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ABSTRACT 

In this paper, we proposed a method for semi-rigid changed 3D point clouds registration. We first segment the point 
clouds into individual segments and then the alignment energy costs of each segment are calculated. The rough initial 
transformation is estimated by minimizing the energy cost using integer programming. The final registration results are 
obtained by rigid alignments of separated corresponded segments. Experimental result with simulated point clouds 
demonstrate that the concept of semi-rigid registration works well.  
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1. Introduction 

In this paper, we propose a method for semi-rigid regis- 
tration. Rigid and non-rigid 3D registration methods have 
been widely studied for many useful applications such as 
3D shape reconstruction and visualization [1,4,5,7], 
medical image analysis [9], robot navigation [19,21] and 
augmented reality [25]. Registration of 3D data is the 
process to align two sets of 3D points, which are called 
point clouds. This process is useful in many situations, 
for example, for stitching them together to obtain a larger 
point cloud which covers wider area, or for merging 
them to fill holes or cracks and obtain complete 3D mod- 
els of objects or scenes.  

Rigid registration is the process to align two 3D point 
clouds of a rigid object or a static scene: the target is as- 
sumed to be static and there is no change. Hence rigid 
registration methods find exactly the same overlapping 
part by estimating a rigid transformation between them. 
This is reasonable in cases that targets are stones, houses 
or furniture [15]. In contrast, non-rigid registration 
methods deal with non-rigid objects: the target shape is 
changed and hence the transformation is no longer rigid. 
Typical target objects of non-rigid registration include 
human organs [26], skin [2,27], and clothes [3].  

However, there is another situation, we call it semi- 
rigid, which more frequently happens in real situations: 
the target scene has several rigid objects that have moved 
or changed position and orientation. Consider an office, 
for example, where desks and chairs exist. These are 
rigid objects but might be moved after the 3D scene has 
been captured as a point cloud. In this case, rigid meth- 
ods would not work well because the scene has been 

changed, and also, non-rigid methods could not capture 
the differences as expected because the scene is made of 
rigid objects. It is very important to deal with these kinds 
of scene changes for navigating robots in the environ- 
ments [6] or for surveillance of outdoor scenes for pre- 
venting collapse in case of disaster [8].   

In this paper, we propose a semi-rigid registration 
method to align two 3D point clouds of the same scene, 
which contains rigid objects, and some of them are not in 
the same position or orientation. Our approach first di- 
vides a point cloud into many rigid segments. Then cor- 
respondences between segments of two point clouds are 
calculated based on energy minimization by using integer 
programming. These correspondences provide an initial 
rigid transformation between two point clouds as a whole. 
Then transformations between each corresponding seg- 
ments are estimated separately.  

The rest of the paper is organized as follows. Related 
work on registration is reviewed in section 2. In section 3, 
we will introduce the proposed method. Experimental 
results are given in section 4.  

2. Related Work 

Rigid registration generally computes correspondences 
and then finds the transformation pose. Besl et al. [12] 
proposed a method called Iterative Closest Point (ICP) 
which is the most widely used method to align two 3D 
point clouds. ICP iterates two steps: in each iteration, 
closest points are selected, and a rigid transformation 
between them is estimated. This estimation is usually 
called the orthogonal Procrustes problem [13].  

An alternative for registration is to use non-rigid  
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Figure 1. Segmentation result for small blocks. (Top) Some 
images used for 3D reconstruction. (Bottom) Segments of 
the point cloud visualized in different colors. Note that the 
ground plane is excluded. 
 
methods. Sclaroff et al. [14] proposed a method to com- 
pute the correspondences in 2D images or 3D point 
clouds by using modal analysis. However, it requires 
complete shapes and a discretization suitable for finite 
element analysis. Also, some researches [10,11,15,16,17] 
focused on deformation model to determine deformation 
assumptions of a 3D shape. Obviously, deformation is 
suitable when our research target is semi-rigidly changed 
scenes. 

3. Proposed Semi-Rigid Registration Method 

In this section, we describe the details of the proposed 
method. Since our main focus is to establish correspon- 
dences between 3D segments, we first introduce the 
segmentation and pose estimation steps briefly. 

3.1. Segmentation 

The first step is to segment a point cloud into many rigid 
segments. To this end, we use the distances between the 
neighboring 3D points as well as the angle of the normal 
vectors of those points in order to cluster the points into 
different clusters (or rigid segments). Also we detect and 
segment the ground plane [18] in order to decide whether 
the segment is an object which is potentially able to be 
removed. Figure 1 shows a typical result of our simple 

dataset of some small blocks. In this case, the blocks are 
well separated and each segment can be seen as a rigid 
object in the scene.  

3.2. Segments Correspondence 

The next step is to establish correspondences between the 
3D segments of the two point clouds. Our method is 
based on minimizing energies which represent the 
similarity between 3D segments. In addition to energies 
between two 3D segments, we define energies between 
two pairs of 3D segments too: if correspondences are 
correct, a pair of 3D segments in one point cloud is 
similar to another pair in the other point cloud. In the 
following sections, we explain the proposed energy 
method in the same manner as introduced by [23].   

3.3. Formulation 

Suppose that we have two point clouds P andQ . The 
point cloud is segmented into segments as P P {P }  
where 1,2, , M    and cloud {Q Q }  where 

1,2, , .N  
R

 We express each correspondence be- 
tween the segments as [1,2, , M] [1,2, , N]   . 

We use a binary valued vector {0,1}MNx  to repre- 
sent correspondences of all of the segments. Each corre- 
spondence is denoted by , an index of an entry 

a

a R
x  in the vector . We say a correspondence a is ac- 
tive if 

x
1ax  . 

In order to make sure that each segment only has one 
(or no) correspondence, we use the following constraints: 

(i, j),i 1,2, ,M

1a
a

x
 

 


and
(i, j), 1,2, ,

1a
a j N

x
 

 


    (1) 

Then we define an energy function  E x  to repre- 
sent the relations between the individual segments which 
will be introduced in the next section. In our energy 
function, we define the energy terms. 

3.4. Energies 

The first term 1  is the similarity in terms of 3D key- 
point correspondences; in other words, how many of the 
3D keypoints in 

E

P  have corresponding points in Q . 
A 3D keypoint is a representative point in a 3D segment, 
and it has a descriptor which can be used to find its cor- 
responding point [8]. If P  and Q  are similar to 
each other, many 3D keypoints in P  have corre- 
sponding points in Q . Let C  be the number of 
correspondences between P  and Q . Then the total 
number of correspondences of 3D keypoints in P  is  

1

N

C
 
 . The value 

1

C
N


 
  becomes larger when P   

and Q  actually correspond to each other. Therefore, 
we use the reciprocal of the ratio as energy : 1E
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 
11

1
1

a
a R

E C C 




 

  
      

 x x .      (2) 

The second term 2 uses similarity between the de-
scriptors of the corresponding 3D keypoints. While the 
first term finds how many keypoints are corresponding 
between

E

P andQ , this term evaluates whether the de-
scriptors of those corresponding points are really similar 
to each other. We use the sum of distances between the 
corresponding descriptors as follows: 

   2 1 , a
a R

E D P Q 


 x x ,          (3) 

where 1 is the distances between the descriptors of 3D 
keypoints of

D
P andQ . 

The third term 3 uses the rigid registration error be- 
tween each pair of 3D segments. If the correspondences 
are correct, a pair of 3D segments must have its corre- 
sponding pair. In other words, two 3D segments 1

E

P  
and 2P  in  correspond to the segments 1P Q  and 

2Q  in  We evaluate this pair of correspondences 
by using the residual error after rigid registration. Al-
though we have assumed that the scene is semi-rigid, 
nevertheless, it is reasonable to assume that a pair of 
segments is rigid. We define as follows: 

.Q

3E

   3 2 1 2 1
( 1, 1) ,
( 2, 2)

, ; , a b
a R
b R

2E D P P Q Q x x   
 
 

 
 

 x   (4) 

where is the rigid registration error from ICP. 2
The last term

4E imposes a penalty when there are no 
correspondences. If only the three energy terms above 
are used, a trivial solution will be obtained: all elements 
in are zero and the energy becomes 0. This is obviously 
not the case we want to estimate. Therefore, to avoid this 
case, we add the following term: 

D

x

   4 1 a
a R

E x


 x ,          (5) 

where is a penalty constant. If many ax are zero, i.e. 
many segments do not find their corresponding segment, 
this term becomes larger and hence such a solution will 
be less important. 

By combining Equations (2)-(5), we get the finial en- 
ergy function. 

         1 2 3 4+ + +E E E E Ex x x x x .    6) 

This energy can be written as follow: 

,
,

min ( ) a a a b a b
a R a b R

E E x E x x
 

  x ,     (7) 

subject to the constraints in Eq. (1) where variables 

ax are binaries. This optimization problem is called a 0 - 
1 integer programming [24]. We used a dual decomposi- 

tion approach [23] to solve this integer programming 
problem. 

Once the solution is obtained, we can find an initial 
rigid transformation between two point clouds andQ . 
Of course we have assumed that the scene is semi-rigid, 
so this rigid transformation is not the final solution. 

x
P

3.5. Rigid Registration for Each Segment 

The final step performs rigid registration between 
corresponding 3D segments. After the initial rigid 
registration between the two point clouds, the 
corresponding 3D segments are now close to each other 
like in the example shown in Figure 3. In this step, each 
3D segment P in the first point cloud is registered to 
its counterpartQ

P
 in the other point cloud Here, the 

correspondence
.Q

( , )a   is active ( a ) in the 
solution obtained by solving the 0-1 integer 
programming explained above.  

1x

4. Experimental Results 

We demonstrate by simulation that the concept of the 
proposed method effectively works on 3D point clouds.   
The dataset was generated from artificial small blocks. 
After the generation of one point cloud, one block was 
moved, and then another point cloud was reconstructed. 
Two point clouds with 15,804 and 25,178 points are 
shown in Figure 2 which are computed by 3D recon- 
struction with the Bundler [20] followed by Patch-based 
Multi-view Stereo [22]. The rough initial transformation 
calculated based on the correspondences in section 3.2 is 
shown in Figure 3. The semi-rigid registration result 
shown in Figure 4 shows that the proposed method can 
estimate accurate transformation for each block. In con-
trast, the result when using ICP directly shown in Figure 
5 was not successful. The energies between the two point 
clouds are shown in Figure 6. The energy of our method 
is much smaller than that of ICP, which clearly shows 
that the proposed semi-rigid registration outperforms the 
rigid ICP.   
 

 

Figure 2. Experiment point clouds. Red block is moved 
between two point clouds. 
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Figure 3. Rough initial alignment of two point clouds. 
 

 

Figure 4. Semi-registration result. 
 

 

Figure 5. Failure example when using ICP. 
 

 

Figure 6. Energies between two point clouds over 200 
iterations.  

5. Conclusions 

In this paper, we have proposed a method for registration 
of semi-rigid scenes of 3D point clouds. Experimental 
results show that our method works well for 3D point 
cloud datasets. In the future work, we will reduce the 
computation time due to the repetition of energy terms. 
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