
Wireless Sensor Network, 2011, 3, 24-37 
doi:10.4236/wsn.2011.31004 Published Online January 2011 (http://www.SciRP.org/journal/wsn) 

Copyright © 2011 SciRes.                                                                                 WSN 

Collaborative Spectrum Sensing for Cognitive Radio: 
Diversity Combining Approach 

Oscar Filio-Rodriguez1, V. Kontorovich2, Serguei Primak1, F. Ramos-Alarcon2 
1Department of Electrical and Computing Engineering, University of Western Ontario, London, Canada 

2Electrical Engineering Department, Research and Advanced Studies Center, Mexico City, Mexico. 
E-mail: valeri@cinvestav.mx 

Received August 5, 2010; revised September 2, 2010; accepted January 15, 2011 

Abstract 
 
In this paper it is shown that cyclostationary spectrum sensing for Cognitive Radio networks, applying mul-
tiple cyclic frequencies for single user detection can be interpreted (with some assumptions) in terms of op-
timal incoherent diversity addition for “virtual diversity branches” or SIMO radar. This approach allows 
proposing, by analogy to diversity combining, suboptimal algorithms which can provide near optimal cha-
racteristics for the Neyman-Pearson Test (NPT) for single user detection. The analysis is based on the Gene-
ralized Gaussian (Klovsky-Middleton) Channel Model, which allows obtaining the NPT noise immunity 
characteristics: probability of misdetection error (PM) and probability of false alarm (Pfa) or Receiver Opera-
tional Characteristics (ROC) in the most general way. Some quasi-optimum algorithms such as energetic re-
ceiver and selection addition algorithm are analyzed and their comparison with the noise immunity proper-
ties (ROC) of the optimum approach is provided as well. Finally, the diversity combining approach is ap-
plied for the collaborative spectrum sensing and censoring. It is shown how the diversity addition principles 
are applied for distributed detection algorithms, called hereafter as SIMO radar or distributed SIMO radar, 
implementing Majority Addition (MA) approach and Weighted Majority Addition (WMA) principle. 
 
Keywords: Spectrum Sensing, Cognitive Radio, Diversity Combining, Collaborative Sensing, Majority 

Diversity Addition, Sequential Analysis 

1. Introduction 
 
Spectrum sensing is one of the most important elements 
for the functioning of Cognitive Radio (CR) networks. 

As it is well known [1], CR networks are made up of 
primary users (PU) which have “legal” use of certain 
frequency bands and secondary or cognitive users (CU), 
located in different space–distributed cells, which share 
the same frequencies as the PU in a part-time fashion. 

The CU produce undesired interferences to the PU and 
so they are allowed to share the same spectrum with the PU 
if and only if the Quality of Service (QoS) degradation 
provoked to the PU does not reach a pre-established level. 

The cognitive users have to make first a spectrum 
sensing in order to determine whether the primary users 
are “on” or “off”1 and then “adapt” their transmission rate 
and transmission power in order to avoid producing 

harmful interferences to the PU or take advantage of the 
“spectrum holes” free of PU [1,2], etc. 

The common approaches are based on the Interference 
Temperature (IT) and power spectrum estimations, ener-
gy detection and cyclostationary feature detection (see 
[1-4] and the references therein). The last one was first 
proposed in [5] and generalized for multiple cyclic fre-
quencies at [4]. 

It is worth mentioning here that the cyclostationarity, 
as phenomenon, is not a recent development at all (see for 
example [6]) but effective tests for indication of second 
order cyclostationarity using a Neyman-Pearson type test 
was proposed not long ago. Its natural generalization for 
multiple cyclic frequencies was recently proposed for PU 
identification in CR networks [4]. 

As it was already mentioned in [4,5] the cyclostatio-
narity is present, practically, in many communication 
signals: multiple cyclic frequencies may be related to 
symbol rate, guard periods (as in the case of OFDM sys-
tems), etc. 

1Actually it is not a necessary condition for CU to have access to the
frequencies allocated to PU [2]. 



O. FILIO-RODRIGUEZ  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 WSN 

25

In the following it will be shown that single-user detec-
tion algorithms (in the form of expected value estimation 
of the cyclic autocorrelation) can be interpreted as an 
specific form of the mixed frequency-delay incoherent 
“diversity combining” block with the number of virtual 
“branches” equal to the product numbers of cyclic fre-
quencies and time delays; it can be also called as a SIMO 
radar. This is the main difference between this paper and 
the material presented in [4,5]. 

Based on practical reasons, it is possible to assume 
that these “branches” suffer from fading which in the 
general case can be modeled with the help of generalized 
Gaussian statistics, or Klovsky-Middleton model, (see 
for example [7]). 

Moreover, in the following, depending on the frequen-
cy and delay diversity parameters, fading in these 
branches or antennas is assumed as non-homogeneous, 
homogeneous and totally correlated (the latter was consi-
dered at [4] for flat Rayleigh fading) or statistically inde-
pendent. Certainly those last two marginal cases are as-
sumed in the following only in order to obtain tractable 
analytical results; generalized analysis for correlated 
branches, based on the statistical description of Gaussian 
quadratic forms (see [8,9], etc.) will be considered else-
where later on, but one important special case of corre-
lated branches is considered in the following as well. 

It is worth mentioning that the concept of “diversity 
approach” for multiple cyclic detection is useful not only 
for effective development of quasi-optimal approaches, 
but also allows to consider the necessary “trade-off” be-
tween the number of delays and cyclic frequencies for the 
detection procedure and the statistical dependency of the 
corresponding “diversity branches” in order to fulfill the 
noise immunity or “Receiver Operating Characteristics” 
(ROC) requirements. 

Moreover, in the following, it will be shown that the 
“diversity” concept for spectrum sensing is rather con-
structive for the analysis of collaborative sensing as well 
(see [9], etc.). In [9] the collaboration is tackled in a ra-
ther different way, than in the following. For the latter the 
set of secondary users (SU) being collaborating between 
themselves or operating through a Fusion Center (FC) can 
be interpreted as virtual branches (antennas) of the distri-
buted detection system, which can apply NPT detection 
technique or Sequential Analysis methods. 

This distributed system is nothing else as a distributed 
SIMO radar, where virtual receiving branches are af-
fected by statistically independent flat fading (the above 
mentioned incoherent combining algorithm at SU is also 
working as an optimum SIMO radar, but not in a distri-
buted fashion). See also some examples at [10,11], etc. 

for calculation of its noise immunity properties. 
Regularly proposed counting rules [2,12-14] for oper-

ating at FC can be also interpreted as a special case of 
quasi-optimum incoherent diversity addition (see MA 
algorithm in the following) and can be modified in order 
to approach its ROC properties to the optimum SIMO 
radar case (see the WMA algorithm in the following). 

In this paper only the novel theoretical material, which 
is the kernel of a deeper and original insight into the 
Spectrum Sensing problem, is presented. Some simula-
tions related to this problem have been included in [15]; 
however, comprehensive and thorough simulations are 
reserved for another work of the authors (a book chapter 
already in process for publication). 

The paper is organized as follows. Section 2 briefly 
presents some fundamental results concerned to the Ge-
neralized Gaussian (GG) channel modeling. Section 3 is 
totally dedicated to single user multiple cyclic frequency 
detection and its relation to incoherent optimum diversity 
combining. In section 4 the noise immunity of the NPT 
for the GG channel is analyzed. In Section 5 some subop-
timal algorithms for multiple frequency cyclostationary 
sensing are considered. Here some discussion of the re-
sults is presented as well. Section 6 is totally dedicated to 
collaborative sensing issues. Conclusions will be pre-
sented at Section 7. 
 
2. Generalized Gaussian (Klovsky-Middleton) 

Channel Model 
 
Basically most of the existing fading channel models are 
based on the concept of the module and phase of the ran-
dom vector with Gaussian Probability Density Functions 
(PDF) for orthogonal statistically independent quadrature 
components “x” and “y”2, i.e., [7,8]: 
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(2) 
From (2) it is possible to obtain various representations 

for W(), which actually depend on four parameters: 
 ,x ym m  and  22 , yx  , [7,8]. For this reason in the 
following the term “four parametric distribution” is used, 
and the rest of this section corresponds to [8]. 

2Those issues were tackled comprehensively in the 60th-70th of the last 
century by many authors. Here we would like to distinguish D. Klovsky
[8], D. Middleton [16], P. Beckman [17], etc. Details can be found at [7].
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Hereafter the following two equivalent forms for the 
four-parametric distribution W()3 will be used: 
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where I0(z) is the modified Bessel function of order zero 
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Other forms (see for example [7]) follow from the way 
the integrand in (2) is calculated, but they are not applied 
in the following. 

Beckman, Hoyt, Rice, Rayleigh and truncated Gaus-
sian distributions follow from (3) directly. 

Let us introduce the new parameters: 
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Beckman distribution follows from (3) when my = 0, 0 
= xm , while Hoyt PDF appears, when 22

yx    0 = 
mx = my = 0. Rayleigh PDF follows when 0 = 0 and mx = 
my = 0; truncated Gaussian when additionally to the latter 

02 x . 
That is why (3) is named as Generalized Gaussian 

model. Next it is easy to find the parameter “m” for 
equivalent Nakagami distribution [19]: 
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It is worth mentioning here that Nakagami distribution 
is only an approximation for the four-parameter case, but 
mainly it adequately represents the “dynamics” of the 
variation of the four-parameter PDF functional form. 

3. Single User Multiple Cyclic Frequency 
Detection 

 
The cyclostationary (CL) properties of the communica-
tion signals have been already widely investigated and 
applied (see [4,5,20] etc.). 

For the case of PU the signal shapes are known a- pri-
ori, and so their cyclic frequencies of interest are known 
as well. Following here the material of [4], let us intro-
duce the set  P

nA 1  for cyclic frequencies of interest 

and let 



P

n
nNN

1

 be the numbers of integers for time 

delays  for the autocovariance function calculus for each 
cyclic frequency from A (here P denotes the number of 
cyclic frequencies). 

Thus, the estimation of the autocovariance function is 
[4]: 

       



M

l
xx ljlxlx

M
R

1
* 2exp*

1
,ˆ  , 

(5) 
where the time delay  is an integer and is fixed, the cyc-
lic frequency  is fixed as well, M is the number of ob-
servations at (5) and x(l) is an input complex sample, with 
x*(l) being its complex conjugate. 

Representing the complex exponent in (5) in a trigo-
nometric form and assuming that x(l) is a sample of the 
ergodic stochastic process, one can easily see that when 
M 1 or the time of analysis T is much more than one, 
the estimations *

ˆ
xxR  are nothing else but estimations of 

the complex Fourier coefficients for fixed  and (see 
also [6]). 

If one forms a complex vector of (5) for different  
and , the Generalized Maximum Likelihood Ratio 
(GMLR) for its estimation (assuming asymptotic Gaus-
sianity of the observation) is well known (see for exam-
ple [4,8,21]): 
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where *x̂xr  is a complex vector of estimations of the 
Fourier coefficients (F-Coefficients); ̂  is a 2N × 2N 
covariance matrix of *x̂xr  (in the non-asymptotic case 
generally those coefficients are correlated), 
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Let us define an estimation of each “j” complex F- coeffi-
cient as 

jjj VVV
~ˆ  ,                (8) 

where jj VV
~

,  are real and imaginary parts of jV̂ ; here it 
is assumed that in the estimation process necessarily takes 
place n(t) – the additive white Gaussian noise (AWGN) 
with intensity N0 equal for all j. 

3Taking into account, that in this paper the incoherent diversity combining
will be applied, the PDF of the phase  is not presented hereafter. 
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It is well known that “true” F-Coefficients are not cor-
related, but their estimations for finite “M” and corrupted 
by the noise are not correlated only asymptotically, when 
M or T (or both) are much more than one. With this as-
sumption, applied systematically in the following, (6) can 
be significantly simplified taking into account the total 
Gaussianity of the terms in (8) [8], (see also [4]): 
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Finally the left side in (6) can be represented in the way: 
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the average power of each F-coefficient (fading is not 
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One can see that the algorithms (8), (8a) are nothing 
else but an optimum incoherent quadratic diversity com- 

bining of Q total virtual “branches”, where 
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weighting coefficients for each branch, generally related 
to inhomogeneous conditions for combining. 

Note that quadratic combining to obtain the NPT can 
be presented in the way: 
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where 0 is a detection threshold. 
Formula (9) is not only a formal analogy with diversity 

addition or SIMO radar test: it is an essential reflection of 
the analogy between the autocovariance estimation and 
diversity combining of statistically independent data (see 
also [22]). 

So, in absence of fading, all branches are asymptoti-
cally statistically independent. 

In presence of fading 2
îV  can be statistically inde-

pendent as well, but also might be totally correlated in 
scenarios of flat fading both in frequency and time do-
mains. Both cases will be considered while noise immun-
ity of this single user multiple cyclic frequency algorithm 
will be analyzed (see next section). 
 
4. Noise Immunity of the Algorithm (9) in 

Generalized Gaussian Channels 
 
It is well known [23] that the Neyman-Pearson Test (NPT) 

in terms of hypothesis testing, can be formulated as fol-
lowing: 
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here 2
i  are “true” F-coefficients, n(t) – white Gaussian 

noise with intensity N0. 
For simplicity, in the following let us suppose that all 
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only the routine form for quadratic combining4: 
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As it is well known, the NPT is characterized by Pfa 
and PM which are respectively the probability of false 
alarm and the probability of misdetection error [23]. 

In absence of fading, the “z” is formed by squares of 
the normally distributed components and its PDF for dif-
ferent hypothesis can be defined in the way [8,23]: 
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2ˆ  is the expectation of the sum of 2
îV  

and is a parameter of the noncentral chi-square distribu-
tion [11]. 

It is worth to notice that in presence of fading, the 
functional forms for these distributions will differ de-
pending on the scenarios for GG channel model and will 
be considered in the following. 
 
4.1. Statistically Independent Virtual Branches 

with Flat Generalized Gaussian Fading in 
Each Branch 
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their means are not equal and their variances are arbitrary. 
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the routine procedure for calculus of the noise immunity 
can be applied [7,8,23], etc. 4In the following the module sign will be omitted. 
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Particularly for hypothesis H0: 
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is taken into account that for the frequency diversity case 
there are P out of Q virtual branches and the transmitted 
power has to be divided between them [24]. 

From (12) and (13) it follows that for both hypothesis 
the PDF W(z) is always a non-central chi-square distribu-
tion. 
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For this case, Pfa is well known [23]: 
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Fixing the level of Pfa one can find 0 and once more, 
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Now let us repeat the same analysis as before, but for 
Nakagami fading channels (see Section 5). Assuming 
non-correlated homogeneous conditions for the fading in 
all “virtual branches” one can get: 
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where  can be found from (14) and “m” from (4). 
 
4.2. Totally Dependent Virtual Branches (Flat 

Fading) in GG Channel 
 
In this case the fading processes at all the virtual branches 
are totally correlated. Obviously it means that the result- 

ing SNR after combining is: 



Q

i
ih

P
h

1

2
2

2 1
 ; thus the 

problem can be transferred to the quadrature addition 
algorithm for one equivalent branch, i.e. without diversity 
but, with the GG model of flat fading: 

0
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. Here formulas (12) 

and (13) are valid but for conditions of single channel, i.e., 
without index “i”. 

Then Qeqv 1 and from (14) 
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 (19) 

Dependence between Pfa and PM is usually called as 
“Receiver Operational Characteristic-ROC” and they are 
presented at Figures 1-3, where the continuous lines cor-
respond to case a and the dotted lines to case b. 

Comparison of (19) and (15) deserves some comments. 
1) When in both scenarios 2

ih  are equal and Pfa is 
fixed, then PM from (19) is much more than PM from (15). 
The latter can be explained by the diversity effect at (19), 
see also [8,25]. 

2) Then it is reasonable to choose a small set of delays 
and multiple frequencies (Q  5 [10,25]) in order to pro-
vide (if the channel conditions allow it) statistically inde- 
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Figure 1. ROC, continuous (15), dotted (19). 

 

 
Figure 2. ROC (15) and (19) for another set of parameters. 

 

 
Figure 3. ROC (15) and (19) for a different set of parameters. 
 
pendent fading in those virtual branches, i.e. it is rea-
sonable to “sacrifice” the numbers of P and N by big-
ger intervals between    and    so as to artifi-

cially create independent fading in the frequency and 
delay domains, which certainly leads to better noise 
immunity after “diversity combining”. So, appropriate 
choice of cyclostationary features Q = NP of the de-
sired signals of PU can significantly improve their 
ROC properties. 
 
4.3. One Special Case of Covariance Matrix for 

Correlated Branches at Quadratic Incohe-
rent Addition Algorithm 

 
Let us consider in the following one special case of the 
covariance matrix for quadrature components  Q

lxx 1  
and  Q

lyy 1 : assume that across the branches all xl or yl 
Gaussian components are correlated with coefficients Rx 
or Ry and there is no cross-correlation at all between xl 
and yl Gaussian components. One can see, that this as-
sumption restricts (in general) the type of the covariance 
matrix of the GG channel model but might be useful for 
the first step examination of the influence of the cova-
riance between virtual (but not only virtual!) branches at 
the noise immunity characteristics of the SU: consider, 
for example, SU which applies multi-antenna receiving 
system, etc. 

It is well known that for each pair of x or y Gaussian 
variables, by the well known angle rotation linear trans-
form it is possible to obtain a new set of statistically in-
dependent Gaussian variables: rotating of the coordinate 
system (linear transform) by the angle 
















2
2

2
1

212arctan


 R , where R is a correlation co- 

efficient; 2
1 , 2

2 -are variances of two correlated Gaus-
sian quadrature components, while new Gaussian va-
riables are statistically independent [17,11]. 

In order to provide tractable analytical results, in the 
following only the case Q = 2 for the algorithm (11) will 
be considered. 

Then noise immunity analysis can be done in the same 
way as it was done at IIIa, but the means and variances 
for hypothesis H0 and H1 have to be calculated by the 
formulas: 
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where 2
1 , 2

2  correspond to the variances of the qua-
drature components, calculated for different hypothesis 
H0 and H1 (see (12), (13)); 2

,III  are new variances of the 
quadrature components after angle rotation (for each two 
branches). 

Moreover, assuming in the following for simplicity Rx 

= Ry = R, in the same way as before one gets: 
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where m1, m2 are expectations of the initial quadrature 
components (see also (12),(13) ); mI, mII are new means 
after angle rotation. 

Now all the set of these parameters can be considered as 
new parameters of the GG model with the statistically in-
dependent branches. So the noise immunity (ROC) can be 
calculated in the same way as in IIIa (see formulas (14), 
(15)). This calculation, (in general) is rather cumbersome, 
because the new parameters of the GG model come from 
rather complex expressions (see above). 

Therefore assuming that Pfa and PM. are much less than 
one as it was done earlier, it is possible to apply the 
asymptotic calculus (see [10,11]). 

Particularly, for the hypothesis H0 (see IIIa) all means 
will be close to zero and all variances will be equal to 
(1-R2). So Pfa can be calculated by (14) but with the new 
threshold ′ = 0/(1-R2), depending on R, but the method 
of calculus is the same as in IIIa. 

Then for the asymptotic case PM << 1, one can get: 
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This formula is for the GG channel model and is rather 
general in the sense that it does not provide a “transparent 
picture” about the dependence of PM, for example, on R 
etc; it requires implicitly numerical calculus. 

Let us consider a special case:  222

yxx IIII   
22  

yII ; next, introducing 222
0 yxI II mm   and 

222
0 yxII IIII mm   one can get: 
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For this special case it can be found that: 

 

   

1 2

1 2

1 2

1 2

2 2 2
0 02

2 2
0 02 2 2

0 0 2 2 2
0 0

2 1

4
1 1 (1 )

h h R

h h
h h R

h h





 
    
  

 

when 
2

2
0

2


I  and 
2

2
0

2


II  are much less than one (strong 

fading), then: 
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The last formula shows that, losses related to correla-
tion between diversity branches depend mainly on 

 2

1

1 R
; this result was in some sense predictable (see [7, 

8] for example). 
When the fading follows the truncated Gaussian PDF then: 
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when PM   1, then: 
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One can see that losses once more depend on 
 2

1

1 R
 

as well. 
The same character of losses can be found for signifi-

cantly Rician character of the GG model; so, it can be 
considered as a rather “universal” dependence of losses 
on the correlation coefficient value. 

Of course changes of the threshold, which depends on 
“R”, influence the character of the dependence of ROC on  
the correlation properties of the GG model in a nonlinear 
way, but this will be discussed elsewhere in the future. 

Concluding the material of this section, it is worth to 
mention, that from the theory of diversity combining it is 
well known [7,8] that correlation between branches has 
influence, mainly, on the noise immunity characteristics 
(ROC, in our case) when resulting SNR is rather high, i.e. 
PM is much less than one. 
 
5. Suboptimal Algorithms and Their Noise 

Immunity 
 

The first suboptimal algorithm considered hereafter will 
be an energetic receiver where the desired signal is repre- 

sented in the way: 



B

i
ii ttx

1

)()(  ; here B
i t 1)}({ -are 

orthonormal functions. 
According to [22,23] the corresponding algorithm 

(NPT) can be represented in the way: 
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  , i.e. =  *x̂xr n t ,  

where B is the number of orthonormal functions B
i t 1)}({  

applied for the expansion of the desired signal x(t); the 
received signal is       z t x t n t  , T is the time of 
analysis. 

Now, for the representation of  x t  and  n t  let us 
apply the F-basis in the same way as it was done at [10], 
(see also [22] and references therein). 

Then: 
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where 0 2 T  , B = 2FT, 112 



F

kk
F  – fre- 

quency bandwidth, k2, k1 are upper and lower indexes 
taken into account here for the F-series expansion. 

Then: 
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As all  ka ,  kb ,  k  and  k  are Gaussian 
distributed coefficients, the left side in (22) has central or 
non-central 2

2B  distributions respectively. Defining those 
left sides in (22) as 1 and 2 (see [10,22] and Section 4 
one has to apply: 
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  is the average power of x(t) 

and the parameter 
2
0TN

D  . 

Then the threshold 0 can be easily found from (14) 
where Q B  and Pfa are fixed. 

The detection probability PM is: 
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where 1,,0 20 





  Bh

D
F  is the Cumulative Distri-

bution Function (CDF) of the non-central 2
2B  PDF. 

The upper bound of PM for the GG channel model with 
flat fading is known from [8]: 

 
  

 
2 2

0

2
1

1 1 cos1
exp

2 1 1
M

qq h
P

C q h

 



 

 

     
  

 

  
 

2 2
01 1 sin

1

q

h

 



   
 

          (25) 

where 2 2
2

0

2E
h

P N
 ,  

and 
  

2

1 2
2 1

1 1

h
C

q







 

 
 

An exact tractable analytical expression of PM for the 
GG model is not available. 

In absence of fading it is possible to obtain an analyti-
cal result in the following way. 

First, representing the Bessel function as in [18] in the 
way: 
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then the PM from (24) is: 
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where B = 2F,  (,x) – is the lower incomplete gamma 
function. 

Analysis of (27) shows that influence of B can be sig-
nificant and it can be shown that for fixed Pfa or D

0 , 
while B grows, PM also grows. To the best of our know-
ledge, influence of B and not only of 2h  on the noise 
immunity of the energetic (autocovariance) receiver was 
first stressed in [22]. 

Then for the multiple cyclic frequency case, when the 
number of frequencies P is rather large while T is fixed, F 
is large as well and PM grows. 

Therefore the energetic detector is not definitely a good 
candidate for spectrum sensing for this scenario, as its PM 
is much worse than for the optimum detector (see the 
previous section). In some sense this comment coincides 
with the simulations [4], besides that there the energetic 
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detection was not implemented in the same way as men-
tioned above. 

Another option for suboptimal detection is to take ad-
vantage of the analogy between multiple cyclic frequency 
detection and quadratic diversity combining and apply a 
suboptimal variant of incoherent diversity addition (see [7, 
8]). Hereafter a selection (switching) combining method 
was chosen, assuming that fading has a Nakagami PDF 
(see [4]). See formula (4) to adjust parameters of Naka-
gami PDF and four–parameter distribution. 

There are several different approaches for switching 
combining but in the following we will analyze only the 
algorithm of selection of the “virtual branch” with   

i
max , 0,1 Qi  . 

Let us assume here, for simplicity, the homogeneous 
fading conditions then, the distribution of the maximum 
value of the identically distributed random values is [11]: 
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If W() is [19]: 
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         (29) 

Then it is necessary to average PM for one virtual 
branch without fading through (28) with the help of (29) 
while Pfa is: 

  expfaP ,                (30) 

where  is a threshold. 
The PM of the channel without fading is: 

 ,hQPM                  (31) 

Following the above mentioned procedure for the case 
Q = 2 and h > 1 one can get from (28)-(31) an approx-
imate formula: 

 
  


























 





1

0 2

2

2

2

2

2

2)!1(!

1)!1(
1

2
1

m

i
im

m
h

m

m
h

mM
mi

im

m

h
P


   (32) 

for m–integers. 
One can compare this method of switching combining 

(with fixed 2h  and Q = 2) with the optimum approach 
(see (14), (17)). 

Please notice that in fading channel conditions when 
the number of virtual branches is growing, one encounters 
the so-called “hardening effect”, i.e. while Q is increasing, 
the increment of noise immunity might be low. 

Therefore, with Q = 2 there is a good option to com-
pare the effectiveness of the selection combining method 
with the optimum one. 

 

Figure 4. Comparison of the ROC for the optimum (17), and 
quasioptimum (32), cases. 
 

In Figure 4 the ROC for this method is presented, 
where for comparison some of the “optimum” ROC’s, 
see (17), are presented. One can see that the energetic 
losses for PM  = 10-4 are rather small and for m = 1 are 
negligible. 

In the same manner as above, the well known set of 
sub-optimum combining algorithms can be applied: other 
methods of switching combining, linear (weighted and 
non-weighted) addition, etc. Their application is rather 
straightforward and is not presented here. 

Some discussion regarding the obtained results 
One can ask: if both algorithms (11) and (12) rely on 

quadratic addition of the F-coefficients, then why their 
noise immunity is so different, particularly with the GG 
channel fading? What is going on? The answer is rather 
straightforward. 

At (11) the object of the quadratic addition are the F- 
coefficients, but from the autocovariance function of the 
output of the multiple cyclic frequency optimum detector, 
i.e. after optimum processing of the quadrature compo-
nents of the input signals. It is also possible to provide 
statistically independent fading of the virtual branches for 
incoherent addition by properly choosing the cyclic fre-
quencies and delays, etc. which drastically increase the 
noise immunity (through the diversity effect). 

In contrary, the energetic receiver, as it is in (20)-(22), 
does not apply specific properties of the cyclic frequen-
cies and just extracts the total energy of the aggregate 
input signal. It is often hardly possible for this case to the 
F-coefficients of the input signal to exhibit statistical in-
dependency in fading conditions. 

Moreover, for the energetic receiver (22) the noise 
immunity, even in the case of a constant channel (without 
fading), goes down while the bandwidth F grows (B = 2 
FT, with T fixed) as the noise power grows. Therefore the 
energetic receiver for multiple cyclic frequency signals 
might be useless when FT 1. 
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For a quasi-optimum alternative for optimum quadrat-
ic combining it is possible to consider all the set of 
switching combining algorithms (see (30) for example), 
as well as a whole set of quasi-optimum algorithms of 
non-coherent diversity combining such as a set of linear 
combining methods with rather low energetic losses for 
the fixed Pfa and PM. 
 
6. Collaborative Spectrum Sensing with 

Censoring 
 
Here as in previous section it is supposed that spectrum 
sensing is based on the cyclostationary properties of the 
signals of the primary users (PU) and the secondary users 
(SU) are spatially distributed within certain area. All the 
set of SU can sense the whole frequency band of interest, 
or each SU may sense just a partial band. Hereafter it 
will be assumed that all SU are sensing the same fre-
quency band. In both cases of spectrum monitoring, SU 
have to share the sensing information between them or 
might be coordinated by a Fusion Center. 

It seems reasonable that, no matter what kind of ex-
change is used, the local decision information has to be 
obtained by a minimum set of observations M in (5), while 
N and P are fixed5. In other words, the time of analysis in 
(5) has to be reduced as much as possible; meanwhile the 
amount of transmitted data has to be reduced as well. 

Then it is opportunistic to apply the sequential analy-
sis of A. Wald [26] where ML test, in contrary to NPT, 
has to be compared with two thresholds related to re-
quirements of Pfa and PM. 

Let us suppose that for the latter, highly reliable final 
results for the test are predefined, so Pfa and PM have to 
be rather low. This might be a rational way to make cen-
soring for the local test as only reliable information has 
to be forwarded to the FC or other SU. 

One has to notice that each SU will obtain those relia-
ble final results (whether PU exists or not) at different 
time instants. This information has to be sent to other 
fellow SU or to FC in binary way. 

Next let us consider several rather general but differ-
ent scenarios of collaborative spectrum sensing. 

- Each n-th SU, Kn ,1 , passes, after time “T”, the 
information of “zn” (not binary) to the system of qu-
adratic addition at the FC. So, 













KQ

j
j

K

n
n

zZ

zZ

1

1

or     

               (33) 

Then Z might be analyzed by the NPT or by sequential 
analysis (see below) assuming hereafter that the channel 
SU  FC is error free. So after final addition, the result 
of quadratic diversity addition of KQ virtual branches (or 
of K SU) is analyzed, assuming statistically independent 
fading along all summations (see (10) and (11) above). 

This scenario can be called as a distributed optimum in-
coherent “SIMO passive radar” and its characteristics are 
equal to (14), (15) with the number of virtual branches KQ. 

- Each of the n-th SU make an individual decision re-
garding to the presence of PU and then send the bi-
nary decision to the FC by error free channels. As-
suming that all those decisions are statistically inde-
pendent, the final result at the FC can be obtained 
according to the majority rule (see for example [27]) 
with the majority not- weighted (or weighted) diver-
sity addition method. This case can be also called 
“SIMO radar” but in contrary to the first one it is 
non-optimum. In the following the topics related to 
those issues will be thoroughly considered. 

Majority diversity addition and weighted majority ad-
dition (WMA) in collaborative spectrum sensing 

If the majority principle is applied at FC, then the de-
cision is made by analysis of the partial decisions at each 
SU (here SU acts as a “virtual” diversity branch) and the 
decision which takes place at the majority of the 
branches is favored. This method is called “majority di-
versity addition”6. 

If partial solutions are binary and the number of virtual 
branches is odd, there cannot be any collision in the final 
decisions for such method. 

Let K = 2q-1 and “P0” denote the existence of PU after 
“q” tests on the branches. 

So if after “m-1” probes on the virtual branches one 
gets “q-1” results of existence of PU and “m-th” probe 
gives the same, then for the “q” test one gets the proba-
bility of this event as 

   1
0 1 1 11

m qq q
mP C P P


              (34) 

The probability of P(P0) is a sum of statistically inde-
pendent probabilities of probes (34) through all “m” 
from m-q up to m = 2q-1, i.e.: 

   
2 1

1
0 1 1 11

q
m qq q

m
m q

P C P P







   ,         (35) 

where P1 can be Pfa or PM, so P(P0) is a final probability 
of false alarm or error detection (see for example [11,27] 
as well), depending which one of hypothesis is consi-
dered. 

If one defines “n” in the way n = m – q, it yields: 

   
1

1
0 1 1 1

0

1
q

nq
q n

n

P C P P



 



             (36) 

5Meanwhile one has to notice, that asymptotic conditions for M (T) are 
assumed to be valid here in order to preserve the uncorrelated
conditions for F-coefficients in (5). 
6Some modifications of the majority diversity addition can be found at
[13,28], etc. 
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At the same time, from the theory of diversity com-
bining it is known that majority addition is equivalent to 
the optimal incoherent addition with the number of 
branches (here virtual ones) “q”, i.e., to incoherent (qua-
dratic) addition with almost twice less branches. 

So, comparing the characteristics of majority addition 
with those of the optimum SIMO radar one can see sev-
eral limitations of the former: 

- Optimum SIMO radar with incoherent addition ac-
tually operates with almost twice more virtual bran- 
ches and therefore provides significantly better de-
tection characteristics (ROC’s); 

- The majority addition operates successfully only with 
odd number of virtual branches, while optimum SI-
MO radar operates with any number of branches. 

The price one has to pay for the advantages of the op-
timum SIMO radar is a more complex data transmission 
scheme: in the majority addition, simply binary results 
are transmitted, and for SIMO radar the information of 
the “z” value for each SU has to be transmitted to FC 
through error free channels. 

Is it possible to improve the ROC properties of the 
majority addition in order to make them approach to 
those of the optimum SIMO radar? 

In order to approach the noise immunity properties of the 
majority addition to those of the optimum incoherent addi-
tion, some modifications of the former were proposed. 

One of them, the so-called “weighted majority addi-
tion” was proposed at [29,30]. The idea of this method is 
rather simple: introduce in the majority addition algo-
rithm information of the channel gains for each partial 
solution, or in other words introduce “weights” in the 
procedure of the majority addition algorithm. In this way 
the channel gains for the diversity “branches” work as 
weighting coefficients in the process of majority selec-
tion. It was shown that this suboptimal method provides 
results very close to those of the optimum incoherent 
addition [29,30] if the communication scenario allows 
taking advantages of channel gains. 

One can see that it is not the case for one of the scena-
rios at FC: each result of detection at SU was obtained 
through the optimum quadratic addition by the SU itself, 
so the resulting fading at SU has a very low variance 
when Q is rather large (hardening effect) (see, for exam-
ple [10,25]). Therefore, it is hardly possible to improve 
the results of majority addition by introducing weighting 
coefficients as all the weights might be practically equal.  
But it is known that if the channels are sufficiently hete-
rogeneous, the hardening effect does not even appear or 
it appears very slowly, while Q   at the SU. So, let us 
consider another extreme special case. Let us assume that 

the fading at the SU’s are so heterogeneous, that practi-
cally all quadrature addition algorithms do not work as 
the diversity combining algorithm and each SU have Q  
1 (single reception) with m-distributed fading7 and the 
fading is generally heterogeneous. 

With this assumption one can see that the problem is 
converted to the case of SIMO Radar: SU are sending to 
the FC binary information of partial decisions together 
with the information of their weights in order to provide 
to the FC with weighted addition (the channel SU  FC 
is supposed to be error free). 

Let us formulate here an assumption: if the final deci-
sions are taken at FC by applying the technique of 
weighted addition of partial decisions, then the SU’s 
have to transmit to the FC not only the information of 
partial decisions, but information of their reliability as 
well and all the system (PU, SU, FC) is working as a 
distributed quasi-optimum SIMO Radar. 

Returning back to the above mentioned scenario, one 
can see that the decision of PU existence in the majority 
of “branches” can be obtained by the algorithm: 

1 0
1 1

qK

j H j H
j q j

 
  

  ,            (37) 

where  
1

K

j  – are magnitudes of the channel gains; 

hypothesis H1 and H0 have the same sense as in (10). 
From Bayes theorem each of the summands in (37) 

have the following PDFs: 
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         (38) 

and the error PM after addition, finally will take place if 
the sign of the inequality in (37) changes to the opposite 
one. Conditions for false alarm are defined in a similar 
way when PU really does not exist in observations at SU. 
Let us assume that [19]: 
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where mj and the corresponding parameters for four- 

parametric distribution are related by 
1

2jm  . 

Then introducing the new variable 

2

2j

j j
j

h
m

x
m




  
7In relation to the fading model assumed here for simplicity, see
formula (4) for the definition of the parameter m through the parameters
of the Generalized Gaussian model. 
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one can get: 
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(40) 
where Pfa   1, PM < 1. 

From (40) it can be seen that  0j HW x  and 
 1j HW x  have the Nakagami PDF form. 
Getting back to (37) and introducing the variables 

[29,30]: 
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one can formally calculate the error probability in (37). 
In the general case of the heterogeneous scenarios, 

according to [31] it is possible to find distributions of 

q  and 1Q q    in a Nakagami PDF form after rather 
cumbersome calculus. In the most tractable way, ac-
cording to (77)-(89) in [19], it is possible to provide the 
error analysis for the following special case, when8: 

22

1

1

n

nm m




  

here n is the number of Nakagami variables at (41). 
Then the sums in (41) will have equivalent Nakagami 

parameters 0m mn  and 
2 2

0 n 
 
 . 

Note, that for the general case [31], the calculus of 0m 

and 
2

0 


 can be done mainly numerically. Then from 

(37) is possible to get (see [30]) for the conditional error 
probability (with q fixed): 
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(42) 
But the number of virtual branches “q” with errors, 

both for PM and Pfa, is a random variable with Bernoulli 
PDF, when the virtual branches have statistically inde-
pendent fading [29,30]. 

Then: 
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where    1 11
K qq q

K KP q C P P
  ; P1 – is Pfa or PM from 

(14), (15), when Q = 1. 
Note that at (14), (15) the four parameters have to be 

previously adjusted by (4) with the value of 0m and 
2

0 


 

at 
2

h


. 
The formula (43) is “universal” in the sense that the 

final PM and Pfa can be calculated through it, because as 
it was mentioned above, the inequality of the (37) type 
can be applied for calculus of false alarm as well. 

The ROC’s for WMA is presented at Figures 5-7. For 
comparison purposes we have included the plots corres-
ponding to sections IVa and IVb denoted with conti-
nuous lines and with dotted lines the plots corresponding 
to (43). One can see that for PM = 10-4 energetic losses 
are less than 1.5 - 2 dB. 

Finally let us compare the “ideology” of the weighted 
majority addition with some of the approaches mentioned 
at [32], see also the references therein, (in [32] it is also 
assumed an error free channel between SUi  FC). 

The “simple counting” approach [32] is nothing else 
than selecting for FC decision only “highly weighted” SU. 
For sure this addition is “less optimum” than the approach 
in [29] because some of the SU’s with small weights do not 
participate in the decision-taking process at the FC. 

Other two methods, namely the Partial Agreement 
Counting and the Collision Detection, assume the exis-
tence of a feedback channel between SU and FC which 
can be used for comparing partial decisions at the SU 
and final decisions at the FC in order to select the “true” 
final decision. This option was not considered in the 
current analysis. 

 

 
Figure 5. ROC for WMA (15) and (19) –––, (43) ---. 8Formally the following analysis is valid for the general case [30] as well. 
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Figure 6. ROC for WMA with different parameters. 

 

 

Figure 7. ROC for WMA for different parameters. 
 

For sure, application of the feedback channel opens 
the possibility to improve the reliability of the final deci-
sion at the FC and taking into account that weighted ma-
jority addition is a practically optimum incoherent addi-
tion, the final characteristics might be better than what it 
has been mentioned at [32]. 
 
7. Conclusions 
 
In this paper we have shown that cyclostationary spec-
trum sensing as well as collaborative spectrum sensing 
for Cognitive Radio networks can be interpreted as a 
special case of the concept of optimum or sub-optimum 
incoherent diversity combining approach (SIMO radar). 

It was shown, that as sub-optimum algorithms for this 
purpose it is possible to apply the whole “gamma” of 
well known algorithms such as all types of switching 
combining, as well as linear combining and counting 
rules (discrete addition), etc. 

The concrete detection algorithms (distributed or not) 
utilizing NPT or sequential tests leads to the so-called SI-
MO radar algorithms and their ROC’s were analyzed here 
for GG channel fading models in the most general way. 

It is worth mentioning here that, application of the 
cyclostationary properties of the PU signals (through the 
estimation of the F-coefficients of the autocovariance 
function) is a convenient but obviously not the unique 
approach that allows construction of statistically inde-
pendent virtual diversity branches for the spectrum sens-
ing detection algorithms. For example, for the broad 
band GG communication channels, virtual branches can 
be constructed through channel orthogonalizations in the 
frequency and time domains (in the same way as it was 
done in [33]), or by choosing statistically independent 
fading sub-carriers of OFDMA signals (see [34]), etc. 

Other emerging problems, such as detailed analysis for 
correlated virtual branches of the sensing algorithms, 
adaptive methods of sensing for unknown parameters of 
GG channels, application of the ideas of the feedback 
algorithms for collaborative sensing, etc. will be pre-
sented by the authors elsewhere. 
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