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ABSTRACT 
The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired 
applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mo-
bility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of 
Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and ab-
normal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate 
and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The 
simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with 
the highest energy efficiency for random sensing matrix. 
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1. Introduction 
WBANs as a special purpose of Wireless Sensor Net-
works (WSNs) consist of tiny Biomedical Wireless Sen-
sors (BWSs) and a Gate Way (GW) to connect to the 
external databases in the hospital and medical centers [1]. 
The WBANs are expected to be a breakthrough in 
healthcare areas such as hospital and home care, Mobile 
Health (MH), Electronic Health (EH), and physical reha-
bilitation. The GW could connect the BWSs, to a range 
of wireless telecommunication networks. These wireless 
telecommunication networks could be either mobile 
phone networks, standard telephone networks, dedicated 
medical center or using public Wireless Local Area 
Networks (WLANs) nodes also known a Wi-Fi system 
[2]. The compressed sensing is a revolutionary idea for 
the acquisition and recovery of sparse signals that 
enables sampling-rate significantly below the classical 
Nyquist-rate (NR). The electrocardiogram (ECG) signals 
are widely used in health care systems because they are 
noninvasive mechanisms to establish medical diagnosis 
of heart diseases. The current ECG systems suffer from 
important limitations: limited patient’s mobility, limited 
energy, limited on wireless applications. In order to fully 
exploit the benefits of WBANs such as EH, MH, and 
Ambulatory Health Monitoring Systems (AHMS) the  

power consumption and sampling rate should be re-
stricted to minimum. Long-term records of ECG signals 
in WBANs have become commonly used to collect in-
formation from the heart for diagnostic and therapeutic 
purposes [3]. That is why the quantity of data grows sig-
nificantly and compression is required for reducing the 
storage, transmission times, and power consumption. The 
ECG signals generally illustrate the redundancy between 
adjacent heartbeats due to its semi-periodic structure [4]. 
It is evident that this redundancy provides a high fraction 
of common support between consecutive heartbeats that 
is a good candidate for compression. However, they have 
low-frequency and non-stationary features and 
processing noise setting strong characters, neither 
time-demine nor frequency-domain based methods are 
suitable for analyzing these signals. This paper presents 
new algorithms with contribution of CS approach in 
mind, and SMS procedure based on Dynamic Thre-
sholding Approach (DTA) to establish a robust ul-
tra-low-power for normal and abnormal ECG signals. 
The CS theory indicate that s a small number of random 
linear measurements of sparse signals contain enough 
information to collect, process, transmit, and recover the 
original signal [5]. This approach emphasizes that the 
signal representing sparsity in any orthogonal basis can 
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be well reconstructed using ℓ1 norm minimization, while 
satisfying the Restricted Isomerty Property (RIP) condi-
tion for random measurement matrix Φ  and orthogonal 
Ψ  in any domain [6]. Our simulation results based on 
two proposed algorithms illustrate 25% decrease in sam-
pling- rate and a good level of quality for the degree of 
incoherence between the random measurement and spar-
sity matrices. The simulation results also confirm that the 
Binary Toeplitz Matrix (BTM) provides the best com-
pression performance with the highest energy efficiency 
for random sensing matrix. The structure of this paper is 
organized as follows: Section 2 gives an overview about 
CS theory in general and specifically for WBANs. Sec-
tion 3 proposes the new algorithm based on combination 
of CS theory, and SMS approach. The reminder of the 
paper is categorized in the following way: the simulation 
results are presented in Section 4. The conclusion is 
drawn in Section 5.  

2. Overview of Compressed Sensing 
The conventional sampling approaches have traditionally 
relied on the Shannon sampling theorem. This theory 
says a signal must be sampled at least twice its band-
width in order to be represented without error. The tradi-
tional approaches have two important drawbacks. First, 
they generate huge samples for many applications with 
large bandwidth that is not tolerated. Second, even for 
low signal bandwidths such as ECG signals, they pro-
duced a large amount of redundant digital samples. That 
is why it is desirable to reduce the number of acquired 
ECG samples by using advantages of the sparsity. The 
CS theory replaces the conventional sampling and 
reconstruction operation with a general random linear 
measurement process and an optimization scheme in 
order to recover original signal from a small number of 
random measurements. 

2.1. Basic Theorem 
The goal in the digital-CS theory as a new sampling 
scheme is to reduce the load of sampling-rate by de-
creasing the number of samples after the Analog to Digi-
tal Convertor (ADC) required to completely describe a 
signal by exploiting its compressibility [7]. An important 
aspect of CS theory is that the measurements are not 
point samples but more general linear functions of the 
signals. Any compressible or sparse signal 𝔻𝔻 in ℝN can 
be expressed as:  

1

N

i i
i

D C
=

= Ψ∑ .               (1) 

The compresses signal   can also be found as: 

1 1[ ] [ ] [ ]M M N ND× × ×= Φ
.         (2) 

Thus, the compressed signal is found as: 
 1 1 1[ ] [ ] [ ] [ ] [ ] [ ]M M N N N N M N NC C× × × × × ×= Φ Ψ = Θ . (3) 

Fortunately, [ ]Φ and [ ]Θ have two interesting and 
useful properties. First, they are incoherent with the basis 
[ ]Ψ . Second, they have the RIP with high probability 
where is suitable condition to recover the original signal in 
the receiver side [8]. Thus, CS scenario has two important 
steps. First step in CS offers a stable measurement matrix 
[ ]M N×
Φ  to ensure that the salient information in any 

compressible signal is not damaged by the dimensionality 
reduction from D ∈ℝN down to ℂ∈ℝM. In the second step, 
the CS theory offers a reconstruction algorithm under 
certain condition and enough accuracy to recover original 
signal D from the compressed signal. Therefore, we can 
exactly reconstruct the original signal D with high prob-
ability via 1 norm by solving the following convex op- 
timization problem (

1 nn
s s=∑ 

): 

 1min
N

s
s∈

 



 subject to S= ΦΨ

.     (4) 

There are two important conditions, which guarantee 
the correctness of this recovery. Firstly, the number of 
random linear measurements, the number of coefficients, 
and the number of non-zero coefficients must satisfy the 
following equation [9]:  

/ (log )M K C N≤ .          (5) 

Secondly, for any vector a of the original signal 
[ ]D matrix [ ]Φ must satisfy the following condition for 
some 0ε  :  

2 21 / 1a aε ε− ≤ Φ ≤ +           (6) 

where satisfies RIP property for the random dictionary 
matrix. In order to recover K-sparsity of the original sig-
nal, now we have M K×  system of linear equations, 
with M equations and K unknowns. It is possible to find 
out the K-sparsity of the original signal, because of 
M K≥ . 

2.2. Compressed Sensing in WBANs 
The CS theory says sparse or compressible signals such 
as ECG; signals can be well recovered using to minimize 
ℓ1 norm optimization, while satisfying the RIP condition 
for the random measurement matrix Ф and orthogonal 
basis ψ. Basically, the biomedical signals are sparse or 
near sparse. To verify this condition, we exploit a con-
ventional Fast Fourier transformation (FFT) to check 
signal sparsity. These signals have K non-zero coeffi-
cients and (N-K) zero coefficients with K N and can 
be well recovered using M projects or measurements 
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such as K≤ M<<N. As the result, the small number of 
non-zero coefficients is small; the CS theory can be ap-
plied to reduce the load of sampling. Figure 1 illustrates 
CS theory in WBANs.  
 

 
Figure 1. CS in WBANs. 

 
As it can be seen the biomedical signals are com-

pressed by wireless sensors. The collected compressed 
biomedical data are then transmitted wirelessly to Access 
Points (APs) at hospital, ambulance, and helicopter [10, 
11]. The APs recover compressed biomedical data for 
diagnostic and therapeutic purposes. Furthermore, the D 
data vector in WBANs is a sparse vector, because the GW 
needs to collect only M bits instead of N bits of data 
(M≈K– sparse) through the network. In the WBANs with 
N wireless sensor, sensor i  is acquiring a sample id  of 
the human body [9]. The final goal in WBANs for medical 
applications is to collect Data's vector D of N wireless 
sensors in a suitable basis Ψ= [Ψ1][Ψ2]…[ΨN] like: 

1

N

i i
i

D d
=

= Ψ∑ .               (7) 

CS suggests that, under certain conditions, instead of 
collecting data vector D, we can collect compressed vec-
tor [ ] [ ][ ]D= Φ  where Φ is (K×N) sensing matrix 
whose entries are i.i.d random variables. In non-CS sce-
nario a node is receiving N-1 packets and sends out N 
packets ((N-1) received packets plus its data) each packet 
corresponding to data sample from a node. In WBANs 
with CS theory the GW needs only to receive M 
(M≈K-sparse) packets [9]. In order to use CS, each node 
needs to know the value of Compressed Ratio (CR=N/K) 
that is constant and value of N [16]. The node i compute 
K=N/CR and generate K values Φji (1≤ j ≤k) and creates a 
vector Di [Φ1 i, Φ2 i… Φk i], where Di is its own data. Typ-
ically, node i would wait to receive from all its down-
stream neighbors. Each received packet carries its index 
from 1 to K, so that it can be added to the data already 
waiting in i with the same index (either locally produced 
or received from a neighbor). Then node i would send 
exactly K-Packets corresponding to the aggregated col-
umn vectors. Now the difference between CS and non-CS 
operation becomes clear [10]: CS operation requires each 
node to send exactly M packets irrespective of what it has 
received, and each node needs to know CR and N and then 
computes the value of (M≈K). The received vector in GW 

can be written as:  

1 1[ ] [ ] [ ]M M N ND× × ×= Φ .         (8) 

Consequently, the received vector in GW is a con-
densed representation of the sparse events and can be 
expressed like:  

1 11 1 1

1

N

M M MN N

D

D

Φ Φ     
     =     
     Φ Φ     

 

    

 

.   (9) 

Our simulation results show that by employing the CS 
the WBANs can achieve a higher transmission, a lower 
time delay and higher probability of success of data 
transmission. Therefore, a combination of CS theory to 
WBANs is an optimal solution for achieving robust 
WBAN with low sampling rate and power consumption. 
As it can be seen the biomedical signals are compressed 
by wireless sensors. The collected compressed biomedical 
data are then transmitted wirelessly to Access Points (APs) 
at hospital, ambulance, and helicopter [10, 11]. The APs 
recover compressed biomedical data for diagnostic and 
therapeutic purposes.  

3. Proposed Approach 
To validate the performance of the considered compres-
sion schemes three performance measurements are de-
fined in this section first. Then, the proposed algorithm 
for selecting the best fit for random sensing matrix is 
proposed.  

3.1. Performance Measure 
The Compression Ratio (CR), the Structural Similarity 
Index (SSI), and Percentage Root-mean-square Differ-
ence (PRD) are employed as performance measures in 
our approach. The CR is found as follows [12]: 

/ 100CR N M= × ,           (10) 
where M and N are the number of random linear mea-
surements and number of samples in ECG signals re-
spectively. Further, our simulation results indicate that 
satisfying quality of SR can be achieved when CR does 
not exceed of 35%. The SSI metric is defined as [13]:  

( / ) 100SSI D= × ,          (11) 

where D  and   are the original and recovered ECG 
signals respectively. This metric measure the similarity 
between the recovered and original ECG signals [14]. 
Higher SSI means better recovery quality. Our simulation 
results will show the proposed approach has this ability to 
achieve SSI with value close to 100%. The PRD is com-
puted as [14]: 
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2 2( / ) 100PRD D D= − ×     .    (12) 

The value of PRD shows the quality of reconstruction 
approach. The relationship between the measured PRD 
and diagnostic distortion is recognized on the weighted 
diagnostic data for ECG signals, which classifies the dif-
ferent values of PRD based on the signal quality obtained 
by a specialist. Table 1 illustrates the resulting different 
quality classes and corresponding PRD values. As de-
picted in Table 1, lower PRD means better recovery 
quality. 

 
Table 1. Different Quality Classes. 

PRD  Quality of recovery 
0 1%  Excellent 
1 2%  Very good 
2 0.85%  Good 

0.85%≥  Poor 

3.2. Proposed SMS Algorithm  
The random measurement matrix [ ]Φ is a key compo-
nent of CS theory. Two key features are needed for a 
successful implementation of CS approach: Sparsity of 
the biomedical signal and incoherence between the ran-
dom sensing matrix and the sparsity basis [15]. That is 
why; the random sensing matrix must exhibit a high de-
gree of incoherence with the sparsity basis[ ]Ψ . In this 
part, the new SMS procedure is presented to select the best 
fit for the random sensing matrix[ ]Φ . Herein, Bernoulli 
Toeplitz, Gaussian Circulant, and Binary Toeplitz ma-
trices are examined to find out the best fit for random 
sensing matrix [16]. The Toeplitz matrix is a matrix in 
which each descending diagonal from left to right is con-
stant. The random sensing matrix in Binary form is ex-
pressed as: 

 

0 1 1

1 0

0

1 1 0

n

n

n

− − +

−

−

Φ Φ Φ 
 Φ Φ Φ Φ =
 Φ
 
Φ Φ Φ 





  



       (13) 

The Circulant matrix is a special kind of Toepliz ma-
trix where each row vector is rotated on element to the 
right relative to the preceding row vector [17]. The ran-
dom sensing matrix in Circulant form is illustrated as: 

0 1 1

1 0 2

0

1 1 0

n

n

−

−

Φ Φ Φ 
 Φ Φ Φ Φ =
 Φ
 
Φ Φ Φ 





  



        (14) 

In the simulation part, CS approach is applied on the 
ECG data obtained from MIT-BIH database for three 

sensing matrix possibilities: (1) Bernoulli Toeplitz matrix, 
(2) Gaussion Circulant matrix, and (3) Binary Toeplitz 
matrix. Our simulation results will further confirm that the 
Binary Toeplitz matrix shows the best performance for the 
random sensing matrixΦ . Table 2 illustrates our new 
algorithm to select the best fit for random sensing ma-
trixΦ .  
 

Table 2. The best fit for sensing matrix. 

Algorithm: The Best Fit for Random Sensing Matrix Φ  
Enter: Raw ECG data  
1: Apply Dynamic Thresholding Approach to Raw ECG data 
2: Select Initial Square Matrix 
3: Apply Row Selection Scheme (select the first M rows as the initial 
sensing matrix Φ ) 
4: Compare with Binary Toeplitz Matrix 
5: If Φ is Binary Toeplitz Matrix Stop, the Algorithm is completed 
6: M=M+1 
7: Go to Step 4 
 
In the step 1 of the proposed algorithm, the DTA pro-

cedure is applied to the raw ECG data. The principal ob-
jective of the DTA is to vary the sparsity level of a raw 
ECG signal to convenient level [18]. In the simulation 
part, the convenient level is defined 98%. In the step 2, 
the initial square matrix is used for each of the sensing 
matrices in the experiments [19]. In the step 3, a Row 
Selection Scheme (RSS) is applied to reduce the number 
of rows from N to M [20]. Two RSSs approaches are 
compared: (1) select first M rows from the initial 
N N×  matrix, and (2) randomly select M rows from 
the initial N N×  matrix. The first RSS approach de-
monstrates better performance than the second RSS ap-
proach. So only the first RSS approach is utilized in the 
proposed algorithm. 

4. Simulation Results 
The following assumptions were made for simulation:  

► Experiments are carried out over a 10-minutes ECG 
signal from MIT-BIH database [21]. 

► One hundred repletion’s are averaged for our simu-
lation results. To validate the simulation results ECG 
signals from records 100,107,115 and 117 of MIT-BIH 
are investigated.  

►The mean of ECG blocks is rounded in the sliding 
window to the nearest multiple of 2L , where L is the 
BSBL level [22].  

►To simulate SNR for ECG signals the following eq-
uation is used [23].  

1020 log (0.01 )SNR PRD= − .        (15) 

►Three sensing matrix possibilities are examined for 
random sensing matrixΦ : (1) Bernoulli Toeplitz matrix, 
(2) Gaussian Circulant matrix, and (3) Binary Toeplitz 
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matrix [24]. 
►The SPARCO toolbox is used for testing sparse re-

construction algorithm. 
►The SPGL1 (Spectral Projected Gradient for 1 mi-

nimization) toolbox is used to determine Large-scale 
one-norm regularized least squares in the following equ-
ation: 

min 1
N

c

c∈

 



 subject to D= Φ .      (16) 

►To validate the simulation results, the BPBQ (Basis 
Pursuit DeQuantizer) toolbox is used for recovery of 
sparse signals from quantized random measurements to 
solve [25]: 

 
arg min 1

N

c

c∈

 



subject to pD−Φ   for 2p ≥ . (17) 

►The simulation results were obtained for an input 
signal of N=512 samples and a 12-bits resolution for the 
input signal and the measurement signal .  

►To simulate the SMS approach, the DTA framework 
is used to vary the sparsity level [26].  

Figure 2 illustrates the sampling-rate for random bi-
nary matrix with CS theory for different values of 
non-zero entries K for specific records of ECG signals. 
 

 
Figure 2. Sampling-rate.  

 
Based on the results of Figure 2 and suitability of the 

random binary matrix, the sampling rate can be reduced 
by 75% of NR without sacrificing the performance. Fig-
ure 3 shows simulation results on power consumption 
for random binary matrix with CS theory in terms of 
Compressed Ratio (CR) for specific records of ECG sig-
nals.  

As depicted in the Fig. 3, the power consumption can 
be reduced by 65% by employing CS theory. Table 3 
compares the simulation results on sampling rate and 
power consumption for random binary matrix with CS 
theory. 

 
Figure 3. The power consumption. 

 
Table 3. Comparing SR and PC. 

N in ECG CR SR PC 

1024 10.24 25%*(NR) 30%*(PC in non-CS) 

2048 20.48 28%*(NR) 35%*(PC in non-CS) 

3074 30.74 32%*(NR) 40%*(PC in non-CS) 

 
Table 2 indicates that satisfying quality on sampling 

rate and power consumption can be achieved when CR 
does not exceed of 30. 

5. Future Work 
We have simulated the benefit of CS to wireless ECG 
systems for some recodes of ECG signals. Our future 
work involves developing the CS theory to other records 
of ECG signal, including abnormal records for wireless 
ECG systems. 

6. Conclusions 
The ECG signal is widely used in WBANs because it is a 
noninvasive way to provide medical diagnosis of heart 
diseases. This paper has presented new algorithm with a 
contribution of CS approach, and SMS procedure based 
on DTA aapproach to establish a robust ultra-low-power 
for normal and abnormal ECG signals. The works by 
Alvarado [2] and Baheti [14] focus only CS theory for 
normal ECG signal with only random Gaussian matrix. 
While the present study offers a new algorithm to select 
the best fit for random sensing matrix of the CS approach 
for normal and abnormal ECG signals. Our simulation 
results validate the suitability of a new algorithm for a 
real-time energy-efficient ECG compression on re-
source-constrained in WBANs. The simulation results 
also confirm that the Binary Toeplitz matrix provides the 
best compression performance with the highest energy 
efficiency for random sensing matrix. Advanced ECG 



Robust Low-Power Algorithm for Random Sensing Matrix for Wireless  
ECG Systems Based on Low Sampling-Rate Approach 

Copyright © 2013 SciRes.                                                                                 JSIP 

130 

systems based on CS will be able to deliver healthcare 
not only to patients in hospital; but also in their homes. 
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