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ABSTRACT

In this paper, we derive an explicit form in terms of end-point data in space-time for the classical action, i.e. integration
of the Lagrangian along an extremal, for the nonlinear quartic oscillator evaluated on extremals.
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1. Introduction

The action

» (1.1)

ty d
S (ot )= L YO (0 J
ta

extremal

2 4
k
where L, = ?(%} —% equals the Lagrangian for

the quartic oscillator in 1 + 1 dimensions, is integrated
along an extremal and expressed in terms of the space-
time end-point data (t,, Y, ).(t,, V) -

We begin in a well-known way by adding and sub-
tracting the kinetic energy to the Lagrangian. Thus we
obtain from (1.1), after changing the variable of integra-
tion in the remaining integral, the following equivalent
expression.

Yo d
S (tar Vst Y) = [ M-y dy
Ya t

_E(tb _ta)

where E is the energy on the extremal (See e.g. Gold-
stein [1]). Equation (1.2) is the form of the action that we
will start from and then derive by integrating the first
term in (1.2), which we call the momentum integral, thus
the desired expression for S, is obtained. (Some au-
thors call this momentum integral the action.) For our
convenience, we refer to the second term in (1.2) as the
energy term. The derived action S, depends only on
the end-point data in space-time.

extremal ( 1 2)

b
extremal
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In Part 2 Alternative derivation of the Quartic
Oscillator Solution, we present an approach in which we
arrive at the linearization map in [2]. This maps the solu-
tions to Newton’s equations of motion for the quartic
oscillator 1 — 1 onto those of the harmonic oscillator in a
way which lends itself to integrating the momentum in-
tegral in (1.2). It involves a parametization of time t in
terms of an angular coordinate 6 (a cyclic coordinate
which takes advantage of the periodic motion of the
quartic oscillator and is intrinsic to the harmonic oscilla-
tor ho). This results in the time being given by a quadra-
ture involving a known function of @, as in [2]. As
stated in [2] R. C. Santos, J. Santos and J. A. S. Lima [3],
first demonstrated the possibility of linearization of the
quartic oscillator to the harmonic oscillator.

In Part 3 Integration of the momentum integral, the
results in Part 2 lead to an integration of (1.2). This is a
new result and an extension of the results in [3].

In Part 4 Derivation of S,,, using the results in Part
2 and Part 3, we derive a classical action S, evaluated
on an extremal in terms of space-time endpoint data and
show that Hamilton’s equations are satisfied.

In Part 5 Equivalent Actions, we present two equi-
valent actions as variations on the result in Part 4. By
equivalent we mean they are equal in value on extremals
and they produce the same Hamilton’s equations.

In Part 6 Conclusion, we indicate briefly how the ap-
proach in Parts 3 and 4 can be directly extended to all
members of a hierarchy with potential energies

Vo () =5 ¥ (1)

nx1
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2. Alternative Derivation of the Quartic
Oscillator Solution

To begin with, we must establish the sign conventions
implied by (1.2) for the quartic oscillator

Y2 d ( )d
m—y(t)dy,
Vi dt extremal
2.1)
Y2 V
- [m(2) 2= {1——“°(y)]dy :
Y m E extremal
V 4
where —% () _ky
E 4E

Taking advantage of the periodicity of any extremal
for the quartic oscillator o, we execute a change of
variable to the angular variable @ by setting

Vo (¥) Ky
in’(0-6,)=—"—"~=- 2.2
sin ( 0) E AE (2.2)
where
y(e(to )) =y(6)=y(t,)=y%=0
and

dy/dt(e(to)):%(to):%

[

and E = energy on the extremal. We have opted not to
change the symbol for a function when it depends on a
variable through a nested function in order to avoid un-
necessarily heavy notation. Making the signs explicit,
(2.1)-(2.2) yield

/4 .
(] o)
k) (sin?(0-6,))

d 2E
d—?z‘fﬁcos(e—ﬁo). 2.4

Note, for future use (2.3) implies

1/4
4E 1 cos(0-6
4 (sm (9—90))

to

and

rametization of time in terms of the angular coordinate.
As we shall see, this results in the time being given by a
quadrature involving a known function of 6. Now dif-
ferentiating (2.4) yields
d’y 2B, . de
—==,[—(-sin(0-6,))—. 2.6
d’t \'m (=sin(0-6,)) dt (26)
Or from Newton’s equation of motion for the quartic
oscillator
d’y
M =~ LY (2.7)

3
K,y 2E . deo
—_— =, — 0-6,)—. 2.8
N sin ( ) " (2.8)

Thus, it follows from (2.3) that we obtain the equation
that yields t involving €

we obtain

-1/4 1/4

dt=(k,E)" m”27 (sin’ (0-6,)) dO.  (2.9a)

Or, it s integrated form which yields t (in quadrature)
involving a known function of 6
6

/2 _1/4
(0)-t, = [ (E) " E(sin*(0'-4,) " 460" (2.9b)

%
The inverse of (2.9a) is given by

2k, )" 12
d&:[ﬁ} (v’)

(2.10a)

and it’s integrated form is given by
Lok, " 2
ot)-6, = — (t)) at, 2.10b
(t) ot{(m)(y()) (2.10b)

where the integration is along an extremal.

The equivalence to the linearization map given in [2]
is specified by setting 6-6, :a)(f—fo) , Where
k, = Mo’ =spring constant of the harmonic oscillator
ho and f equals the time of the ho corresponding to
t ofthe qo.

Then (2.9b) and (2.10b) are equivalent to one half of
the linearization map in [2]. The other half of the lineari-
zation map is given by

() ¥ 0 ()

Now, we are in position to present an alternative deri- E/k 7z sin(9 -6, ) = ﬁ . (211
vation of the solution to Newton’s equations of motion (4E/k,) (2E/k,)
(2.7) below for the quartic oscillator. It involves a pa- Equation (2.2) plus equation (2.4) imply
4E 1/2 /2 .
k—{y;‘ +¥a=2(%) W(¥2) Yacos(6, —Ha)}/smz (6 -6,) (2.12)
vl

where (6,—6,) is given by (2.10b).
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Finally, in this paragraph, given the end-point data
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how does one determine all other quantities.

One is given (Y,,t,) and (Y,.t,) on an Qo ex-
tremal. The linearization map yields X, and X, on the
corresponding ho extremal as well as B, =E,=E.
This implies from (2.12) the ho time differences

(f,—f,) and (£, —f,), where refers to ho times, are

known. Now we can set t, =f,.

From [4], as a result of mapping extremals for the ho
1—1 onto extremals to the o, we have from [4],

sin(0(t)-6,) = (4E/k,) " {

and

cos(0(t)-6,) = (4E/k) ™" {

Now (2.13) and (2.14) imply e.g.
12 .
(%) Ypsin(6,-6,)
N2 2
(%) Yocos(6,-6,)-(¥2) " ¥a
where -, —(f,~f,)=f,—f, and of =6(t) yields

.
Everything else follows from the development in

tan(6, —6,) =

Yo

d
—vy(t)d
m-y(t)dy

Ya

Yo
~ [m(e) 2= (1— Y
extremal m 4E

t
= jm Ecos(H'—é’O)(
o,

o

(yj )1/2 Yo sin(H(t)— Ha).g_(y: )1/2 A sin(ﬁb —H(t)) 2.13)
sin(6, —6,) ’ '
(y,f )1/2 Yo cos(H(t) - ea)—(yi )1/2 Ya 005(6’b - H(t))}
5 , (2.14)
sin(6, - #6,)
Part 3.
¥ d
3. Integration of | mﬂdyqo
Ya dt extremal

The problem of integrating (1.2) is the problem of inte-
grating (2.1). Therefore, using (2.2) , (2.4) ,and (2.5), we
obtain

extremal ( 3.1 )

] (2j<sm (6'-8,))" cos(6-6,)der

2 6-6
Effecting the integration by parts, where dié? fg= j—fe g+ f jg f= (sm (6-6, ))3/4 and g= % yields
T dy, dy . {—E(EJM (1}[2 ) (k E)'/4 ml/z 1
Ya dt ® extremal m k4 2 3 rnl/z ) (k4 E)1/4
% 4 . ¥4 cos(0-6,) 90)
é[(smz (0-6,))  do+(sin’ (6-6,)) n(0-8) 9 (3.2)
2 (E 0-6,)"
:E(tb—ta)+%(sm2 (0—0))3/4 cos ')
3 3(k,) sin (60— (90)%
Finally, from (2.9b), we have
o (E)" 0-0,)"
J‘m yqo :E(tb_ta) #(sm (9 0 ))WM
extremal 3 3( 4 SIH(H_ 00) 6.
. (3.3)
) l(mk4 jl/z( 1) cos(0-6,)|"
BERAE N Y sin(6-6,)|,’
where @-6, is given by (2.10b).
AM
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4. Determination of a S, the following determination of S, .

The developments in Part 2 and Part 3 lead directly to It follows from (3.3) that (1.2) is given by

Yo

d
Sqo (ta’y;tb’yb)z ma ydy _E(tb_ta)cxtrcmal
Ya extremal
4E 1( mk, \" 32 cos (0 -6, )g"
=—(t, —ty)+=| — () ——X] —E(t, -t 4.1

=l(mj/2 {( 2)3/2 cos (6, _90)_(y2)3/zw:|+§(tb_ta)

30 2 °/ sin(6,-6,) \*/ sin(6,-6,)
Therefore, using (2.10b), we obtain

S (tas Ystns Vo)

COST(MJ(VZ ()" ar COST(zr:‘j(yz (t)" a E 42)

This is expressed in the endpoint variables as required. This implies

i 2k4 2 (4! 12 ’
oSy _(%jm( 2)1/2 cos{[(m)(y (t )) dt _[ﬁjl/z 4 12 T(&)( Z(t'))l/z at
Wb— Poo, = > Yo =15 K, cos J| y

.tb k 2 ren\Y2 40 t
sin | ﬁ{‘)(y ()" at ' (43)

S 12 _ 1/2
e e K R
", 3

e [ o a7

After using (2.11) this checks with m ' times (2.4) for p,, and d/at, obviously checks.
The a-differentiations parallel the b -differentiations and yield

) 2k4j 5 s 1/2d,
03, _p =_(m|(4 jl/z( 2)1/2 . Cost{[ m (y (t )) t __(mk4 Jl/z[ﬁjl/z COST(Z_k“](yz (t'))l/2 at
oy a

Silltji(zr:‘j(yz (t,))l/z dt’ 2 K, m

ta
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a

S 1(mk4 Jl/z ( 2)3/2 (-1)

5. Equivalent Actions

Here, we present two examples of equivalent actions as
variations on this result. By equivalent we mean they are
equal in value on extremals and they both produce the
same Hamilton equations.

First Variation:

Yo

S (ta: Yastys Yo ) =

Ya

m yay

dt _E(tb_ta)

extremal

Second Variation:
Equation (5.2) is equivalent to

Sqo (taa ya;tba yb)

= %( n;<4 jl/z {{( y; )3/2 costtj12 (2:14}(),2 (t’))l/2 dt’ - ( A )3/2/003

max

Comment: The signs and the limits of integration have
to be carefully watched in these calculations.
The identity

- ( yé )3/2 /COS (Hb - emax ) =-3 yb ymax (ylilax )1/2

sin2 T(i‘:j(yz (t,))l/2 dt’
ta

extremal

/
(%)12(),;)1/2 —%E:+E.

(4.4)
This variation follows from the indentities

sin(6—-6,)=sin(0+6,, —6,)=cos(6-0,..),

max (5. 1)

max

cos(6—-6,)=cos(0£0,, —6,)=-sin(0-6,,).

which implies that (4.2) transforms to the expression

Zr‘;*j(yz (t))” at _ (52)

(o] fo ] (2o s

tmax max
32 ok 12 32 fmex (DK 112 e 2k 12 G
{(yﬁ) cos |2y (1) "ar~(2) / (2% v ) dt} / (2 v ) dt}
m Lum Lum
hierarchy with potential energies
1
V. =—K,,y" 6.1
o (Y) =5k (6.1)
Starting with setting
ey Van (Y) _ Koy
in’(0—6,) == 6.2
sin”( ) E ME (6.2)

+2 ( yfnax )3/2 (COSZ (Hb - emax ))3/4/C0S(0b - Hmax ):

1/2 1/2
follows from (12)" ¥y = (¥2ur)” Youw 005(6 =)
Similarly for the a endpoint, thus we obtain the re-
sult reported in [4].
The results given in [4] were obtained before the inte-
gration result reported here in Part IV was obtained.

6. Conclusions

One can parallel the development in Parts 3 and 4 for an

Copyright © 2013 SciRes.

one can parallel Part 3.
Then integration by parts in these cases is effected by

d df dg . (n+1)/2n
0197359 T4y f =(sin*(0-6,))
and g= ncos(6-6,)

(n+1)sin(6-6,)
This then parallels the development in Part 4.

AM
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The linearization map for these cases is given in [2].
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