
Journal of Software Engineering and Applications, 2013, 6, 543-553
http://dx.doi.org/10.4236/jsea.2013.610065 Published Online October 2013 (http://www.scirp.org/journal/jsea)

543

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

Zakarya A. Alzamil

Software Engineering Department, King Saud University, Riyadh, Saudi Arabia.
Email: zakarya@ksu.edu.sa

Received August 5th, 2013; revised September 4th, 2013; accepted September 12th, 2013

Copyright © 2013 Zakarya A. Alzamil. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Software engineering has been taught at many institutions as individual course for many years. Recently, many higher
education institutions offer a BSc degree in Software Engineering. Software engineers are required, especially at the
small enterprises, to play many roles, and sometimes simultaneously. Beside the technical and managerial skills, soft-
ware engineers should have additional intellectual skills such as domain-specific abstract thinking. Therefore, software
engineering curriculum should help the students to build and improve their skills to meet the labor market needs. This
study aims to explore the perceptions of software engineering students on the influence of learning software modeling
and design on their domain-specific abstract thinking. Also, we explore the role of the course project in improving their
domain-specific abstract thinking. The study results have shown that, most of the surveyed students believe that learn-
ing and practicing modeling and design concepts contribute to their ability to think abstractly on specific domain.
However, this finding is influenced by the students’ lack of the comprehension of some modeling and design aspects
(e.g., generalization). We believe that, such aspects should be introduced to the students at early levels of software en-
gineering curriculum, which certainly will improve their ability to think abstractly on specific domain.

Keywords: Domain-Specific Abstract Thinking; Software Modeling; Software Design;

Teaching Modeling and Design; Software Engineering Education

1. Introduction

Software engineering disciplines have been taught for
many years as individual courses within the curriculum
of computing areas such as computer science and infor-
mation system, which caused the lack of software engi-
neering graduates. Recently, many universities have es-
tablished an undergraduate (BSc) and/or graduate pro-
grams (MSc) in software engineering, among which is
the King Saud University (KSU) in Riyadh, Saudi Arabia
that has founded BSc and MSc programs. The BSc in
software engineering at KSU was approved in June 2007,
and the first batch of students have started the program
on the second semester of the academic year 2008/2009.

Software engineering community has recognized the
importance of software engineering education and has
organized several conferences and workshops that are
specialized on the software engineering education. Ex-
amples of such conferences are the Conference on Soft-
ware Engineering Education and Training (CSEET),
education track of the International Conference on Soft-

ware Engineering (ICSE), and Frontiers in Education
conference (FIE). There are a number of software engi-
neering education’s studies that have been published in
the literature. These studies can be categorized into many
fields, such as investigating new teaching methods, inte-
grating ethics into computing, approaches to software
engineering course project, and enhancements to the
software engineering curricula. Professional organiza-
tions such as ACM and IEEE have developed a guide-
lines handbook for the BSc program in software engi-
neering [1].

Software engineering educators face many challenges
in delivering the software engineering knowledge and
skills that are needed in the labor market. Unfortunately,
most of the researches in the area of software engineering
concentrate on the practical and managemental issues,
and few have investigated how to teach these aspects.

The joint IEEE/ACM software engineering 2004 cur-
ricula [1] emphasizes the importance of integrating the-
ory and practice, so that students can recognize the im-
portance of abstraction and modeling, and their influence

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

544

on understanding the domain knowledge beyond the
computing discipline. Although the software engineering
2004 curricula provide important information for the
instructors to consider for modeling and design courses
as well as the course project, most of the instructors need
more guidance on how to teach the software engineering
disciplines. Moreover, most of the international organi-
zations’ standards, such as ABET and SWEBOK, did not
provide practical guidelines for teaching software engi-
neering disciplines and the capstone project, e.g. [1-3].
Teaching software modeling and design is a major chal-
lenge to software engineering educators because of the
complexity of software modeling and design concepts
when compared to other aspects of software engineering.
Also, many software modeling and design techniques
and approaches are evolving, and at the same time, not
enough practical and only small examples are available
for classroom use to illustrate these techniques and ap-
proaches [4].

Among the basic design concepts that are taught to the
software engineering’s students are abstraction, separa-
tion of concerns, and modularity [5]. Abstraction can be
defined as the process of forgetting information so that
things that are different can be treated as if they were the
same [6]. The software engineering’s students were
taught two basic rules in abstraction: look at details and
abstract up to concepts, and/or choose concepts, then add
detailed substructures to move down. Based on this
premise, abstraction focuses on two aspects: removing
unnecessary details and the process of generalizing con-
cepts and finding patterns [7]. Abstraction is very impor-
tant and has been considered a “key skill” in computing,
that a software engineer should master [8]. A key point
that enhances the abstraction in domain analysis is sepa-
ration of concerns. Separation of concerns means divid-
ing the problem under analysis into independent parts,
such as separating system components from their con-
nectors. Modularity is a general system concept, typi-
cally defined as a continuum describing the degree to
which system’s components may be separated and re-
combined [9]. So it means that the system is divided into
functional units (modules) that make up a larger applica-
tion representing the whole system.

Abstract thinking is defined in [10] as the ability to use
concepts and to make and understand generalizations,
such as the properties or pattern shared by a variety of
specific items or events. In [11] the abstract thinking is
defined as the final, most complex stage in the develop-
ment of cognitive thinking, in which thought is charac-
terized by adaptability, flexibility, and the use of con-
cepts and generalizations. Usually, abstract thinking is
compared with concrete thinking which can be defined as
predominance of actual objects and events and the ab-

sence of concepts and generalizations [10], in which
thinking about objects, ideas, or events is within their
attributes and relationships. In contrast, abstract thinking
is conceptualized or generalized thinking that under-
stands each concept in multiple meanings, in which ob-
jects, ideas, or events are separated from their attributes
and relationships to think “outside of the box” to come
up with creative solutions.

In this paper we present the perspective of a set of
software engineering’s students on the influence of
learning software modeling and design on their domain-
specific abstract thinking. Software modeling and design
in this research is used within the context of system’s
software architecture. In this context software design is
an activity that creates part of a system’s architecture in
which a set of design decisions that are related to the
system’s structure, its primary components and their in-
teractions, system’s behavior, non-functional properties,
etc., are made. In addition, software design considers
stakeholder issues, decision about use of COTS compo-
nent, architecture styles, and deployment issues. The
software modeling is an artifact that captures some or all
of the design decisions that comprise a system’s archi-
tecture using specific notation. The software model
should depict the major element of the architectural de-
sign such as components, connectors, interfaces, and
configurations [5].

The aim of this study is to understand the impact of
learning software modeling and design in improving the
students’ ability to think abstractly within specific prob-
lem domain, e.g. developing a specific software system.

The proposed study was conducted by studying the
perception of 107 software engineering’s students at
King Saud University, representing 4 batches (levels).
The following section presents the motivation of this
work, next section describes the related work, then the
study’s questions and research methodology are illus-
trated, after that the study results are discussed, and fi-
nally the conclusions are presented in the last section.

2. Motivations

Most of the computing curriculums start with introduce-
tory programming courses that are introduced to the stu-
dents using a traditional approach. These courses are
taught to students using a so-called late-object approach
e.g., [12,13], in which the students learn the basic ele-
ments of a programming language, and then they start
thinking of the system as real world objects. We have
observed that, when teaching software modeling and
design, students tend to think about the details of the
system components such as the source code and the con-
tent of the system’s components, rather than thinking at a
high level of abstraction.

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

545

Ideally, we assumed that, abstract thinking should
contribute to the students’ skills in modeling and design-
ing software systems. On the other hand, the assumption
is that, learning the modeling and design may improve
the students’ ability to think abstractly about the domain
problem. Software modeling and design introduces the
students to the conceptual understanding of domain
problem, in which the domain concepts are generalized
and separated from their attributes, properties and rela-
tionships shared by different objects or events. In addi-
tion, abstract thinking may improve the students’ systems
thinking by viewing the domain problem as parts of an
overall system. Also, it has been reported that, using
analogy in teaching can help the students to build a con-
ceptual bridge between what they knew and what they
are about to learn [14], which may lead to improve their
conceptual understanding of the domain problem. Our
observation of using analogy of physical buildings with
software systems has shown that, students were able to
think of the software system as blueprint of the system
big picture as they do when thinking about the physical
building’s blueprint.

It has been observed that, in order for students to be
competent and skilled in certain subject, they should
practice what they have learned in the classroom within a
real or semi-real world environment. One of the teaching
approaches that expose the students to the real world
environment is the course project. Course project is a
course work assignment during an academic semester
requiring the students to work as a team to develop a
software system solution for a specific domain problem.
Course project is very important tool that provides the
students with the practical modeling and design skills
that may lead to abstract thinking toward creating solu-
tions for real world problems. There have been many
research studies that had shown the benefits of employ-
ing the course project to gain the occupational skills
needed for software development, e.g., [15-20]. Although,
some studies [16] measured the time that students spend
on each phase of the project and have shown that most of
the time has been consumed in the meetings, students’
involvement in brainstorming with project team’s mem-
bers during the early stages of the system development is
a good technique that provides them with the opportunity
to improve their way of thinking including domain-spe-
cific abstract thinking. We believe that, course project as
a tool of teaching practical software modeling and design
impacts the students’ learning and comprehension of
modeling and design and as a result will contribute to
abstract thinking. Therefore, we would like to understand
the students’ perspective on the influence that software
modeling and design may have on their domain-specific

abstract thinking in terms of learning modeling and de-
sign in general and course project as a tool in specific.

3. Related Work

Software engineering education, relatively, is a new re-
search track, in which, teaching software modeling and
design has been recognized recently. In [4], a finite-state
model has been adapted for classroom teaching of soft-
ware modeling. A research study has been performed to
determine whether there is a link between the abstraction
skills of students and their success in object-oriented
modeling [7]. This study has shown that students with
high scores in an abstraction test achieve better results in
an object-oriented analysis and design module than those
with lower scores. In [21], the authors emphasis on the
importance of the abstraction and information hiding as
fundamental and essential principles in software devel-
opment, and should be taught in the early computer sci-
ence courses such as computer programming I and com-
puter programming II courses, so that educators can use
different techniques to provide the students with the tools
they need to develop their abstract thinking. The authors
support their claim with two examples one for computer
programming I and another for computer programming II.
An iterative teaching approach to teaching object-ori-
ented programming has been presented in [22] using
modeling languages, in particular UML, to support ab-
stract thinking to understand the basic object-oriented
concepts. This approach applies constant cycling be-
tween design and code, i.e., high and low abstraction
levels, by visualizing the concepts, discussing their rela-
tion to the abstraction, generating and changing the im-
plementation (code), and iterating the process. A visuali-
zation model has been proposed in [23] that can be com-
bined in teaching process to build a reasonable model for
abstract concepts’ teaching to improve teaching. The
results of surveying 200 software engineering’s students
showed that, students can use and manage knowledge
easier and can improve the learning efficiency.

In [24], a Model-Driven Engineering (MDE) has been
integrated into the software design course through the
course project to observe how MDE helps the students to
understand modeling concepts and the tools that support
them. The results of this study have shown a positive
impact on helping students to better understand how
models can be used during software design. In [25], a
guideline within the context of an Aspect-Oriented proc-
ess support has been proposed for enabling an Integrated
Development Environment (IDE) to promote abstract
thinking. In this study lab activities have been conducted
within Eclipse environment, in which thirty-three stu-
dents studied the abstract thinking, and worked on real-
life development tasks, where their development steps as

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

546

well as their visible thinking processes were logged by
observers, and a reflection on the activity was collected.
The authors concluded with that, concrete IDE support
for abstract thinking is practical and suggest two kinds of
such support, one is concerned with a positive feedback
from the IDE in cases where abstraction is used, and the
second with cases where the developer is encouraged to
use abstract thinking. In [26], an approach has been pre-
sented to improve the student’s engineering ability by
shifting the engineering education from the simple pres-
entation of knowledge toward computational thinking, in
which the knowledge and the development are integrated
in all courses teaching via training and practice. The pre-
sented approach focuses on extraction of fundamental
discipline concept of engineering ability development,
problem solving-centered organization of courses of soft-
ware development tools, initiate the courses of software
engineering as soon as possible, and continual training of
abstract logical thinking for the purpose of software ab-
stract thinking. An experience of teaching modeling at
the high school level has been presented in [27], in which
the abstract thinking processes involved in modeling are
introduced to the students prior to teaching programming
and embedded control. A UML modeling has been used
to teach students to analyze various applications, systems
and problem domains. The study tried to answer if the
modeling should be introduced to the high school stu-
dents or first year college. The study has shown that,
students are learning to model and are finding abstrac-
tions for elements in the application domain rather than
jumping into implementation too quickly. Also, the data
modeling comes naturally, in which students were able to
identify the classes, attributes, associations, and state
machines involved in several simple systems. In addition
students find abstraction is much easier to understand
than implementation syntax. An experience of using ab-
straction to teach software engineering human aspects
has been presented in [28]. The authors suggested intro-
ducing reflective and abstract thinking processes into
courses that focus on improving students’ analytical
skills and problem-solving abilities.

Although some of the aforementioned studies have
investigated the impacts of modeling and design on ab-
stract thinking, many of them are conducted on a focus
group of students attending specific courses that were
established for such research. However, we would like to
study the impact of regular software modeling and soft-
ware design courses on students’ ability to think ab-
stractly on specific domain without any justification of
such courses. Therefore, the purpose of this paper is to
investigate the students’ perception of the influence of
learning software modeling and design on their domain-
specific abstract thinking.

4. Study Questions

The purpose of this study is to understand the students’
perspectives on the influence of learning software mod-
eling and design on their domain-specific abstract think-
ing. As described earlier, hypothetically, learning soft-
ware modeling and design as well as involving in a
course project may improve the students’ ability to think
abstractly. Understanding the students’ perception on
such matter will help to validate such hypothesis. There-
fore, we have identified two questions that help in under-
standing the students’ viewpoint. The study questions
are:

1) In the viewpoint of the students, to what extent
learning software modeling and design enhances their
domain-specific abstract thinking?

2) In the viewpoint of the students, to what extent the
course project improves their domain-specific abstract
thinking?

5. Research Methodology and Tool

In order to answer the study questions to understand the
students’ perceptions, we have developed a questionnaire
as a study tool based on abstraction aspects that contrib-
ute to domain-specific abstract thinking; namely: gener-
alizations (5 statements), separation of concerns (1 state-
ment), and modularity (3 statements, including a shared
statement with generalization), as well as analogy (1
statement). Also, we have injected one statement as an
alarm statement to be used for filtering out the inaccurate
responses (e.g., randomly filled questionnaire). In addi-
tion, 3 statements (with respect to abstraction) were
added to serve the second question of the study. The
questionnaire, see the Appendix, consists of 13 state-
ments with three choices for each statement (agree, may
be, and disagree), in which 9 statements are designed for
answering the first question of the study, 3 statements for
the second question, and 1 statement as an alarm state-
ment. In this questionnaire, we have used a three-point
scale instead of the famous five-point scale; because the
respondents, in many cases, avoid using extreme re-
sponses such as “strongly agree” and “strongly disagree”.
In addition, sometimes during responses analysis, the
agree responses (“strongly agree” and “agree”) and dis-
agree responses (“strongly disagree” and “disagree”) of
the five-point scale are combined into two categories of
“accept” and “reject” respectively, for normalization pur-
poses that leads to three-point scale. The questionnaire’s
language has been simplified by substituting some words
with others for the sake of making it understandable to
non-English speaking students.

The questionnaire has been used as a tool to under-
stand the students’ perspectives on the influence of the

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

547

software modeling and design in building their skills for
domain-specific abstract thinking. Students’ perception
has been used because learning is very difficult to be
measured by standard measurement techniques; therefore,
understanding the students’ opinion is the closest way in
measuring the influence of learning software modeling
and design on improving their domain-specific abstract
thinking skill.

In order to understand the influence of software mod-
eling and design on the students’ domain-specific ab-
stract thinking, we have considered a sample of software
engineering’s students who finished the modeling and
design courses at KSU, namely; SWE313 (Software
Process and Modeling) and SWE321 (Software Design
and Architecture). The students in these two courses
learned and practiced different techniques of software
modeling and design via lectures, laboratories, and
teamwork project assignments with several practical
examples that concentrate on different abstraction as-
pects. The targeted sample consists of 107 students rep-
resenting 4 batches/groups that were admitted to the pro-
gram (i.e., their study level in the program, in which
batch (1) is the most advanced group in the BSc pro-
gram). We were able to get the feedback from 81 stu-
dents, in which the questionnaire’s statements were re-
cited and explained to the students to assure that they
understand them clearly to get a precise feedback. The
data was collected and analyzed. Table 1 displays the
study sample properties.

In order to assure that the questionnaire statements
correlate to the study questions, we have computed the
correlation co-efficiency of the statements of the study
questionnaire to the question that they belong to. In addi-
tion, we have computed the correlation co-efficiency of
each study question to the total score of all study ques-
tions. Table 2 displays the correlation co-efficiency of
the study’s questions. As can be seen, the study questions
are correlated to the total scores of all questions with
more than 0.20 which means that the statements of each
question belong to that question with a good correlation.

In addition, we have performed a reliability analysis
test to assure whether a group of statements that belong

Table 1. Study sample properties.

Batch# (Group#) Frequency Percent Cumulative Percent

Batch (1) 28 34.6 34.6

Batch (2) 8 9.9 44.4

Batch (3) 32 39.5 84.0

Batch (4) 13 16.0 100.0

Total 81 100.0

to a question measure that question. A Cronbach’s alpha
has been used to measures how well a set of items
(statements) measures a single one-dimensional latent
construct (question). When the value of Cronbach’s al-
pha is low, it means that the statements measure multi-
dimensional construct; however, when such value is high
it means that the statements measure one-dimensional
construct (the designated question), which indicate the
reliability of the study questions. Table 3 shows the
value of Cronbach’s alpha for the questionnaire’s state-
ments for all study questions. The value of Cronbach’s
alpha is high enough to indicate that the questionnaire’s
statements measure the study questions.

We have used other statistical test to understand the
variations between the respondents. Analysis of variance
(ANOVA) is a general method for studying sampled-data
relationships [29]. The method enables the difference
between two or more sample means to be analyzed,
achieved by subdividing the total sum of squares. We
have used the one way ANOVA test (f test) to study the
relations between the study samples (4 batches/groups) in
terms of their responses variations to identify whether
such variation is statistically significant. In case we de-
tect any variation between the study samples’ responses,
we use Scheffe test to identify the source of such varia-
tion. In the following section, we will discuss the results
findings.

6. Result Discussion

In order to understand the students’ perceptions on the
influence of learning software modeling and design in
building their domain-specific abstract thinking, we will
answer the study questions by analyzing and discussing
the students’ responses to the questionnaire’s statements
that are related to the abstraction aspects (generalization,
separation of concerns, and modularity). As described
earlier, five statements are based on generalization, three
on modularity (including the shared one with generaliza-
tion), one on separation of concerns, one on analogy, and
three on abstraction related to the course project. In the
following subsections we discuss the students’ responses
related to the study’s questions.

Table 2. Correlation of the two questions to the total score.

Study Question Correlation Coefficient Number of Statements

Q1 0.992 9

Q2 0.917 3

Table 3. Cronbach’s Alpha for the study’s questions.

N of Items Cronbach’s Alpha

13 0.957

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

548

6.1. First Question

In the viewpoint of the students, to what extent learning
software modeling and design enhances their domain-
specific abstract thinking?

To answer this question, let us first discuss the re-
sponses on the questionnaire’s statements that are related
to generalization. Consider Table 4, as can be seen at
statement S11, the majority of the students (64.2%) be-
lieve that learning modeling and design techniques im-
prove their comprehension of different modeling and
design concepts such as generalization and decomposi-
tion, and 28.4% believe it may help so. Also, when the
students were asked about whether focusing on the con-
cepts of the system under development would contribute
in understanding the system big picture (statement S8),
the majority of the students (55.6%) agree on such hy-
pothesis whereas 40.7% believe it may do so. These re-
sults are supported by the responses of the students when
asked whether thinking abstractly contributes to model-
ing the big picture of the problem domain, as can be seen
at statement S7, 48.1% of the respondents agree on such
premise whereas 39.5% think it may contribute to mod-
eling the big picture of the problem domain. Additionally,
Table 4 shows the students’ responses regarding using
the simple-machine approach in describing the problem

Table 4. Students’ responses to statements related to gener-
alization.

Statement Agree Maybe Disagree Missing

S11: Learning modeling and
design techniques improves my

comprehension of
modeling and design concepts

such as generalization,
decomposition, abstraction,

projection/views, and
explicitness

64.2 28.4 7.4 0

S8: Focusing on the
concepts of the system

under development
contributes in understanding

the system big picture

55.6 40.7 2.5 1.2

S7: Thinking abstractly
contributes to modeling

the big picture of the
problem domain

48.1 39.5 11.1 1.2

S1: Using simple-machine
to describe the problem

domain simplifies
problem understanding

45.7 50.6 3.7 0

S6: Learning and applying
modeling and design makes

me focused on the big
picture of the system without

thinking in the details

34.6 54.3 11.1 0

domain to simplify problem understanding (statement
S1). Simple machine was described to the respondents as
an abstraction of a potential system that will perform a
required task. The result shows that 45.7% of the stu-
dents believe that using simple machine helps them to
understand the problem domain whereas 50.6% of them
are not sure. As can be noticed, very few students dis-
agree with the aforementioned hypotheses. Such result
describes what the students believe as a first impression
when learning and applying software modeling and de-
sign techniques.

However, such results are disturbed with the students’
responses when asked whether modeling and design
techniques make them focused on the big picture of the
system without thinking in the details. As shown at
statement S6, 34.6% of the students agree with such ar-
gument, and the majority of the students (54.3%) are not
sure of such premise. We believe that, the reluctantly
responses come from the fact that, most of the students
tend to think in details when modeling and designing a
software system, therefore, when asked about being fo-
cused on the big picture without thinking about the de-
tails, the answer may be rephrased as “well we have been
taught to think about the details”. It has been noticed that,
most of the computing curriculums, including software
engineering curricula, start with programming courses, in
which the students learned to look at details to develop
the design and then implement it using a selected pro-
gramming language. Regardless of the suitability of such
curriculum approach, it certainly, influences the way that
students comprehend and practice generalization. We
believe that, the students should learn and practice gen-
eralization and how to identify the levels between ab-
straction and details, in which they can think abstractly
about the domain problem without going into very low
level of details.

Although such responses may be interpreted differ-
ently, we believe that, such results can be interpreted as
evidence of the advantage of using software modeling
and design techniques in learning generalization to im-
prove the students’ ability to think abstractly for specific
domain problem. As a natural response of the students
when exposed to modeling and design techniques, they
believed that such techniques may help them to think
abstractly about specific domain; however, due to the
lacks of enough practical and/or tutorials for software
modeling and design, they are likely to look into the de-
tails.

The second aspect of abstraction is related to modular-
ity, which is discussed through the responses of the
statements shown in Table 5. But before discussing these
responses, let us consider the responses to statement S11
in Table 4, as described earlier, 64.2% of the students

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

549

believe that learning modeling and design techniques
improve their comprehension of different modeling and
design concepts such as decomposition (i.e., modularity),
and 28.4% believe it may help so, which is considered as
a positive response towards answering the study’s first
question. This response is supported by the responses to
statement S2 shown in Table 5, which states whether
using diagrams as modeling and design tool helps in
modeling and designing the big picture of the system. As
noticed, most of the respondents (86.4%) agree on the
benefit of using diagrams as a tool for modeling and de-
signing the big picture of the system. Also, Table 5
shows the responses to statement S9 on whether the
availability of many choices of modeling and design
techniques contributes in improving their ability in
thinking and comparing abstractly, in which 43.2% of the
responses agree on such premise whereas 37% state it
may contribute to thinking and comparing abstractly.
Such result indicates that learning modeling and design
techniques, most likely, contribute to improving the
modularity skill, in which the students can divide the
system into functional modules. We believe that, such
result is achieved because modularity, unlike generaliza-
tion, requires more level of details, in which several sys-
tem components can be constructed to make up a larger
application representing the whole system.

The third aspect of abstraction is separation of con-
cerns, which is represented by statement S12 that is
shown in Table 6. The software component was de-
scribed to the respondents as an architectural element
that captures a subset of the system’s functionality and/or
data. In addition, the software connector was described to
the respondents as an architectural element that models
and regulates the interactions among components. As can
be seen, 43.2% of the students’ responses agree on the
hypothesis that learning modeling and design make them
able to separate component from connectors, whereas
49.4% believe it may do so. Such result is encouraging
towards the influence of the software modeling and de-

Table 5. Students’ responses to statements related to mo-
dularity.

Statement Agree Maybe Disagree Missing

S2: Using diagrams as
modeling and design tool

helps in modeling and
design the big picture

of the system

86.4 12.3 1.2 0

S9: The availability of many
choices of modeling and

design techniques contributes
in improving my ability in

thinking and comparing
abstractly

43.2 37.0 19.8 0

sign techniques on the abstraction in which almost half of
the students believe such techniques improve their ability
of separating different system’s concerns.

Another aspect that has been used widely in modeling
and design is analogy which has been taught to the stu-
dents in the SWE321 course. We have designed one
statement to understand the students’ perception on the
influence that analogy may have on domain-specific ab-
stract thinking. Consider Table 7, which shows the stu-
dents’ responses to statement S13 on whether using ana-
logy is a good tool to improve their domain-specific ab-
stract thinking skill. As can be seen, 74.1% of the re-
spondents agree on such premise, whereas 21% think it
may do so.

We have studied the variations between the respon-
dents’ answers to the statements of this question with
respect to the students’ batch/group using ANOVA to
identify whether such variation is statistically significant.
Table 8 shows the variations between the study samples
responses to this question’s statements in which f value
and the significance is displayed. As can be noticed,
there is no significant variations between the responses
of the study sample to this question with respect to their
batch/group i.e., their study level.

The results of this part of the study show that, teaching
and learning software modeling and design techniques
such as analogy help the students to improve their do-
main-specific abstract thinking, however, such improve-

Table 6. Students’ responses to the statement related to
separation of concerns.

Statement Agree Maybe Disagree Missing

S12: Learning modeling
and design makes me able

to separate component
from connectors

43.2 49.4 7.4 0

Table 7. Students’ responses to the statement related to
analogy.

Statement Agree Maybe Disagree Missing

S13: Using analogy is a
good tool to improve

my abstract thinking skill
74.1 21.0 3.7 1.2

Table 8. Variations of students’ responses to statements
related to the first question.

Source of
Variance

Sum of
Squares

df Mean Square F Value Sig.

Between Groups 33.349 3 11.116 0.472 0.703

Within Groups 1813.491 77 23.552

Total 1846.840 80

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

550

ment suffers from the students’ lack of a very important
aspect of abstraction which is the generalization aspect as
has been discussed earlier.

6.2. Second Question

In the viewpoint of the students, to what extent the
course project improves their domain-specific abstract
thinking?

It has been recognized that students should be exposed
to the real world problems, so that, they can practice
what they have learned in a real world environment.
Course project has been considered to be one of the most
important means in which the students can practice, im-
prove, and test their skills. As described earlier, course
project is a course work assignment during an academic
semester requiring the students to work as a team to de-
velop a software system solution for a specific domain
problem. In this part of study we investigate whether the
course project improves the students’ domain-specific
abstract thinking. We have designed three statements,
within the study questionnaire, that are related to the in-
fluence that the course project may have on improving
the students’ domain-specific abstract thinking. In the
following paragraphs we will discuss the responses to
these statements.

Consider Table 9, which shows the students’ re-
sponses to statements related to course project. The re-
sponses of the students to statement S4 on whether the
course project improves the way they think about a
problem domain, show that, the majority of the students
(61.7%) agree on such hypothesis whereas 30.9% believe
it may do so. Also, the students’ responses to statement
S3 on whether dealing with real world problem in the
course project improves their conceptual thinking about
the problem solution, most of the students (77.8%) agree
on such premise, whereas 21% think it may do so. In
addition, when the students were asked, whether a
teamwork and brainstorming with their colleagues make
them think abstractly about the system (statement S5),
the majority of the students (72.8%) agree with such ar-
gument, whereas 24.7% think it may do so.

We have studied the variations between the respon-
dents’ answers to this question with respect to the stu-
dents’ batch/group using ANOVA to identify whether
such variation is statistically significant. Table 10 shows
the variations between the study samples responses to
this question’s statements in which f value and the sig-
nificance is displayed. As can be seen, there is a signify-
cant variation at 0.05 between the respondents’ answers
to the statements of this question with respect to their
batch/group. In addition, we have performed Scheffe test
to identify the source of such variation and found that
there is a significant variation at 0.05 between respon-

Table 9. Students’ responses to the statements related to
second question.

Statement Agree Maybe Disagree Missing

S4: The course project
improves the way I think
about a problem domain

61.7 30.9 6.2 1.2

S3: Dealing with real
world problem in the

course project improves
my conceptual thinking

about the problem solution

77.8 21.0 0 1.2

S5: Teamwork and
brainstorming with my

colleagues makes me think
abstractly about the system

72.8 24.7 2.5 0

Table 10. Variations of students’ responses to statements
related to the second question.

Source of
Variance

Sum of
Squares

df Mean Square F Value Sig.

Between Groups 18.104 3 6.035 2.751 .048

Within Groups 168.884 77 2.193

Total 186.988 80

dents with respect to their batch/group to the favor of
batch (1), which is the most advanced group in the BSc
program. Such result is understandable because the first
batch had experienced more courses’ projects than later
batches due to their advancement in the study program,
which may contribute to their domain-specific abstract
thinking improvement.

Although such results show that, most of the students
believe that the course project may improve their do-
main-specific abstract thinking, we believe that utilizing
the course project to improve the students’ domain-spe-
cific abstract thinking depends on the nature of the do-
main problems that the students work on as well as the
activities that associated with the course project such as
teamwork, brainstorming, reviewing one another work,
and so on.

As mentioned earlier, we have inserted one statement
(statement S10) as an alarm statement, which states an
opposite meaning of statement S9, and has been used to
filter out the falsely filled questionnaire. We have exam-
ined all responses looking for any randomly filled ques-
tionnaire to filter it out as false response, and find noth-
ing.

7. Research Findings

We can summarize the perceptions of the surveyed stu-
dents regarding the influence of the software modeling
and design on their domain-specific abstract thinking in

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

551

the following points:
1) Students’ believe that learning modeling and design

techniques improve their comprehension of different
modeling and design concepts such as generalization and
decomposition.

2) Although, focusing on the concepts of the system
under development would contribute in understanding
the system big picture, most of the students tend to think
in details when modeling and designing a software sys-
tem which influences the way they comprehend and
practice generalization.

3) Students find that, using diagrams as a tool for mod-
eling and designing the system under development helps
them in comprehending the system big picture.

4) Students think that, the availability of many choices
of modeling and design techniques contributes in im-
proving their ability in thinking and comparing abstractly
for specific domain.

5) Students find that the software modeling and design
techniques improve their ability in separating different
system’s component from their connectors.

6) Students find that, using analogy is a good tool to
improve their domain-specific abstract thinking skill.

7) We have found that the course project improves the
way they think about a problem domain, which may lead
to improving their conceptual thinking about the problem
solution. Additionally, the teamwork and brainstorming
with colleagues may help the students to look at the do-
main problem differently, which may contribute to their
problem-domain abstract thinking.

Although such findings show that, learning and prac-
ticing software modeling and design concepts contribute
to the student ability to think abstractly on specific do-
main, students should learn by practice some modeling
and design aspects (e.g., generalization) at early levels of
software engineering curriculum (e.g., programming and
introductory software engineering courses), which cer-
tainly will improve their domain-specific abstract think-
ing. Although of the encouraging results of the influence
of modeling and design on students’ domain-specific
abstract thinking, this study has been conducted on small
software development projects during an academic se-
mester. Therefore, more investigation is needed to better
understand the influence of software modeling and de-
sign on improving domain-specific abstract thinking on
larger domains within the real world software develop-
ment.

8. Conclusions

In this paper, we have presented a study of the students’
perception on the influence of learning software model-
ing and design on their domain-specific abstract thinking.
This study is designed to answer whether the students

think that learning software modeling and design en-
hances their domain-specific abstract thinking. In addi-
tion, we investigate the students’ perspective on the role
of the course project in improving their abstract thinking
for specific domain. The study has been performed by
surveying groups of software engineering’s students who
studied or are studying the software modeling and soft-
ware design courses. A questionnaire has been developed
to serve as the study tool to answer the study questions.

The results of the study have shown that, most of the
surveyed students believed that learning and practicing
software modeling and design techniques improve their
domain-specific abstract thinking. However, such im-
provement is suffered by the students’ lack of some basic
skills related to modeling and design such as some ab-
straction aspects. Therefore, more emphasis has to be
considered on teaching and practicing abstraction aspects
such as generalization. Although students’ perception on
the influence of software modeling and design on im-
proving their domain-specific abstract thinking are opti-
mistic, many practical modeling and design aspects have
to be embedded within the software engineering curricu-
lum. Specifically, the course project and the course labo-
ratory should offer the students the opportunities to ob-
serve practical aspects that improve their domain-specific
abstract thinking.

In spite of the encouraging results of this study, more
investigations are needed to better understand the influ-
ence of software modeling and design on abstract think-
ing of larger domains. In addition, we believe that, the
perception of the software engineering practitioners on
the influence of software modeling and design to improve
their domain-specific abstract thinking is another dimen-
sion that may contribute not only to software modeling
and design education, but to the software engineering
education in general. Therefore, we plan to investigate
the software engineering practitioners’ perceptions on
practicality of software design and architecture curricu-
lum on their daily tasks, which may help us better under-
stand the industry perspectives as well as closing the gap
between the industry and academia.

REFERENCES
[1] IEEE/ACM, Software Engineering, “Curriculum Guide-

lines for Undergraduate Degree Programs in Software
Engineering, a Volume of the Computing Curricula Se-
ries,” 2004. http://sites.computer.org/ccse/

[2] ABET, “Criteria for Accrediting Computing Programs,
Computing Accreditation Commission,” 2004.
http://www.abet.org

[3] A. Abran, J. Moore, P. Bourque, R. Dupuis and L. Tripp,
“Guide to the Software Engineering Body of Knowledge
(SWEBOK),” IEEE Computer Society Professional Prac-

Copyright © 2013 SciRes. JSEA

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

Copyright © 2013 SciRes. JSEA

552

tices Committee, 2004. http://www.computer.org

[4] S. Kundu, “Teaching Software Modeling and Design Bas-
ed on the Science of Design and Science of Learning,”
Proceedings of the IEEE International Conference on
Frontiers in Education: Computer Science & Computer
Engineering, Las Vegas, 14-17 July 2008, pp. 434-438.

[5] R. Taylor, N. Medvidovic and E. Dashofy, “Software
Architecture: Foundations, Theory, and Practice,” John
Wiley & Sons, Hoboken, 2010.

[6] B. Liskov and J. Guttag, “Program Development in Java:
Abstraction, Specification, and Object-Oriented Design,”
Addison-Wesley, Boston, 2001.

[7] P. Roberts, “Abstract Thinking: A Predictor of Modeling
Ability?” Proceedings of the ACM/IEEE 12th Interna-
tional Conference on Model Driven Engineering Langu-
ages and Systems: Educators’ Symposium, Denver, 4-9
October 2009.

[8] J. Kramer, “Is Abstraction the Key to Computing,” Com-
munications of the ACM, Vol. 50, No. 4, 2007, pp. 36-42.
http://dx.doi.org/10.1145/1232743.1232745

[9] M. Schilling, “Towards a General Modular Systems The-
ory and Its Application to Inter-Firm Product Modular-
ity,” Academy of Management Review, Vol. 25, 2000, pp.
312-334.

[10] “The American Heritage Medical Dictionary,” Houghton
Mifflin Company, Harcourt, 2007.

[11] “Mosby’s Medical Dictionary,” Elsevier, Amsterdam,
2009.

[12] P. Deitel and H. Deitel, “Java How to Program: Late Ob-
jects,” 8th Edition, Prentice Hall, Upper Saddle River,
2009.

[13] C. Horstmann, “Big Java Late Objects,” Wiley, Hoboken,
2012.

[14] S. Glynn, “Methods and Strategies: The Teaching-with-
Analogies Model,” Science and Children, Vol. 44, No. 8,
2007, pp. 52-55.

[15] Z. Alzamil, “Towards an Effective Software Engineering
Course Project,” Proceedings of the ACM 27th Interna-
tional Conference on Software Engineering (ICSE05), St.
Louis, 15-21 May 2005, pp. 631-632.

[16] J. Tuyal and J. Garcia-Fanju, “Effort Measurement in
Student Software Engineering Projects,” Proceedings of
the 30th ASEE/IEEE Frontiers in Education Conference,
Kansas City, 18-21 October 2000, pp. F1A-3-F1A-6.

[17] T. Reichlmayr, “The Agile Approach in an Undergradu-
ate Software Engineering Course Project,” Proceedings of
the 33rd ASEE/IEEE Frontiers in Education Conference,
Boulder, 5-8 November 2003, pp. S2C13-S2C18.

[18] J. Hayes, “Energizing Software Engineering Education
through Real-World Projects as Experimental Studies,”
Proceedings of the IEEE 15th Conference on Software
Engineering Education and Training, (CSEET.02), Cov-

ington, 25-27 February 2002, pp. 192-206.

[19] P. Robillard, “Teaching Software Engineering through a
Project-Oriented Course,” Proceedings of the IEEE 9th
Conference on Software Engineering Education (CSEE),
Daytona Beach, 22-24 April 1996, p. 85.

[20] S. Ludi and J. Collofello, “An Analysis of the Gap be-
tween the Knowledge and Skills Learned in Academic
Software Engineering Course Projects and Those Requir-
ed in Real Projects,” Proceedings of the 31st ASEE/IEEE
Frontiers in Education Conference, Reno, 10-13 October
2001, pp. T2D-8-T2D-11.

[21] P. Bucci, T. Long and B. Weide, “Do We Really Teach
Abstraction?” Proceedings of the ACM 32nd SIGCSE
Technical Symposium on Computer Science Education,
Charlotte, 21-25 February 2001, pp. 26-30.

[22] I. Hadar and E. Hadar, “Iterative Cycle for Teaching Ob-
ject Oriented Concepts: From Abstract Thinking to Spe-
cific Language Implementation,” Proceedings of the 10th
Workshop on Pedagogies and Tools for the Teaching and
Learning of Object Oriented Concepts, Nantes, 3-7 July
2006.

[23] H. Wei and L. Yao, “Research in Visualization Teaching
Method of Program Design,” Proceedings of the IEEE
2nd International Conference on Communication Systems,
Networks and Applications, Hong Kong, 29 June-1 July
2010, pp. 180-183.

[24] P. Clarke, Y. Wu, A. Allen and T. King, “Experiences of
Teaching Model-Driven Engineering in a Software De-
sign Course,” Proceedings of the ACM/IEEE 12th Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems: Educators’ Symposium, Denver, 4-9
October 2009.

[25] O. Mishali, Y. Dubinsky and I. Maman, “Towards IDE
Support for Abstract Thinking,” Proceedings of the ACM
2nd International Workshop on the Role of Abstraction in
Software Engineering, Leipzig, 11 May 2008, pp. 9-13.
http://dx.doi.org/10.1145/1370164.1370167

[26] D. Zhenrong, H. Wenming, D. Rongsheng and W. Peizhi,
“Exploration of Ability Development of Engineering and
Computational Thinking Skills in Software Engineering
Majors,” Proceedings of the IEEE 4th International Con-
ference on Computer Science & Education, Nanning, 25-
28 July 2009, pp. 1665-1668.

[27] C. Starrett, “Teaching UML Modeling before Program-
ming at the High School Level,” Proceedings of the IEEE
7th International Conference on Advanced Learning Tech-
nologies, Niigata, 18-20 July 2007, pp. 713-714.

[28] O. Hazzan and J. Tomayko, “Reflection and Abstraction
in Learning Software Engineering’s Human Aspects,”
IEEE Computer Magazine, No. 6, 2005, pp. 39-45.

[29] G. Clarke and D. Cooke, “A Basic Course in Statistics,”
Arnold, London, 1998.

http://dx.doi.org/10.1145/1232743.1232745
http://dx.doi.org/10.1145/1370164.1370167

Influence of Software Modeling and Design on
Domain-Specific Abstract Thinking: Student’s Perspective

553

Appendix

Study Questionnaire

Dear SwE Student
This is a questionnaire to take your opinion in the

knowledge and skills that you have learned in the soft-
ware design and software modeling courses to improve
your domain-specific abstract thinking. This question-
naire is part of an academic study for the research pur-
poses, and doesn’t aim to any trade purposes. The goal of
this study is to evaluate whether the approaches that have
been applied to your classroom, laboratory, as well as the
course project when studying these two courses have
provided you with the knowledge and skills needed to
improve your domain-specific abstract thinking. Your
opinion is very important in this study, so please be pre-
cise when selecting the answer in the following questions.
I thank you so much for the time that you have given to
fill this questionnaire, and appreciate your cooperation in
supporting the scientific research.

My best wishes to you in a delight future.

Researcher

Statement No

Using simple-machine to describe the problem
domain simplifies problem understanding

S1

Using diagrams as modeling and design tool helps in
modeling and designing the big picture of the system

S2

Dealing with real world problem in the course project
improves my conceptual thinking about the problem solution

S3

The course project improves the way
I think about a problem domain

S4

Teamwork and brainstorming with my colleagues
makes me think abstractly about the system.

S5

Learning and applying modeling and design makes me focused
on the big picture of the system without thinking in the details

S6

Thinking abstractly contributes to modeling
the big picture of the problem domain.

S7

Focusing on the concepts of the system under development
contributes in understanding the system big picture.

S8

The availability of many modeling and design techniques
contributes in improving my ability in thinking and

comparing abstractly.
S9

The availability of many modeling and design techniques
confuses me in thinking and comparing abstractly.

S10

Learning modeling and design techniques improves my
comprehension of modeling and design concepts such as

generalization, decomposition, abstraction,
projection/views, and explicitness.

S11

Learning modeling and design makes me able to
separate component from connectors.

S12

Using analogy is a good tool to improve
my abstract thinking skill

S13

Copyright © 2013 SciRes. JSEA

