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Abstract 
 
In this paper, we have proposed and analyzed a nonlinear mathematical model for the study of interaction 
between tumor cells and oncolytic viruses. The model is analyzed using stability theory of differential equa- 
tions. Positive equilibrium points of the system are investigated and their stability analysis is carried out. 
Moreover, the numerical simulation of the proposed model is also performed by using fourth order Runge- 
Kutta method which supports the theoretical findings. It is found that both infected and uninfected tumor 
cells and hence tumor load can be eliminated with time, and complete recovery is possible because of virus 
therapy, if certain conditions are satisfied. It is further found that the system appears to exhibit periodic limit 
cycles and chaotic attractors for some ranges of the system parameters. 
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1. Introduction 
 
A connection between cancer and viruses has long been 
theorized and case reports of cancer regression (cervical 
cancer, Burkitt lymphoma, Hodgkin lymphoma) after 
immunization or infection with an unrelated virus ap- 
peared at the beginning of the 20th century [1]. Efforts to 
treat cancer through immunization or deliberate infection 
with a virus began in the mid 20th century [1,2]. As the 
technology for creating a custom virus did not exist, all 
early efforts focused on finding natural oncolytic viruses. 
During the 1960s, promising research involved in using 
poliovirus [3], adenovirus [1], Coxsackie virus [4], and 
others [2]. The early complications were occasional cas-
es of uncontrolled infection, resulting in significant mor-
bidity and mortality; the very frequent development of an 
immune response, while harmless to the patient [1], de-
stroyed the virus and thus prevented it from destroying 
the cancer [3]. In a number of cases, cancer cells exposed 
to viruses have experienced widespread necrosis, which 
cannot be entirely accounted for by viral replication 
alone. Cytotoxic T-cell responses directed against virus- 
infected cells have been identified as an important factor 
in tumor necrosis. However, since viruses are normal 
human pathogens, they induce an immune response, 
which reduces the effectiveness of viruses. For example,  

increased antibody could deactivate viruses before the 
tumor has been destroyed. This can be overcome by us- 
ing parental viruses that are not normal human pathogens, 
thereby avoiding any pre-existing immunity. However, 
this does not avoid subsequent antibody generation. Al- 
ternatively, the viral vector can be coated with a polymer 
such as polyethylene glycol, shielding it from antibodies, 
but this also prevents viral coat proteins adhering to host 
cells. Deactivation of the immune system is not desirable, 
since it has a positive effect on tumor necrosis. Even 
when a response was seen, these responses were neither 
complete nor durable [1]. 

With the later development of advanced genetic engi- 
neering techniques, researchers gained the ability to de- 
liberately modify existing viruses, or to create new ones. 
All modern research on oncolytic viruses involves vi- 
ruses that have been modified to be less susceptible to 
immune suppression, to more specifically target particu- 
lar classes of cancer cells, or to express desired cancer- 
suppressing genes. The first Oncolytic virus to be ap-
proved by a regulatory agency was a genetically modi- 
fied adenovirus named H101 by Shanghai Sunway Bio- 
tech. It gained regulatory approval in 2005 from China’s 
State Food and Drug Administration (SFDA) for the 
treatment of head and neck cancer [5,6]. Sunway’s H101 
and the very similar Onyx-15 have been engineered to 
remove a viral defense mechanism that interacts with a 
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normal human gene p53, which is very frequently dere- 
gulated in cancer cells [6]. Onyx-015 is a adenovirus that 
was developed in 1987 with the function of the E1B gene 
knocked out, meaning cells infected with Onyx-015 are 
incapable of blocking p53’s function. If Onyx-015 in-
fects a normal cell, with a functioning p53 gene, it will 
be prevented from multiplying by the action of the p53 
transcription factor. However if Onyx-015 infects a p53 
deficient cell it should be able to survive and replicate, 
resulting in selective destruction of cancer cells [7,8]. 

The interaction between the growing tumor and the 
replicating oncolytic virus are highly complex and non- 
linear. Thus to precisely define the conditions that are 
required for successful therapy by this approach, mathe- 
matical models are needed. Several mathematical models 
that describe the evolution of tumors under viral injection 
were recently developed [9-11]. Other mathematical mo- 
dels for tumor-virus dynamics are, mainly, spatially ex- 
plicit models, described by systems of partial differen- 
tial equations (which is an obvious and necessary ex- 
tension of ordinary differential equations models in as 
much as most solid tumors have distinct spatial structure), 
the local dynamics is usually modeled by systems of or- 
dinary differential equations that bear close resemb- 
lance to a basic model of virus dynamics [12]. Wu et al. 
modeled and compared the evolution of a tumor under 
different initial conditions [13]. Friedman and Tao (2003) 
presented a rigorous mathematical analysis of somewhat 
different model [14]. Our model builds upon the model 
of Artem S. Novozhilov [9] with a modified functional 
response between the cells. Novozhilov presented a ma-
thematical model that describes the interaction between 
two types of tumor cells (the cells that are not infected 
but are susceptible so far as they have the cancer pheno- 
type) with ratio dependent functional response between 
them. We consider a more realistic type of functional re- 
sponse with saturation effect of virus–cell interaction as 
even when a virus is oncolytic and it punches a hole in a 
tumor, the immune response of the individual to the virus 
occurs so fast that the effects are quickly wiped out and 
the tumor continues to grow. We discuss the linear sta-
bility analysis of the biologically feasible equilibrium 
states of this model. The ranges of the system parameters 
for which the system has chaotic behavior is found. 
Some authors discussed the problem of chaos and stabil- 
ity analysis of some biological models such as cancer 
and tumor model, genital herpes epidemic, stochastic lat- 
tice gas prey–predator model and many other models, see, 
for example, [15-19]. The problem of optimal control of 
the unstable equilibrium states of cancer self-remission 
and tumor system using a feedback control approach is 
studied by Sarkar and Banerjee and El-Gohary [15,19]. 
The objective of present work is to study the interaction  

between growing tumor and the replicating Oncolytic 
virus with a functional response with saturation effect. 
The saturation effect accounts for the fact that the number 
of contacts an individual cell reaches some maxi- mal 
value as our immune system evolves to stop virus just as 
the virus evolves to enter cells and replicate. Our model 
exhibits that complete elimination of tumor is possible 
with the help of oncolytic virus therapy in the treatment of 
tumor. 

This paper is organized as follows: In Section 2, we 
outline our model. In Section 3, Boundedness of solu- 
tions of the system is studied. Section 4, gives a review 
of equilibrium points of the system. Sections 5, deals 
with stability analysis of equilibrium points. In Section 6, 
we have determined conditions for global stability of in- 
terior equilibrium point. It is further followed by nume- 
rical simulation in Section 7. Lastly, a short discussion is 
represented in Section 8. 
 
2. Mathematical Model 
 
The model considers two types of tumor cells x  and 
y  growing in logistic fashion. x is the size of the un- 

infected tumor cell population and y is the size of in- 
fected tumor cell population. It is assumed that oncolytic 
viruses enter tumor cells and replicate. These tumor cells, 
infected with oncolytic viruses, further cause infection in 
other tumor cells. Oncolytic virus preferentially infects 
and lysis cancer cells both by direct destruction of the 
tumor cells, and, if modified, as vectors enabling genes 
expressing anticancer proteins to be delivered specifically 
to the tumor site. Based on these assumption model takes 
the following form: 

1

2

1 ,

1 ,

dx x y bxy
r x

dt K x y a

dy x y bxy
r y y

dt K x y a


    
   

     
   

    (2.1) 

With initial conditions:   00 0x x   and  0y   

0 0y  . 
Here 1r  and 2r  are the maximum per capita growth 

rates of uninfected and infected cells correspondingly; 
K  is the carrying capacity , b  is the transmission rate 
(this parameter also includes the replication rate of the  

viruses) ; The expression 
by

x y a 
, displays a satura-  

tion effect accounting for the fact that the number of 
contacts an individual cell reaches some maximal value 
as our immune system evolves to stop virus  just as the 
viruses evolve to enter cells and replicate. a  is the 
measure of the immune response of the individual to the 
viruses which prevents it from destroying the cancer and 
  is the rate of infected cell killing by the viruses (cy- 
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totoxicity). All the parameters of the model are supposed 
to be nonnegative. 
 
3. Boundedness of Solutions 
 
Boundedness may be interpreted as a natural restriction 
to grow because of limited resources. To establish the 
biological validity of the model system, we have to show 
that the solutions of system (2.1) are bounded for this we 
find the region of attraction in the following lemma.  

Lemma 1.: All the solutions of (2.1) starting in the 

positive orthant  2

0R  either approaches, enter or re- 

main in the subset of  2

0R  defined by  

    2

0, : 0x y R x y K     

 
where  2

0R  denote the non-negative cone of 2R  in- 
cluding its lower dimensional faces. 

Proof: From system (1) we get: 

     1 2 1
x y

x t y t r x r y y
K

      
 

    

      1
x y

x t y t x y
K

      
 

 
 

where  1 2max ,r r   
then by usual comparison theorem, we get the following 
expression as ,t   

   limsup
t

x t y t K


   

Thus, it suffices to consider solutions in the region  . 
Solutions of the initial value problem starting in   and 
defined by (2.1) exist and are unique on a maximal in- 
terval [20]. Since solutions remain bounded in the posi- 
tively invariant region  , the maximal interval is well 
posed both mathematically and epidemiologically. 
 
4. Existence and Uniqueness of Equilibrium  

Points 
 
An equilibrium point is a point at which variables of a 
system remain unchanged over time. System (2.1) pos- 
sesses the following equilibria: 

 0 0,0E ,  1 ,0E K ,  2 0,E y  and  3 ,E x y  ,  

where 

 2
2

K
y r

r
   

and  
2

2

2

4

2

M M r N
y f x

r
   
   

where   2 2 22M xr ar K r      and  

     2
2 2 2 2 .N r x x r a K r Kb Ka r         

Existence of  0 0,0E . The existence of trivial equi- 
librium point  0 0,0E is obvious. This equilibrium point 
implies the complete elimination of tumor. Biologically, 
it means that both infected and uninfected tumor cells 
can be eliminated with time, and complete recovery is 
possible because of the virus therapy. 

Existence of  1 ,0E K . The existence of equilibrium 
point  1 ,0E K is obvious. This equilibrium implies the 
failure of virus therapy. Biologically, it means that both 
infected and uninfected tumor cells tend to the same state, 
as they would have been reached without virus admini- 
stration. 

Existence of  2 0,E y . It can be checked out that the 
equilibrium point  2 0,E y  exists if 2r  . This equi- 
librium implies complete infection of tumor cells and 
stabilization of tumor load to a finite minimal size y   

 2
2

.
K

r
r

  Biologically, it gives a real life situation in 

which tumor load can be reduced to lower size if tumor 
is detected at initial stage.  

Existence of  3 ,E x y  . To see the existence of in- 

terior equilibrium point  3 ,E x y  we note that  

,x y   are positive solutions of the system of alge- 
braic equations given below: 

1 1 0
x y by

r
K x y a

    
   

         (4.1) 

2 1 0
x y bx

r
K x y a

     
   

       (4.2) 

Now substituting the value of y  in Equation (4.1), 
we get  

       1 0r K x f x x f x a Kbf x        (4.3) 

To show existence of x , it suffices to show that Eq-
uation (4.3) has a unique positive solution. 

Taking 

         1G x r K x f x x f x a Kbf x       

We note that 

         10 0 0 0 0G r K f f a Kbf      

provided 

1 2 20 and 0.r r b r               (4.4) 

or 

1 2 1
r r

b 
                 (4.5) 

and        1 0G K f K r K f K a bK       

provided 

.
bK

K a
 


                 (4.6) 
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Thus, there exist a x  in the interval 0 x K   
such that   0G x   

For x  to be unique, we must have 

       1 1 2 2 0,
dG

r f x x f x a K Kbf x
dx

        

(4.7) 

Corresponding value of y  is given by  y f x  . 

Thus if all the three conditions (4.5)-(4.7) hold an uni- 
que interior equilibrium always exists. However, these 
conditions depend upon the parameter values so they do 
not always hold. We will show further that if Equation 
(4.5) and Equation (4.6) does not hold other equilibrium 
points of the system become locally asymptotically sta-
ble. 
 
5. Local Stability Analysis of Equilibrium  

Points 
 
An equilibrium point is locally asymptotically stable if 
all solutions of the system approaches it as t  . To 
discuss the local stability of equilibrium points we com- 
pute the variational matrix of system (2.1). The signs of 
the real parts of the eigenvalues of the variational matrix 
evaluated at a given equilibria determine its stability. The 
entries of general variational matrix are given by differ- 
entiating the right hand side of system (2.1) with respect 
to ,x y . The matrix is given by 

 
A B

V E
C D

 
  
 

 

where 

   
1

1 2
1

r xx y by bxy
A r

K K x y a x y a

           

   
1

2

r x bx bxy
B

K x y a x y a
   

   
 

   
2

2

r y by bxy
C

K x y a x y a
   

   
 

   
2

2 2
1

r yx y bx bxy
D r

K K x y a x y a
            

 

We denote the variational matrix corresponding to iE  
by  iV E , 0,1,2,3i   
 
5.1. Local Stability Analysis of  0 0,0E  

 
To explore local stability of trivial equilibrium point, we 
compute variational matrix of 0E . The variational ma- 
trix of equilibrium point 0E  is given by 

  1
0

2

0

0

r
V E

r 
 

   
            (5.1) 

Eigenvalues of  0V E are given by ,r   2 .r    

0E  is an unstable equilibrium point since both the ei-
genvalues of the matrix are positive. 
 
5.2. Local Stability Analysis of  1 ,0E K  

 
Now, to study the stability behavior of 1E , we compute 
the variational matrix  1V E  corresponding to 1E  as 
follows: 

 
1 1

1

0

bK
r r

K aV E
bK

K a


      
   

         (5.2) 

From Equation (5.2) we observe that eigenvalues of 
the matrix  1V E  are given by 1r    and  

bK

K a
  


. Thus,  1V E  has negative eigenvalues 

and 1E  is stable equilibrium point if 
bK

K a
 


, con-

sequently 1E  is a saddle point if 
bK

K a
 


. 

Biological interpretation: Inequality 
bK

K a
 


 im-  

plies that equilibrium point 1E  is locally asymptotically 
stable if death rate of infected cells due to the virus at- 
tack is larger than the rate of transmission of infection 
from virus to the uninfected cells if measure of the im- 
mune response of the individual to the viruses is very 
less as compared to carrying capacity of the cells. Stabil- 
ity of this equilibrium point suggests that infected cells 
would die without having time to infect other cells and 
tumor grows unaffectedly. 

Remark: 1E  is stable if interior equilibrium point 
does not exist. 
 
5.3. Local Stability Analysis of  2 0,E y  

 
The variational matrix of equilibrium point  2 0,E y   

where  2
2

K
y r

r
   is given by 

 
 

 
   

21

2 2 2

2

2
2 2

2 2

0
bK rr

r K r ar
M

bK r
r r

K r ar





 



 
          

   

   (5.3) 
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From Equation (5.3) we observe that eigenvalues of  

the matrix  1V E are given by
 

 
21

2 2 2

bK rr

r K r ar







 
 

  

and  2 .r     Thus  2V E has negative eigenvalues 
and 2E  is stable equilibrium point if  

 
 

21

2 2 2

bK rr

r K r ar






 

 or 
   2

2 1
1 2

K r
a br r

r r







    

consequently 2E  is a saddle point if  
   2

2 1
1 2

K r
a br r

r r







  . 

Biological interpretation: Local asymptotic stability 
of 2E  implies that 2 1br r , Since a  is a positive 
parameter and it cannot be less than a negative quantity,  

so 2E  is locally asymptotically stable point if 2 1r r

b
   

together with 2 1
r


  or 2 1max 1

r r
,
b

   
 

. Hence 2E  is  

locally asymptotically stable under any of the two situa- 
tions:  

1) If net growth rate of uninfected cells is less than the 
rate of transmission of virus infection than growth rate of 
infected cells must be greater than the death rate of in- 
fected cells caused by the viruses.  

2) If net growth rate of uninfected cells is more than 
the rate of transmission of virus infection then the ratio 
of net growth rate of uninfected cells to the death rate of 
infected cells caused by the viruses is more than the ratio 
of net growth rate of uninfected cells to rate at which 
they become infective. 

Remark: 2E  is stable if interior equilibrium point 
does not exist. 
 

5.4. Local Stability Analysis of  , 
3E x y  

Variational matrix of  3 ,E x y   is given by 

 3

A B
V E

C D

 

 

 
  
 

             (5.4) 

where 

 

 

1
1

2

1

        

r xx y by
A r

K K x y a

bx y

x y a

  


 

 

 

 
    

  


 

 

   
1

2

r x bx bx y
B

K x y a x y a

   


   
   

   
 

   
2

2

r y by bx y
C

K x y a x y a

   


   
   

   
 

 

 

2
2

2

1

         

r yx y bx
D r

K K x y a

bx y

x y a


  


 

 

 

 
    

  

 
 

 

From variational matrix  3V E , we find that eigen- 
values are   where  

 
   

1 2

2 2
1 21 2

3

2

1
4

2

r x r y

K

bx y r rr x r y ab x y

K x y a K x y a


 



    

   


 

               

 

The signs of the real parts of   and   are nega-
tive. This implies that 3E  is always locally asymptoti-
cally stable if it exists. 
 
6. Global Stability of Interior Equilibrium  

Point 
 
An equilibrium point is globally asymptotically stable if 
system always approaches it regardless of its initial posi- 
tion. We construct Lyapunov functions that enable us to 
find biologically realistic conditions sufficient to ensure 
existence and uniqueness of a globally asymptotically 
stable equilibrium state. Global stability of the interior 
equilibrium point of system (2.1) is determined in the 
theorem 6 given below: 

Theorem 6.: If the following inequality holds 

 

    

2

1 24

by

a x y a

r rby bx

K Ka x y a K a x y a



 

 

   

 
  
   
  
   
        

 

then 3E  is globally asymptotically stable with respect 
to the solutions initiating in the interior of the positive 
orthant  . 

Proof: Consider the following positive definite func-
tion about 3E  

ln ln
x y

W x x x y y y
x y

   
       . 

Computing the derivative of W  with respect to t  
and after some algebraic manipulations, we get 



M. AGARWAL  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

136

    

  
  

    

2
1

1 2

2
2

        
( )

        

rdW by
x x

dt K x y a x y a

r r

K
x x y y

b y x

x y a x y a

r bx
y y

K x y a x y a




 

 
 

 




 

 
    
     
    

      
     
 
   
     

 

We note that 
dW

dt
can be made negative definite inside  

   if  

 
  

  

  

2

1 2

1

2

4

b y xr r

K x y a x y a

r by

K x y a x y a

r bx

K x y a x y a

 

 



 



 

             
 
  
     

 
  
     

 

After maximizing left hand side and minimizing right  

hand side of above inequality we note that 
dW

dt
 will be  

negative definite if following hold: 

 

    

2

1 24

by

a x y a

r rby bx

K Ka x y a K a x y a



 

 

   

 
 
   

   
      
          

, 

This completes the proof of the theorem (6). 
 
7. Numerical Simulation 
 
To substantiate the above analytical findings, the model 
is studied numerically. The system of differential equa- 
tion is integrated using fourth order Runge-Kutta method 
under the following set of compatible (hypothetical) pa- 
rameters, which satisfy the stability conditions. 

1 240,  100,  r 2,  0.05, 0.02, 0.003.r K a b        

(7.1) 

The equilibrium points for this set of parameters are: 

 0 0,0E ,  1 100,0E   2 0,99.85E  and  
 3 10.5295,  89.4258E  

It is found that all the conditions for local asymptotic 
stability of interior equilibrium point are satisfied for 
above parameter values. Further, to illustrate the global 
stability of the equilibrium point graphically, numerical 
simulation is performed for different initial starts and the 
result is displayed in Figure 1. It is found from the graph 
that all the trajectories starting from different initial starts, 
reach the endemic equilibrium 3E . 

In Figure 2 densities of tumor cells for parameter val- 
ues (7.1) is shown. It is observed from the figure that in- 
fected tumor cell population first rise and then attain a 
constant equilibrium value whereas uninfected tumor cell 
population first rise abruptly and then decrease due to 
virus infection and cytotoxicity to attain its equilibrium 
value.  

In Figure 3, density of tumor cells is drawn for  

 

Figure 1. Variation of infected tumor cells with uninfected 
tumor cells for different initial starts. 
 

 

Figure 2. The densities of tumor cells for all the parameter 
values given in Equation (7.1). 
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0.3    and other parameters remaining same as in Eq-
uation (7.1). This figure implies that the system con-
verges to equilibrium point  1 100,0E  when death rate 
of infected tumor cells due to the viruses increases from 

0.003   to 0.3  . Figure 4 shows the density of 
tumor cells for 06.0b  and other parameters remain-
ing same as in Equation (7.1). It demonstrates the con-
vergence of the system to equilibrium point  2 0,99.85E  
for higher infectivity of the oncolytic virus.  

Numerically it is found that tumor load decreases 
when per capita growth rate of infected cells ( 2r ) is less 
than or equal to the death rate of infected cells due to 
virus ( ) for high replication rate of viruses in the cells. 
Figure 5 shows variation of tumor load with time for 
different transmission rate of virus infection ( b ). It is 
 

 

Figure 3. Convergence of the system to the equilibrium 
point  1 100,0E , for 0.3   and other parameters re- 
maining same as in Equation (7.1). 
 

 

Figure 4. Convergence of the system to the equilibrium 
point  2 0,99.85E   for 0.06b    and other parameters re- 
maining same as in Equation (7.1). 

found from the graph that for 2r 2  , tumor load 
decreases with the increase in b  for all 1b   and van- 
ishes for 50b  , other parameters remaining same as in 
Equation (7.1). Figure 6 display the formation of limit 
cycle in the system. It is observed from numerical simu-
lation that stable limit cycles are formed for 10 35b   
and for 35b   no limit cycles are formed. However, 
when 2r   i.e. for parameter values 2r 1, 2    
and other parameters remaining same as (7.1), we have 
found that stable limit cycles are formed for 10 40b  . 
Figure 7 shows stable limit cycle for 30b and keep-
ing other parameters fixed as above. However, when 

40b  , tumor load decreases and strange chaotic attrac-
tors are obtained. Figure 8 display chaotic attractor for 
this range. 

 

Figure 5. Variation of tumor load with time for different 
transmission rate of infection from virus and parameters 

1 40r  , 100K  , 2r 2 , 0.05a  , 2 . 
 

 

Figure 6. Stable limit cycles for parameter values, 1 40r  , 
100K  , 2r 2 , 0.05a  , 2 , 20b   initial values 

    0 1, y 0 1x   . 
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Figure 7. Stable limit cycles for parameter values, 1 40r  , 

100,K  2r 2, 0.05,a  2, 30b   and initial values 

    0 1, y 0 1x   . 
 

Figure 9 shows that for a particular value of rate of 
transmission of infection, 50b    tumor load vanishes 
when per capita growth rate of infected cells ( 2r ) is less 
than or equal to the death rate of infected cells due to 
virus ( ) but tumor load remains at its maximal size if 

2r  . 
Now keeping all the parameters fixed at 1 40r  , 

100,K  2r 2, 0.05,a  50b  and varying , we ob- 
serve that tumor load increases with increase in alpha 
and acquires maximum possible load for  50b    
which implies that tumor grows unaffectedly when death 
rate of infected cells due to the virus attack exceeds the 
rate of transmission of infection from virus to the unin-
fected cells. However, tumor load decreases giving peri-
odic oscillations for  b  . Figure 10 shows variation 
of tumor load with time for different values of  . Fig-
ure 11 display three dimensional attractors obtained for 
the range 3 10   and other parameters fixed as 
above. Figure 12 shows table limit cycle for the range 
10 30  . Further, it is found that no limit cycles exist 
for 30  . 
 
8. Conclusions 
 
It is well known that the cancer is one of the greatest 
killers in the world and the control of tumor growth re- 
quires great attention. Various efforts have been made 
for its treatment. Equally extensive efforts have been 
dedicated over many years to mathematical modeling of 
cancer development. Here we address a complex process 
that involves both virus-cell interaction and tumor 
growth. The positive equilibrium points of the system are 
investigated. The stability and instability of the equilib- 

 

Figure 8. Tumor three dimensional attractors for the value 
of the system parameters 1 40,r  100,K  2r 1, 0.05a  , 

60b  , 50  and     0 1, y 0 1x   . 
 

 

Figure 9. Variation of tumor load with time for different 
growth rate of infected tumor population relative to their 
mortality rate due to virus with parameters 1 40,r   

100K  , 0.05a  , 50b  . 
 
rium points of the system are studied using the linear 
stability approach. To substantiate the analytical findings, 
the model is studied numerically and for which the sys- 
tem of differential equation is integrated using fourth 
order Runge-Kutta method, which supports the theoretic- 
cal findings.  

It is found that virus therapy fails if death rate of in- 
fected cells due to virus attack exceeds the transmission 
rate of infection from virus to the uninfected tumor cells 
for small immune response of the individual to the virus 
action. It is observed from our analysis that tumor load 
can be reduced to a lower value under any one of the two 
conditions: If net growth rate of uninfected cells is less 
than the rate of transmission of virus infection than 
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Figure 10. Variation of tumor load with time for different 
values of   and parameters 1 40,r  100,K  2r 1,  

0.05a  , 50b  . 
 

 

Figure 11. Tumor three dimensional attractors for the value 
of the system parameters 1 40,r  100,K  2r 2, 0.05,a   

50b  , 5  and initial values  0 1x  ,  y 0 1 . 
 
growth rate of infected cells must be greater than the 
death rate of infected cells caused by the viruses and if 
net growth rate of uninfected cells is more than the rate 
of transmission of virus infection then the ratio of net 
growth rate of uninfected cells to the death rate of in- 
fected cells caused by the viruses must exceed the ratio 
of net growth rate of uninfected cells to rate at which 
they become infective. Further it is found from our anal-
ysis that interior equilibrium point of the system exists 
under certain condition which is always locally asympto- 
tically stable if we assume that rate of growth of unin-
fected tumor cells is more than the growth rate of in-
fected tumor cells. 

From numerical simulation it is found that tumor load 
decreases when per capita growth rate of infected cells is  

 

Figure 12. Stable limit cycle for the set of parameters: 

1 40r  , 100K  , 2r 2 , 0.05a  , 50b  , 20  and 

    0 1, y 0 1x   . 
 
less than or equal to the death rate of infected cells due to 
virus for high replication rate of viruses in the cells. 
However, tumor grows unaffectedly when death rate of 
infected cells due to the virus attack exceeds the rate of 
transmission of infection from virus to the uninfected 
cells. The system appears to exhibit different attractors 
and stable limit cycles for some ranges of the system 
parameters. 
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