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Abstract

Many estimation problems can be modeled using a
Kalman filter. One of the key requirements for Kalman
filtering is to characterize various error sources,
essentially for the quality assurance and quality control of
a system. This characterization can be evaluated by
applying the principle of multivariate statistics to the
system innovations and the measurement residuals. This
manuscript will systematically examine the test statistics

in Kalman filter on the ground of the normal, 72, t-and

F- distributions, and the strategies for global, regional and
local statistical tests as well. It is hoped that these test
statistics can generally help better understand and perform
the statistical analysis in specific applications using a
Kalman filter.

Key words: Kalman filter, test statistics, normal
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1 Introduction

Since 1980s, Geomatics professionals both in research
and industry have increasingly shown their profound
interest in applying the Kalman filter to various
applications, such as kinematic positioning or navigation
systems, image processing, and data processing of
deformation monitoring etc. Undoubtedly, knowledge of
Kalman filtering has become essential to the Geomatics
researchers and professionals.

A Kalman filter is simply an optimal recursive data
processing algorithm that blends all available information,
including measurement outputs, prior knowledge about
the system and measuring sensors, to estimate the state
variables in such a manner that the error is statistically
minimized [Maybeck, 1979]. In practice, linear equation
system with white Gaussian noises is commonly taken as
the standard model of a Kalman filter. However, one must
generally face the following facts [Maybeck, 1979]: (1)
no mathematical model is perfect, (2) dynamic systems
are driven not only by own control inputs, but also by
disturbances which can neither be controlled nor
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modelled deterministically, and (3) sensors do not provide
perfect and complete data about a system.

Hence, a Kalman filter can function properly only if the
assumptions about its model structures, dynamical
process and measurement noise are correct or realistic. It
can become divergent if any of the following situations
occurs [Schlee et al, 1967; Tarn et al, 1970; Gelb, 1974;
Stdhr, 1986; Loffeld, 1990]:

e Improper system model;
False modeled process noise;
False modeled measurement noise or
Unexpected sudden changes of the state vectors

Correspondingly, one needs to study the behaviors of the
errors associated with the system model. This may be
called as system identification or system diagnostics, one
of the advanced topics in Kalman filter.

There are different ways to perform system identification.
Statistic tests belong to the essential methods of system
identification. Herewith, the system model under the Null
hypothesis is tested against one or multiple alternative
hypotheses. The statistic algorithms can be divided into
two categories. The first one is to make multiple
hypotheses about the stochastic characteristics of a system
(Multiple Hypothesis Filter Detectors) [Willsky, Deyst,
Crawford, 1974, 1975; Willsky, 1976]. In order to reach a
statistic decision, the posteriori probabilities of the state
vectors will be calculated, for instance, through the
sequential probability ratio test- SPRT [Willsky, 1976;
Yoshimura, et al, 1979]. The second one is to perform the
system identification with the help of series of system
innovations  (“Innovation-based detection”) [Mehra,
Peschon, 1971; Stohr, 1986; Salzmann, Teunissen, 1989;
etc.]. With this method, the signal is filtered using a
normal model, until a failure is found through the statistic
tests, for example, through GLR (Generalized likelihood
ratio) method [Willsky, 1976; Huep, 1986] or more often

through the specific test statistics based on normal, 72,
t-or F - distribution.

Since the Kalman filter was introduced, how to
characterize the error sources of a system, especially the
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series of the system innovation, has caught certain
research attention. [Stohr, 1986] studied the statistic tests

on the ground of Normal Distribution and ;(2 -

Distribution using system innovation. [Salzmann, 1993]
summarized a three-part test procedure as Detection,
Identification and Adaptation (DIA) using system
innovation for Kalman filter, in which the construction of
test statistics is essential. [Wang, 1997] further discussed

the test statistics not only on the basis of normal and ;(2 -

distributions, but also on the basis of t - and F -
distributions using both of the system innovation and
measurement residuals in Kalman filter.

A statistical test is no thing else, but a method of making
statistical decisions based on the existing system model
using experimental data. One needs statistic tests, for
example, to identify abnormal dynamic changes of the
system states, or to statistically verify the significance of
the additional parameters, such as different sensor biases,
in an integrated navigation system. Statistic tests can also
help with studying the whiteness of system innovation.
The detection of measurement outliers definitely needs
statistic tests. A lot more examples exist in practice. They
show how essential statistic tests are in Kalman filter so
that a developer has to be capable of constructing the
proper test statistics and applying them to practice.

However, there is still a lack of systematic description of
fundamentals of test statistics for Kalman filter in
textbooks. Most of the available works have missed out
this topic or, if not the case, the test statistics is mostly

based on the Normal Distribution and the ;(2 -

Distribution only using system innovation. Applying of
the t-and F - tests is not common.

From the perspective of both research and industry, it
could be helpful to have a systematical understanding to
the fundamentals of test statistics for Kalman filter, in
order to use a Kalman filter well or develop new
algorithms. However, the existing textbooks about
Kalman filtering and applications do not normally talk
about testing statistics, although they may be found
miscellaneously in scientific publications of different
fields. This manuscript aims to fill the gaps between the
textbooks and scientific papers in the context of Kalman
filter theory and applications.

This manuscript is organized as follows. The algorithm
of Kalman filter is summarized in Section 2. Section 3
gives the estimation of the variance factor, or more
precisely, the variance of unit weight. The statistic
characteristics of filtering solutions are described in
Section 4. Sections 5 and 6 are dedicated to building up
various test statistics for system innovation and
measurement residuals. The concluding remarks are given
in the last section.
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2. ALGORITHM OF KALMAN FILTERING

The Kalman filter is a set of mathematical equations that
provide an efficient recursive means to estimate the state
of a process through minimizing its mean squared errors.
This section is to provide a brief introduction to the
discrete Kalman filter, which includes its description and
some discussion of the algorithm.

2.1. The Model

We consider a linear or linearized system with the state-
space notation and assume that the data are available over
a discrete time series {t,,t;,..., ty}, which will often be

simplified to {01,...,N}. Without loss of generality, a

deterministic system input vector will be droped in all of
the expressions in this paper. Hence, at any time instant
k (1< k £ N ) the system can be written as follows:

X(k +1) = Ak +1,K)x(k) + B(k)w(k) (1)
Z(k+)=Ck+D)x(k+D)+Ak+1 (2

where x(k) is the n-dimensional state-vector, z(k)is the
p-dimensional observation vector, w(k) is the m-
dimensional process noise vector, A(k) is the p-
dimensional measurement noise vector, A(k +1,k) is the
nxn coefficient matrix of Xx(k) , B(k) is the nxm
coefficient matrix of w(k) , C(k) is the pxn
coefficient matrix of z(k). The random vectors w(k) and
A(K) are generally assumed to be Gaussian with zero-
mean:

w(k) ~ N(0,Q(k)) 3)
A(K) ~ N(o, R(k)) (4)

where Q(k) and R(k) are positive definite variance

matrices, respectively. Further assumptions about the
random noise are made and specified as follows (i # j):

Cov(w(i),w(j)) =0 5)
Cov(A(i),A(j)) =0 (6)
Cov(w(i),A(j)) =0 (7

Very often, we also have to assume the initial mean and
variance-covariance matrix Xx(0) and D, (0) for the
system state at the time epoch 0. In addition, the initial
state x(0) is also assumed to be independent of w(k)
and A(k) for all k.
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2.2.Kalman Filtering Equations

To derive the optimal estimate X(k) of x(k), one may

use one of several optimality criterions to construct the
optimal filter. For example, if the least-squares method is
used, the optimality is defined in the sense of linear
unbiased minimum variance, hamely,

E{}=
{x}=x } ®

E{(x—X)(x=X)"}=min

where X is the unbiased minimum variance estimate of
X.

Under the given stochastic conditions in Section 2.1, one
can derive the Kalman filtering for the state vector at
k+1:

X(k+1) = X(K+1/K)+G(k +1d (k +1/k) 9)

and its variance-covariance matrix

D, (k+1) ={E —G(k +1)C(K +1)}D,, (K +1/k)

(10)
{E-G(k+1)C(k+1)+G(k+)R(k +1)G" (k +1)
where
X(k+1/k) = Ak +1, k)X (k) (11)
D,, (k+1/k) = Ak +1,k)D,, (K)AT (k +1,k) 12)
+B(K)Q(K)BT (k)
d(k+1/k) = z(k +1) - C(k + 1) X(k +1/K) (13)
Dyg (k+1/k) =C(k+1)D,, (k+1/K)CT (k+1) 14
+R(k+1)
G(k+1) =D, (k+1/k)CT (k+1)Dy (k+1/k)  (15)

Here X(k +1/k) is the one-step prediction of the state
vector from the past epoch K with its variance matrix
D, (k+1/k) , d(k+1/k) is the system innovation
vector with its variance matrix Dgy(k+1/k) , and
G(k +1) is the Kalman gain matrix.

An essential characteristic of the sequence d(1/0), ...,
d(i+1/i), ..., d(k+1/Kk) is that they are independent

from each other epochwise [Stohr, 1986; Chui, Chen,
1987]:

Cov{d (i +1/i),d(j+1/ j)}=0 for (i=#]) (16)
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The stochastic characteristics of d(k+1/k) are

obviously the mixture of the stochastic information from
the real observation noise {A(1),A(2),...} and the system

noise {w(0),w(1),..} Traditionally, the system

innovation sequences are analyzed and used to build up
the test statistics.

2.3. An alternate Derivation of Kalman Filtering

Let us analyze the error sources in Kalman filter in a
different way. The optimal estimate X(k+1) of

x(k +1) at the instant k is always associated with the

stochastic information, which may be divided into three
independent groups:

a. The real observation noise A(k +1),

b. The system noise w(k),

c. The noise from the predicted X(k+1/k) through
X(k) , on which the stochastic characteristics of
{A@D),A(2),...,AK)} , {w(0),w(),...,w(k-1)} are
propagated through the system state model.

If these different error resources could be studied
separately, it could be very helpful to evaluate the
performance of a system in Kalman filter. Along with this
line of thinking, the system model as in 2.1 can be
reformulated through the three groups of the observation
or residual equations as follows:

v,x(k+l)=
v,w(k+1)=
v (k+1)= C(k+1) x(k+1)

R(k+1) - Bk) W(k) =1, (k+1) (17)
W(k) =1, (k+1) (18)
—1,(k+1) (19)

where the independent (pseudo-)observation groups are
simply listed by

I, (k+1) = A(k +1,k)X(K) (20)
Ly (k+1) = w (k) (21)
IL(k+)=2z(k+1) (22)
with their variance-covariance matrices by

Dy, (k+1)= A(k+1K)D,, (K)AT (k +1,k) (23)
Dy,1, (k+1)=Q(k) (24)
Dy, (k+1)=R(k+1) (25)

Iy(k+D), I,(k+21 and I,(k +1) = z(k +1) are the n-,

m- and p-dimentional measurement or pseudo-
measurement vectors, respectively. Usually wy(k) =o0.
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Again, by applying the least squares method, the identical
estimate X(k+1) of x(k +1) as in the section 2.2 can be
obtained. For more details on this alternate derivation of
Kalman filter and its advantages, the reader is referred to
[Wang, 1997; Caspary and Wang, 1998].

This alternate derivation of Kalman filtering will directly
make the measurement residual vectors available for error
analysis and possibly to build up the test statistics in
Kalman filter, since it is based on the measurement
residual vectors. One can now analyse any of three
measurement vectors through their own residual vectors.
The measurement residual vectors are the functions of the
system innovation vector epochwise

viy (K)=Dy, (K)Dy(k/k-1)K(K)d(k/k-1)  (26)
Vi1, (K) = Q(k =1)BT (k =)Dy (k / k —1)K (k)d (k / k — 1)

vy, (K) ={C(K)K (k) - E}d(k/k -1)

Similar to (16), we can readily prove the following results
of independence:

Cov{v(i),v(j)}=0 for (i# j) (29)

3. VARIANCE OF WEIGHT UNIT

The posteriori estimation of the variance of weight unit
of is essential in Geomatics. Some confusion has been
out there in applications of Kalman filer, because the
variance-covariance matrices are directly used in Kalman
filter. Surely the variance of weight unit, also called as
variance factor, should be close to unity for a perfect
model of system. However, this barely happens in
practice.

An algorithm for the estimation of unknown variance
factor o¢ was constructed on the ground of the normal-

Gamma distribution in [Koch, 1990]. It allows estimating
the variance factor together with the state vector in

Kalman filter. Alternatively, ag can also be estimated by

taking advantages of the sequences of the system
innovation or the measurement residual vectors in [Wang,

1997 etc]. The single epoch estimate of o-g, also called as
the local variance of unit weight, is given by

v’ (K)Dy* (k)v(k)

G0 =—""10 (30)
where
v(k) =[vi (K),v{ (K).v{ (k)] (31)
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Dy (k) =diag{D, ; (k),D, ,, (k),D, (k)} (32)
and r(k) is the number of the redundant measurements at
epoch k (t, <t, <t ). An alternate expression exists:

d" (k/k-1)Dgj(k/k —1)d(k/k —1)

aio(k) = ()

(33)

The proof of equivalence between (30) and (33) can be
referred to [Pelzer, 1987; Tao, 1992; Wang, 1997]. One
can also estimate the variance factor o2 over a specific

time interval as the regional estimate of variance of unit
weight. For example, over a certain specified time interval
from epoch (k—-s+1) to epoch k, one can order the
system innovation for these s epochs as follows

d, () =[d" (k+s—1/k+s-2),

(34)
d"(k+s-2/k+s-3),....d" (k/k-1]"
with its variance matrix
D =diag{Dy (k+5s—-1/k+5-2),
d, (9)d, () g{Dyq ( ) (35)

Dy (K+s-2/k+5s-3),...Dy (kK/k-1)}
The regional estimate of o—g is then equal to

d7(5)Dg’5)a, (59 (5)

&% (k) = e

(36)

where f,(s) is the total number of the redundant
measurements of s epochs:

S

fe(9)= ) r(k=s+j)

=1

(37)

Furthermore, the global estimate of ag for all of the past
k epochs can be calculated by

dg (K)Dg (g, (k4 (K)

~2 _

ogo(k)= 7, (K) (38)
where

dg(k)=[d" (1/0),d" (2/1),...,dT (k/k=D]" (39)

Dy, )d, (k) = diag{Dygq (1/0), Dyq (2/1),..., Dyg (K Tk =1)}

k
fo ()= "r(j)
j=1
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4. STATISTIC CHARACTERISTICS
FILTERING SOLUTIONS

OF

In order to evaluate the quality of the solutions and
construct different test statistics, the statistic distributions
of various random vectors are used in Kalman filter on the
ground of the hypothesis: the normal distributed process
and measurement noise as given in 3.1 will be discussed.

At an arbitrary epoch k, all of the derived random
variables or vectors are the functions of the measurement

vector 1(k)=[1] (k), I}, (k), 1] (K)]" (see (20) ~ (22)).
Among them, d(k/k-1) , X(k) , v(k) , 65(k) are
essential for quality control of a system. By applying the

law of error propagation, their distributions are easily
known as:

d(k/k—=1) ~ N(0,Dyq (k/K —1)) 42)

)z(k) ~N (ﬂx’Dxx (k) (43)

v(k) ~ N(0,D,, (k)) (44)
T 1

d7 (k/k-1)Dg (k /K -1)d (k / k1) -

=vT (K)Djt(K)V(K) ~ 72(r(k))

where N(a,b) represents a normal distribution with a
and b as its expectation and variance, respectively.

The i-th component d;(k/k-1) in d(k/k-1) is

normally distributed as follows:

di(k/k=1)~ N(0.05 gcsk-1))
i=12..,pk=12..N) (46)

Any arbitrary subvector of d(k/k —1) is also normally

distributed. Based on the independency of the innovation
vectors between two arbitrary epochs shown in (16), the
vectors d, (s) and dg (k) as in (34) and (39) belong to

the following normal distributions:

d, (s) ~ N(0,Dy, (5)q,(s))
dg (k) ~ N(0,Dy_ (), k)

(47)
(48)

wherein Dy (s)a,¢s) @d Dy_(kya, k) are as in (35) and
(40). Analog to (46), any arbitrary components d g (k)

and d; (s) for the i-th type of observations also belong to
the normal distribution:

dgi (k) ~ N0 Dy a1
dyi(s)~N(O, Ddri (s)dyi (5))

(=12,
(=12,

(49)
(50)

)]
o))
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where, for i =1, 2, ..., n+m+p,
dgi () =(d;@W0), d;2/1), -, di(k/k-D)' (51)
dri(s)=(di(k—s+l/k—s), di(k—-s+2/k-s+1),
«, di(k/k=D)T (52)
with their corresponding variance-covariance matrices
Dag kdg (k) =
diag(Ui(l/ow ai (211 afi (k/k—l)) (53)
Dy, (s)d,(s5) = diag(o-(i(k—sﬂ/k—s)v Ui(k—s+2/k—s+1):
Uti(k/k—l)) (54)

The i-th component v;(k) of v(k) is of the normal
distribution, too:

vi (k) ~ N(0,0¢ )

(i=1,2,...,n+m+p; k=1,2,...,N) (55)

For any arbitrary subvector of v(k), e.g. v, (k), v, (k)
or v, (k) , the normal distributions apply. The global

cumulative measurement residual vector for all of the past
epochs can be defined as

=0T V@, - v R) (56)
and the regional cumulative from the past s epochs as
T T T
vr(s)=(v (k-=s+1), v (k=s+2), -, Vv (k))
...... (57)

with the following corresponding variance-covariance
matrices

Dvg(k)vg(k) =
diag(Dv(l)v(l) » Dvape)»

Dv,(s)v,(s) = diag(Dv(k—s+l)v(k—s+l)’ Dy (k=s+2)v(k=s+2)
(59)

Dv(k)v(k)) (58)

Dy )

So vg4 (k) and v, (k) are obviously normally distributed:

Vg (K) ~ N (0, Dy, kv, )
Ve (s)~N(O, Dv,(s)v,(s))

(60)
(61)

Similar to (49) and (50), the individual components of
Vg (k) and v, (k):
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Ve () =@, Vi, - Vi) (62)
Vi (s)=(vi(k—s+1), v;(k—s+2),

Vi) (63)
belong to the following normal distributions
Vi (K) ~ N0, Dy kv, (k) (64)
Vi ()~ N(O, DvrI (S)Vyi (s)) (65)
withi=1,2, ..., n+m+p, where
Dyy (v (0 =dia9(ffv2i(l>’ Tu@ Oy, w)  (60)
Dot = 980(02 4ossnys Thssny 0 o)

...... (67)

are the variance matrices of v; (k) and v ; (s) .

For multiple components in dy(k), d,(s), vq(k) or

V, (K), the same rule applies.

5. TEST  STATISTICS
INNOVATION

FOR SYSTEM

This section will construct test statistics using system
innovation. Under the assumption that no outliers exist in
measurements, one could diagnose the possible failure
caused by inappropriate state equations. Contrarily, one
can identify the possible outliers under the assumption if
the system model is assumed to be correct. The cause of a
failure may be ambiguous and need to be analyzed in
more details.

In this and next sections, we turn to perform statistic tests
the epoch k = 1, 2, ... from the very beginning to an
arbitrary epoch. The statistic tests will be introduced in
three different levels, namely, global for all of the past k
epochs, regional for an arbitrary continuous epoch group,
e.g., the s epochs in the past, and local for a single epoch
(often the current epoch). The first two tests are very
meaningful for the identification of systematic errors and
the local one aims directly at the potential outliers or the
unexpected sudden state changes.

5.1. Global Test Statistics

Global tests can be introduced in two different ways to
investigate the system behaviors. Right after the first k
epochs are completed, one can perform the statistic tests
with all of the system innovation information from the
past and with their individual components by constructing

the corresponding y % test statistics.

86

With all of the past k epochs together (k =1, 2, ..., N), the
null hypothesis about d, (k)

Ho:dy(k)=0 or H :E(;(gg(k))=502 =1.0 (68)
and its alternative
Hy:dg(k)=0 or Hy E(zd o) #56 =1.0 (69)

can be performed according to (48) by using the test
statistic [Salzmann, Teunissen, 1989]

24 1 =g (DG a, 104 () ~ 2% (g, T4 () (70)

at a significance level with the Type | error « .
2%(a, f) is the (1—a) - critical value from y° -

Distribution with the degrees of freedom of f after (41).
The null hypothesis (68) will be rejected if

& 1 > 2% (ag, T4 (K) (71)

The test can easily be extended to the i-th component
dgi (k) in dg(k) fori=1,2, ..,pandk=1,2, ..., N.

Under the null hypothesis

Hy:dgi(k)=0 (72)
against its alternative

Hydg(k)#0 (73)
Based on (49), the test statistic can be given by

Zggi(k) =dg; (k)Dd_gli(k)dgi(k)d 6i ()~ 72 (K) (74)
If

X0 > 2@ k) (i=1,...,p) (75)
under the given significance level Agi the null

hypothesis will be rejected.
5.2. Regional Tests

For the regional system diagnose, the processed k epochs
can be grouped at the user’s wish. Without loss of the
generality, the discussion here will be limited to two
groups. We consider having the first group for the first k —
s epochs (from 1 to epoch k — s) and the second group for
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the rest of the epochs (from epoch k —s + 1 to epoch k) as
d,(k—s) (equivalentto d,(k—s))and d,(s).

The null hypothesis about d, (s) is

Hy:d,(s)=1.0 (76)
against the alternative
Hy:d,(s)=0 )

On the ground of the test statistic [Willsky, 1976; Stéhr,
1986; Salzmann, Teunissen, 1989], the following test is
performed

& (5 =97 (9)Dg (9, 9dr () ~ 2% (. () (78)
at the significance level of «,, where the number f,(s)
is the degrees of freedom as in (37). For the second group
d, (k —s) also has the 22~ distribution as

2 T -1
Xdy(k=s) = dg (k—s) Ddg (k—s)dg(k—s)d g(k=s)

~ 2% (fg(k=5) (79)

An additional F—test statistic can be constructed to test the
variance homogeneity between (78) and (79) or (70)
because d, (s) is independent from d, (k—s). This F-

Test is given by

~2
o0(S)

=—"—" ~F(f fq(k- 80
Fa,s) 57, (k—3) F(f (s), fy(k=59)) (80)

. . d; (8)Dg, (50,9 (5)
with oro(s)= df’: ()s)'( ) (81)

dg (K= 5)Dg’ kos)q, (k—s)d g (K = 5)

~ k _ — g g r g 82
5% (k=s) e (82)

F(a,b) in (80) is the critical value of the Fisher

distribution with the 1% degrees of freedom a for the
numerator and the 2" one b for the denominator. This test
is always one-sided under a user- specified Type | error
o as the significance level. An exchange between the
numerator and the denominator may need in case

62y (k —s) greater than 675(s) . This test is commonly

employed to diagnose the significant difference between
the first k — s epochs and the rest of s epochs.

For the i-th component d,;(s) in d,(s), one can also
construct a y° test based on (50) and another F—test
analogue to (80). It runs

87
Hy:d,i(s)=0 (83)
against the alternative
H,:d,;(s)=0 (84)
by using the 2 test statistics
Zg,i(s) =d/; (5)Dg’5)a, (5)dri () ~ 2%(9) (85)

An F-test runs for their variance homogeneity between
(85) and (79) or (70) as follows

dyi (5)Dgsya,, 5ydri (8)/5
5'50 (k—s)

dgi(s) = ~F(s, fg(k—s)

fori=1, ..., p at the significant level of «,; .

5.3. Local Tests

Through the local system diagnose, the tests can be
introduced for the innovation vector as a whole and for its
components, respectively.

At an arbitrary epoch k, the null hypothesis for

dk/k-1)
Hy:d(k/k=12)=0 (86)
against the alternative
Hy:d(k/k-2)=0 (87)
can be given. Its test statistic runs
Kéwrkey =07 (k/k=1)Dgj (k/k=1)d(k / k —1)
~ 2% (r(k)) (88)

at the significance level of ¢, with the degrees of
freedom r(k).

A further F—test statistic can be introduced as

&5 (k)

Fa k-1 =62—)~ F(r(k), f,(s)) (k=2,3,...,N) (89)

ro

for the variance homogeneity between (81) and (33) or
(88). s means arbitrary specific epochs between epoch 1
and epoch k — 1.

The quadratic form in (45) contains the entire information
from the system innovation for an arbitrary epoch.
Therefore, the causes of a system failure must be

localized after the rejection of a ;(g(k rk-1) O Fgrka)
test. It should orient to the individual error sources, e.g.
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the individual measurements or the individual process
noise factors etc. in kinematic positioning or navigation.
One should perform the further statistic tests for the
individual measurements.

In order to perform the statistic tests for multiple
components in d(k/k —1), the method for detection of

position displacements in deformation analysis can be
employed. More on this can be found in [Chrzanowski,
Chen, 1986].

The test statistic for single component of d(k/k —1) can

directly be constructed on the ground of the normal
distribution or the t—distribution. The null hypothesis is

Hy: Ed;(k/k-1)=0 (90)
with its alternative
H,: E(;(k/k=1)=0 (91)

fori=12,...,pandk=1,2, ..., N. According to (46) the
test is performed

d,(k/k-1)

04, (k/k=1)

~ N(0]) (92)

Ny, (k/k-1) =

at the significant level of ¢;; . The null hypothesis will be
accepted if the two-sided test satisfies

Mikik-D

G O TG
2 d; (k/k-1) 2
i=12...p;k=1,2,...,N) (93)
where u @ is a (1—%) -critical value from the
1=

standard normal distribution. Furthermore, based on the
past system information, (93) can be extended to the
following t-test

di(k/k-D/ogwmy
e t(f,(s)

o prk=2,3,...,N)

Tdi(k/k—l) =

(i=1,2, (94)

The most common case is to test the current epoch k vs.
the past k — 1 epochs.

The differences between (93)-(94) and (88)-(89) are
obvious. However, which one is preferable will absolutely
depend on the user. A t-test or an F-test may deliver the
more reliable results of fit to the real data, while a normal

or a y2 test is introduced with respect to the a-priori
assumption.
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6. TEST STATISTICS FOR MEASUREMENT
RESIDUALS

As it can be seen, the system innovation mixes up
different types of information. But it is transferred to the
individual measurement residuals epoch by epoch through
(26) ~ (28), ie. the residual vector v, (k) for the

predicted state vector, the residual vector v, (k) for the
process noise and the residual vectorv, (k) for the direct

measurements. In this way, these different types of
random information can separately be studied. On the
basis of the fact that (30) and (33) are equivalent, the test

statistics 7& (), Za,(s) and Zdk-y in (70), (78) and

(88) can also be derived using the measurement residual
vector v(k) . But it is not necessary to be repeated here.

Therefore, only the test statistics for the individual
components will be discussed in this section.

6.1. Global Tests

For the i-th component v (k) in vg(k) , the null
hypothesis is

Ho:vgi(k)=0 (i=1,2,...,n+m+p) (95)
against the alternative

Hyivgi(k)#0 (96)
The test statistic is given by

20,00 = Vi (DY oy i Vai () ~ 27 (K) (97)

with the degrees of freedom of k. The null hypothesis will
be rejected if

X\Z/gi(k) > 72 (k) (i=1,2, .., n+m+p)  (98)

at the significant level of o .

6.2. Regional Tests

For the i-th component v,; (s) from v, (s), a y*~test and
a F—test can be constructed. The null hypothesis is

Hy:vi(s)=0 (99)
with the alternative
Hi:v,i(s)=0 (100)
The corresponding test statistic is given by
Z(9) = Vi (3)Dy sy 9)Vii (8) ~ 22 (5)
(i=1,2, ..., n+m+p) (101)



Wang: Test Statistics in Kalman Filtering

with the degrees of freedom of s. For the variance
homogeneity between the independent Z\i,(s) and

;(gg(k_s) similar to (80), the F-test statistic can be
introduced as

Vi () Dy sy, (5) Vi (8)/ 8
oA_gO (k - S)

Va(s) = ~F(s, fy(k=5s))
6.3. Local Tests

The single outlier detection at a single epoch can be
modeled through the null hypothesis

against the alternative
H;vi(k)#0 (104)

fori=1,2,...,m+n+pand k=1, 2, ... after the test of its
standardized residual

Vi (k)

Ov, (k)

() = ~ N(0,1) (105)

at the significant level of «;. The null hypothesis (102)
will be accepted if

—-u = <w3u _

_i ~%i
1. 2 O_vi(k) 1 2

(i=1,2, ... m+n+p;k=1,2, ..., N) (106)

Besides a t-test between (105) and (78) or (70) can be
introduced as follows

Vi (K)/ oy, )
Oro (S)
(=12,

~t(f.(s))
e nEm+p; k=2, ..., N)

vitk) =

(107)

For any epoch k, one can use v (k), v (k) and v, (k),
along with v(k) to investigate the statistic characteristics
of measurement vectors 1,(k) , I,(k) and I,(k) ,

especially two latter ones. Multiple components are
possibly diagnosed together in the same way as
mentioned in 5.3.

7. CONCLUDING REMARKS

Based on the standard model of Kalman filter, different
test statistics have been elaborated on the basis of the
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normal, y°-, t- and F -distributions in this manuscript.

This work can be conducive to better understanding of the
statistic fundamentals in Kalman filter, provides some
insights into statistic testing methods and applications.

In particular, the system innovation vector is transformed
to the residual vectors of three measurement and pseudo-
measurement groups by the aid of an alternative
derivation of Kalman filter algorithm. This makes
possible to construct test statistics directly using the
measurement residual vectors so that the system diagnosis
can directly aim at different error sources of interests to
users. The given posteriori estimate of variance of weight
unit in Section 3 can be used either to scale the variance
and covariance matrices, or to reveal the difference
between the model and the processed data set. On the
ground of statistic characteristics of filter solutions
summarized in the section 4, the test statistics using the
series of system innovation are constructed in the section

5 globally with 72 - test, regionally either with 2 - test

or F - test, and locally either with t - test or the normal
test according to the normal distribution. Analogous to the
section 5, the section 6 constructs the corresponding test
statistics using the measurement residuals. Fortunately,

7%- test, F - test, t- test and the normal test are four
most commonly used statistic tests. The choice between
ay®- test and a F - test, or between a t - test and a

normal test, wherever two parallel tests are available, is
left to the user.

How to construct a test statistics is more or less a
theoretical task. But how to efficiently design the
procedures to introduce the statistic tests in practice
mostly depends on the understanding about the theory and
the application. Practical experience plays an essential
role in helping deliver a realistic and reliable test scheme.
This manuscript however has limited to the testing
statistics for general purposes instead of a specific
application.
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