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ABSTRACT 

In this paper, we derive an explicit form in terms of end-point data in space-time for the classical action, i.e. integration 
of the Lagrangian along an extremal, for the nonlinear quartic oscillator evaluated on extremals. 
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1. Introduction 

The action 
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 equals the Lagrangian for  

the quartic oscillator in 1 + 1 dimensions, is integrated 
along an extremal and expressed in terms of the space- 
time end-point data .   , , ,a a b bt y t y 

We begin in a well-known way by adding and sub- 
tracting the kinetic energy to the Lagrangian. Thus we 
obtain from (1.1), after changing the variable of integra- 
tion in the remaining integral, the following equivalent 
expression. 

 

 
extremal

extremal

d
, ; ,  d

d

,

b

a

y

qo a b
y

b a

S t y t y m y y
t

E t t



 


         (1.2) 

where  is the energy on the extremal (See e.g. Gold- 
stein [1]). Equation (1.2) is the form of the action that we 
will start from and then derive by integrating the first 
term in (1.2), which we call the momentum integral, thus 
the desired expression for qo  is obtained. (Some au- 
thors call this momentum integral the action.) For our 
convenience, we refer to the second term in (1.2) as the 
energy term. The derived action  depends only on 
the end-point data in space-time. 

E
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qoS

In Part 2 Alternative derivation of the Quartic 
Oscillator Solution, we present an approach in which we 
arrive at the linearization map in [2]. This maps the solu- 
tions to Newton’s equations of motion for the quartic 
oscillator 1 − 1 onto those of the harmonic oscillator in a 
way which lends itself to integrating the momentum in- 
tegral in (1.2). It involves a parametization of time t in 
terms of an angular coordinate   (a cyclic coordinate 
which takes advantage of the periodic motion of the 
quartic oscillator and is intrinsic to the harmonic oscilla- 
tor ho). This results in the time being given by a quadra- 
ture involving a known function of  , as in [2]. As 
stated in [2] R. C. Santos, J. Santos and J. A. S. Lima [3], 
first demonstrated the possibility of linearization of the 
quartic oscillator to the harmonic oscillator. 

In Part 3 Integration of the momentum integral, the 
results in Part 2 lead to an integration of (1.2). This is a 
new result and an extension of the results in [3]. 

In Part 4 Derivation of qo , using the results in Part 
2 and Part 3, we derive a classical action qo  evaluated 
on an extremal in terms of space-time endpoint data and 
show that Hamilton’s equations are satisfied. 

S
S

In Part 5 Equivalent Actions, we present two equi- 
valent actions as variations on the result in Part 4. By 
equivalent we mean they are equal in value on extremals 
and they produce the same Hamilton’s equations. 

In Part 6 Conclusion, we indicate briefly how the ap-
proach in Parts 3 and 4 can be directly extended to all 
members of a hierarchy with potential energies  
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2. Alternative Derivation of the Quartic 
Oscillator Solution 

To begin with, we must establish the sign conventions 
implied by (1.2) for the quartic oscillator 
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where 
  4

4
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Taking advantage of the periodicity of any extremal 
for the quartic oscillator qo, we execute a change of 
variable to the angular variable   by setting 
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where 
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and E = energy on the extremal. We have opted not to 
change the symbol for a function when it depends on a 
variable through a nested function in order to avoid un- 
necessarily heavy notation. Making the signs explicit, 
(2.1)-(2.2) yield 
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Note, for future use (2.3) implies 
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Now, we are in position to present an alternative deri- 
vation of the solution to Newton’s equations of motion 
(2.7) below for the quartic oscillator. It involves a pa- 

rametization of time in terms of the angular coordinate. 
As we shall see, this results in the time being given by a 
quadrature involving a known function of  . Now dif- 
ferentiating (2.4) yields 
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Or from Newton’s equation of motion for the quartic 
oscillator 
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we obtain 
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Thus, it follows from (2.3) that we obtain the equation 
that yields  involving t   

    1 41 4 1 2 1 2
4 0d 2 sin dt k E m .        (2.9a) 

Or, it s integrated form which yields  (in quadrature) 
involving a known function of 

t
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The inverse of (2.9a) is given by 
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and it’s integrated form is given by 
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where the integration is along an extremal. 
The equivalence to the linearization map given in [2] 

is specified by setting 0 , where 
 constant of the harmonic oscillator 

 and  equals the time of the  corresponding to 
 of the . 

0
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Then (2.9b) and (2.10b) are equivalent to one half of 
the linearization map in [2]. The other half of the lineari- 
zation map is given by 
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Equation (2.2) plus equation (2.4) imply 
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where  a a   is given by (2.10b). Finally, in this paragraph, given the end-point data 
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how does one determine all other quantities. 
One is given  ,a a

 ˆ ˆ
a bt t  and  ˆ ˆ

b ot t , where refers to  times, are 

known. Now we can set 

ho
ˆ

o ot t . 
y t  and  ,b by t  on an  ex- 

tremal. The linearization map yields a

qo
x  and bx  on the 

corresponding  extremal as well as ho qo . 
This implies from (2.12) the  time differences  

ho E E From [4], as a result of mapping extremals for the  ho
11  onto extremals to the , we have from [4], qo

E
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Now (2.13) and (2.14) imply e.g. 
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0 . 

Everything else follows from the development in  

Part 3. 

3. Integration of 
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The problem of integrating (1.2) is the problem of inte- 
grating (2.1). Therefore, using (2.2) , (2.4) ,and (2.5), we 
obtain 
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Effecting the integration by parts, where   3 42
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Finally, from (2.9b), we have 
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where 0   is given by (2.10b). 
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4. Determination of a qoS  

The developments in Part 2 and Part 3 lead directly to  

the following determination of . qoS
It follows from (3.3) that (1.2) is given by 
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Therefore, using (2.10b), we obtain 
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This is expressed in the endpoint variables as required. This implies 
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After using (2.11) this checks with  times (2.4) for  and m

bqop bt   obviously checks. 
The -differentiations parallel the -differentiations and yield a b
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5. Equivalent Actions 

Here, we present two examples of equivalent actions as 
variations on this result. By equivalent we mean they are 
equal in value on extremals and they both produce the 
same Hamilton equations. 

First Variation: 

This variation follows from the indentities 
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which implies that (4.2) transforms to the expression 
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Second Variation: 
Equation (5.2) is equivalent to 
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Comment: The signs and the limits of integration have 

to be carefully watched in these calculations. 
The identity 
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follows from      
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max max maxcos .b b by y y y     

Similarly for the  endpoint, thus we obtain the re- 
sult reported in [4]. 

a

The results given in [4] were obtained before the inte- 
gration result reported here in Part IV was obtained. 

6. Conclusions 

One can parallel the development in Parts 3 and 4 for an 

hierarchy with potential energies 
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one can parallel Part 3. 
Then integration by parts in these cases is effected by 
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This then parallels the development in Part 4. 
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The linearization map for these cases is given in [2]. 
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