The classification performance with down sam- 
pling frequency of 400 Hz and various time intervals. 
 

 

Figure 4. The classification performance with various delay 
time τ. 
 

Table 2. The classification performance comparison. 

Method SE (%) SP (%) AC (%) 

Our method 98. 2 98. 8 98. 5 

Method in [9] 86. 0 96. 0 92. 7 

 
tively. However, the improvement of the performance 
increases the computing amount. For signals used in this 
study are 44 dimensions, the computing amount is much 
larger than that of method in [9]. 

Besides the computing amount, there are still two dis- 
advantages in our method. One is that the method ignores 
the other cardiac arrhythmia phenomena, which will de- 
teriorate the validity of our method. The other is that it is 
unknown whether or not the approach is suitable for hu- 
man body, which will be our future studies. 

500 600 700 800 900 1000 1100 1200 1300
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

time interval of segment (ms)

 

 

SE

SP
AC

3 4 5 6 7 8
0.972

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

delay time τ

 

 

SE
SP
AC



Y. J. ZHANG, Y. Y. WANG 

Copyright © 2013 SciRes.                                                                                 ENG 

26

5. Acknowledgements 

This work is supported by the National Natural Science 
Foundation of China (Grant No. 61271071 and No. 
11228411), the National Key Technology R&D Program 
of China (No. 2012BAI13B02) and Specialized Research 
Fund for the Doctoral Program of Higher Education of 
China (No.20110071110017). 

REFERENCES 
[1] A. L. Waldo, “Mechanism of Atrial Fibrillation,” Journal 

of Cardiovascular Electrophysiology, Vol. 14, No. 12, 
2003, pp. s267-s274.  
http://dx.doi.org/10.1046/j.1540-8167.2003.90401.x 

[2] S. Nattel, A. Shiroshita-Takeshita, B. Brundel and L. 
Rivard, “Mechanisms of Atrial Fibrillation: Lessons from 
Animal Models,” Progress in Cardiovascular Diseases, 
Vol. 48, No. 1, 2005, pp. 9-28.  
http://dx.doi.org/10.1016/j.pcad.2005.06.002 

[3] J. Zhang and M. Small, “Complex Network from Pseu- 
doperiodic Time Series: Topology versus Dynamics,” 
Physical Review Letters, Vol. 96, No. 23, 2006, Article 
ID: 238701.  
http://dx.doi.org/10.1103/PhysRevLett.96.238701 

[4] L. Lacasa, B. Luque, F. Ballesteros, J. Luque and J. C. 
Nuno, “From Time Series to Complex Networks: The Vi- 
sibility Graph,” PNAS, Vol. 105, No. 13, 2008, pp. 4972- 
4975. http://dx.doi.org/10.1073/pnas.0709247105 

[5] Y. Yang and H. Yang, “Complex Network-Based Time 
Series Analysis,” Physica A, Vol. 387, 2008, pp. 1381- 
1386. http://dx.doi.org/10.1016/j.physa.2007.10.055 

[6] Z. Gao and N. Jin, “Complex Network from Time Series 

Based on Phase Space Reconstruction,” Chaos, Vol. 19, 
No. 3, 2009, Article ID: 033137.  
http://dx.doi.org/10.1063/1.3227736 

[7] N. Marwan , J. F. Donges, Y. Zou, R. V. Donner and J. 
Kurthsa, “Complex Network Approach for Recurrence 
Analysis of Time Series,” Physics Letters A, Vol. 373, No. 
9, 2009, pp. 4246-4254.  
http://dx.doi.org/10.1016/j.physleta.2009.09.042 

[8] L. Uldry, V. Jacquemet, N. Virag, L. Kappenberger and J. 
M. Vesin. “Estimating the Time Scale and Anatomical 
Location of Atrial Fibrillation Spontaneous Termination 
in a Biophysical Model,” Medical and Biological Engi- 
neering and Computing, Vol. 50, 2012, pp. 155-163.  
http://dx.doi.org/10.1007/s11517-011-0859-3 

[9] R. Sun, Y. Wang, S. Yang and Z. Fang. “Detecting Car- 
diac Arrhythmias Based on Phase Space Analysis,” Jour- 
nal of Biomedical Engineering, Vol. 25, No. 4, 2008, pp. 
934-937. 

[10] Y. Hirata and K. Aihara, “Identifying Hidden Common 
Causes from Bivariate Time Series: A Method Using Re- 
currence Plots,” Physical Review E, Vol. 81, 2010, Ar- 
ticle ID: 016203.  
http://dx.doi.org/10.1103/PhysRevE.81.016203 

[11] N. Marwan, M. C. Romano, M. Thiel and J. Kurths, 
“Recurrence Plots for the Analysis of Complex Systems,” 
Physics Reports, Vol. 438, 2007, pp. 237-329.  
http://dx.doi.org/10.1016/j.physrep.2006.11.001 

[12] H. Yanga, S. Bukkapatnamb, T. Leb and R. Komanduric, 
“Identification of Myocardial Infarction (MI) Using Spa- 
tio-Temporal Heart Dynamics,” Medical Engineering & 
Physics, Vol. 34, 2012, pp. 485-497.  
http://dx.doi.org/10.1016/j.medengphy.2011.08.009 
 
 

 


