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ABSTRACT

We study two calibration problems for the lognormal SABR model using the moment method and some new formulae
for the moments of the logarithm of the forward prices/rates variable. The lognormal SABR model is a special case of
the SABR model [1]. The acronym “SABR” means “Stochastic- ¢fp ” and comes from the original names of the model

parameters (i.e., «,f,p) [1]. The SABR model is a system of two stochastic differential equations widely used in

mathematical finance whose independent variable is time and whose dependent variables are the forward prices/rates
and the associated stochastic volatility. The lognormal SABR model corresponds to the choice g =1 and depends on

three quantities: the parameters «, p and the initial stochastic volatility. In fact the initial stochastic volatility cannot

be observed and can be regarded as a parameter. A calibration problem is an inverse problem that consists in determine-
ing the values of these three parameters starting from a set of data. We consider two different sets of data, that is: i) the
set of the forward prices/rates observed at a given time on multiple independent trajectories of the lognormal SABR
model, ii) the set of the forward prices/rates observed on a discrete set of known time values along a single trajectory of
the lognormal SABR model. The calibration problems corresponding to these two sets of data are formulated as con-
strained nonlinear least-squares problems and are solved numerically. The formulation of these nonlinear least-squares
problems is based on some new formulae for the moments of the logarithm of the forward prices/rates. Note that in the
financial markets the first set of data considered is hardly available while the second set of data is of common use and
corresponds simply to the time series of the observed forward prices/rates. As a consequence the first calibration prob-
lem although realistic in several contexts of science and engineering is of limited interest in finance while the second
calibration problem is of practical use in finance (and elsewhere). The formulation of these calibration problems and the
methods used to solve them are tested on synthetic and on real data. The real data studied are the data belonging to a
time series of exchange rates between currencies (euro/U.S. dollar exchange rates).

Keywords: SABR Model; Calibration Problems; FX Data

1. Introduction Let t be areal variable that denotes time and x,, V,,
t>0, be real stochastic processes that describe, res-
pectively, the forward prices/rates and the associated
stochastic volatility, as a function of time. The SABR
model [1] assumes that the dynamics of the stochastic
processes X, V,, t>0, is defined by the following
system of stochastic differential equations:

We study two calibration problems for the lognormal
SABR model using the moment method and some new
formulae for the moments of the logarithm of the forward
prices/rates variable. The lognormal SABR model is a
special case of the “Stochastic- o ” model which has
become known under the acronym of SABR model [1].
The SABR model is widely used in the theory and prac- dx, = |xt|ﬂ v, dW,,t >0, (1)
tice of mathematical finance, for example, it is widely

used to price interest rates derivatives and options on cur- dv, =&vdQ,.t>0, 2
rencies exchange rates. with the initial conditions:
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X =%, ?3)
Vo =Yy, 4)

where B€[0,1] is the A -volatility and &>0 is the
volatility of volatility. Note that in the original paper [1]
the volatility of volatility & was called «. The
stochastic processes W,, Q,, t>0, are standard
Wiener processes such that W, =Q, =0, dw,, dQ,,
t >0, are their stochastic differentials and we assume
that:

(dW,dQ, ) = pdt,t >0, (5)

where denotes the expected value of - and

pe(-1,1) is a constant known as correlation coefficient.

The initial conditions %,, V, are random variables that
are assumed to be concentrated in a point with pro-
bability one. For simplicity, we identify these random
variables with the points where they are concentrated.
We assume ¥, >0 (with probability one) so that
Equation (2) implies that v, >0 (with probability one)
for t>0. Note that the initial stochastic volatility v,
and the stochastic volatility v,, t>0, cannot be
observed in the financial markets. That is, ¥, must be
regarded as a parameter of the model together with £,
g and p.

The value of the parameter S <[0,1] determines the
forward prices/rates process, that is, it determines
Equation (1). The most common choices of S are:
=0, B=12 and B=1.

Setting £ =0 in (1) the forward prices/rates process
reduces to:

dx, =v,dW,,t > 0. (6)

The corresponding model (6), (2), (3), (4) is known as
the normal SABR model. This model has a forward
prices/rates process whose increments are stochastic
normally distributed, that is, the increments are normally
distributed with mean zero and a stochastic standard de-
viation lognormally distributed. This permits to the for-
ward prices/rates x,, t>0, to become negative. Usual-
ly this is not a desirable property. In fact, in financial
applications most of the times prices/rates are supposed
to be positive. However, in some anomalous circumstan-
ces negative quantities such as negative interest rates can
be considered.

The choice B=1/2 in (1) gives the following
forward prices/rates process:

dx, =[x [vdw,.t > 0. @)

The model (7), (2), (3), (4) can be seen as a stochastic
volatility version of the CIR model with no drift. The
CIR model is a short term interest rate model introduced
by Cox, Ingersoll and Ross (CIR) in [2]. In the CIR
model the volatility v,, t>0, is a constant, that is,

Copyright © 2013 SciRes.

v, =V,, t>0. Note that the model (7), (2), (3), (4)
reduces to the CIR model (with no drift) when ¢=0.
When ¢ >0 the volatility is governed by (2). In the
SABR model (7), (2) when the initial conditions (3), (4)
are positive (with probability one) negative forward
prices/rates can be avoided.

Finally, the choice g =1 in (1) produces:

dx, =] |vdW,,t> 0. (8)

The model (8), (2), (3), (4) is known as lognormal
SABR model. It is a stochastic volatility version of the
Black model. The Black model is a special case of the
Black-Scholes model [3] obtained when the drift para-
meter of the Black-Scholes model is equal to zero. In the
Black model the underlying asset price is modeled as a
geometric Brownian motion. Unlike in the Black model,
where the volatility is a constant, in the lognormal SABR
model the volatility is a stochastic process itself (see (2)).
Note that model (8), (2), (3), (4) reduces to the Black
model when ¢=0. In the lognormal SABR model the
positivity (with probability one) of the forward prices/
rates x, is guaranteed for t>0 when the initial condi-
tions (3), (4) are positive (with probability one). In parti-
cular when the initial conditions (3), (4) are positive
(with probability one) the absolute value in (8) can be re-
moved.

The choice made in this paper of studying the log-
normal SABR model is motivated by the fact that the
lognormal model is the most used SABR model in the
practice of the financial markets. Moreover, after the
normal SABR model (that has been studied in [4]) the
lognormal SABR model is mathematically the simplest
model in the class of the SABR models (1)-(4).

Note that in the SABR model the forward prices/rates
random variable is represented as a compound random
variable and that the SABR model can be seen as a sto-
chastic state space model [5]. Compound random vari-
ables and state space models are widely used in science
and engineering. This means that the methods and the
results presented here to study the lognormal SABR
model can be extended outside mathematical finance to a
wide class of problems.

In this paper we concentrate on the study of the log-
normal SABR model (8), (2), (3), (4), i.e., in (1) we
choose f =1, and we study the calibration problem for
this model. That is, we study the problem of determining
the unknown parameters ¢, p, ¥, of the lognormal
SABR model starting from the knowledge of a set of data.
The sets of data considered are: i) the set of the forward
prices/rates observed at a given time on multiple inde-
pendent trajectories of the lognormal SABR model, ii)
the set of the forward prices/rates observed on a discrete
set of known time values along a single trajectory of the
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lognormal SABR model. The formulation of the cali-
bration problems corresponding to these two sets of data
is based on some new closed form formulae for the mo-
ments of the logarithm of the forward prices/rates vari-
able. Using these formulae the calibration problems con-
sidered are formulated as constrained nonlinear least-
squares problems. The moments formulae are deduced
extending to the lognormal SABR model a method in-
troduced in [4] in the study of the normal SABR model.

Note that the data set used in the first calibration prob-
lem, that is, a data sample made of observations at a
given time on multiple trajectories, is hardly available in
the financial markets. In fact, in the financial markets
usually it is not possible to repeat the “experiment” as
done routinely in contexts where observations are made
in experiments carried out in a laboratory. This implies
that the first calibration problem although realistic in se-
veral fields of science and engineering has limited appli-
cations in finance. Instead, the second calibration prob-
lem is of practical use in finance since single trajectory
data samples are easily available in the financial markets
and can be identified with time series of observed for-
ward prices/rates.

An alternative approach to study the calibration prob-
lem for the lognormal SABR model corresponding to the
single trajectory data sample consists in extending the
method proposed in [6,7] to study a similar calibration
problem for the Heston model and for some of its varia-
tions. This method is based on the idea of maximizing a
likelihood function. However, the use of closed form
moment formulae (see Formulae (65)-(68)) rather than
the use of a likelihood function involving the transition
probability density function of the differential model and
the solution of a kind of Kushner equation (see [6,7])
gives to the method based on the moment formulae pre-
sented here a substantial computational advantage in
comparison to the method suggested in [6], [7]. A similar
statement holds when the method presented here is com-
pared to methods where averages of quantities implicitly
defined by the differential model (such as the moments)
are computed using statistical simulation.

The numerical solution of the nonlinear least-squares
problems that translate the calibration problems consider-
ed can greatly benefit from the availability of a good ini-
tial guess to initialize the optimization algorithm. In Sec-
tion 3 we discuss briefly how to exploit the first moment
formula obtained in Section 2 to build the initial guesses
needed.

Note that, extending the results presented in [4], it is
possible to define ad hoc statistical tests that can be used
to associate a statistical significance level to the parame-
ter values obtained as solution of the calibration prob-
lems. We do not consider statistical tests and statistical
significance levels in this paper.

Copyright © 2013 SciRes.

The remainder of the paper is organized as follows. In
Section 2, new formulae for some of the moments of the
logarithm of the forward prices/rates variable of the log-
normal SABR model are derived. In Section 3, the cali-
bration problems for the lognormal SABR model corre-
sponding to the two data sets discussed previously are
formulated as constrained nonlinear least-squares prob-
lems. Finally, in Section 4 we solve numerically the cali-
bration problems presented in Section 3 and we discuss
the results obtained in numerical experiments on synthe-
tic and on real data. The real data studied are time series
of euro/U.S. dollar exchange rates.

2. Formulae for the Moments of the
Lognormal SABR Model

Let us deduce closed form formulae for the moments of
the logarithm of forward prices/rates of the lognormal
SABR model. Let us consider the model given by:

dx, = xv,dW,,t >0, 9
dv, = &v,dQ,,t >0, (10)
with positive initial conditions (3), (4) and the

assumption (5). That is, we assume X,>0 (with
probability one) and V, >0 (with probability one), so
that Equations (9), (10) imply x >0 (with probability
one), and v, >0 (with probability one) for t>0.

Let &=In(x), t>0, be the logarithm of the
forward prices/rates. Using the variables &, v,, t>0,
the stochastic differential Equations (9), (10) and the
initial conditions (3), (4) are rewritten as follows:

de :—%vfdtJrvtth,t >0, (11)
dv, = £v,dQ,,t >0, (12)

£ =& =In(%,), (13)

Vy =V,. (14)

Starting from the expression obtained in [8] for the
transition probability density function of the stochastic
processes &, Vv,, t>0, we deduce explicit formulae
(eventually involving integrals) for the moments with
respect to zero of &, v,, t>0,andof x, v,, t>0.
In particular, we derive closed form formulae (that do not
involve integrals) for the first five moments with respect
tozeroof &, t>0.

In [8], using the backward Kolmogorov Equation
associated to (11), (12), the following formula for the
transition probability density function p, of the sto-
chastic processes ¢&,v,, t>0, implicitly defined by
(11)-(14) has been obtained:

OJApPpS



348 L. FATONE ET AL.

SRCAAT-AN Y
zzi “dke g, (t-t'k, v,V &, p), (15)
T —00
(g‘,v),(f',v')eRxR*,t,t'ZO,t—t'>O,

where ¢ is the imaginary unit and we have & =¢&,
V=V, &=¢&, V=V, tt'>0, t-t'>0. In (15),
when t'=0 we must choose &'=¢&,, v'=V,. The
function g, isgiven by:

_S,2 ' ykM
2 (Wje

s,k,v,V',g, p)=—¢€ —_— e
g, (s.k,v,V',e p) = wn

x[“doe ™" wsinh (rw)K,,, (s (k)V)K,, (s(k)V), (16)
seR" keR,v,VeR"e>0 pe(-11),

where the function K, denotes the second type modi-
fied Bessel function of order 77 (see [9] p. 5). Finally,
¢?(k), keR, isdefined as

¢ (k)=?<l—p )-.g—z, keR. (17)

The function g, can be rewritten as follows [8]:

\/v —552 1 7k7p(v’—v)
s,k,v,v',g,p)=——e 8 —e =*
g, ( p) = vk

2

eg
>< —
V2ss?
K W'(l—pz)k2

w
+o0 "7 —y(vZ+vZ+2w’cosh(u)) /(2w) T 2
XJ.O dye 2ye e ( ( ))/( )e 2%y

J;mdu sinh (u)sin (n_ujem/(zg)

s&? (18)

S€R+,kGR,V,V'GR+,€>O,/JG(—1,1).

Formulae (15), (16) or (15), (18) give p, as a two
dimensional integral of an explicitly known integrand.
Note that in (15) the transition probability density
function p_ is written using the variables & =In(x,),
V,, t>0. It is easy to obtain a formula analogous to
formula (15) for the transition probability density
function written in the original variables x,, v,, t>0.

Formulae (15), (16) and (15), (18) are representation
formulae for p,_ that hold when p e(-1,1). These for-
mulae have been obtained in [8]. Previously when
p =0 for p_ only series expansions in powers of p
with base point p=0 were known (see, for example,
[10,11] and the references therein).

Let us begin deriving some formulae for the moments
M., n,m=0,1---, with respect to zero of the vari-
ables x., v,, t>0, of the lognormal SABR model (9),
(10), (3), (4), namely,

M, (L& V)= f:dge”‘f .[:odvvm pL(E VL E W),
FeRV eRt,1'20,t-t"'>0,mn=0,1,---.
(19)

Copyright © 2013 SciRes.

We distinguish two cases, that is: the case n=0 and
thecase n>0.
When n=0 we have:

M (6,8, 1) = f:dgjgwdvvm p.(&v,1,E, V1)

= f:dkci(k)e‘“‘f' {IomdvvmgL (t-t'k,v,V,e, p)} 20)

:IO dw"g, (t-t,0,v,V', &, p),
EeRVeR" {,t'>0,t-t'>0,m=0,1,---,
where ¢ isthe Dirac’s delta. From (18) we have:

joﬂodvvmgL (s,0,v,V',&,p)

th

\/7 _Sg2 eﬁ oo . . ( U j —uz/(ZSsz)
= et dusinh(u)sin| — |e
mn J2se? IO () s’

v v’
« J'(J*wdvvm—a/z joﬂodye_yﬁe_yﬂe—ycoshu’

S,V'eR*,s>0,pe(—1,1),m:0,1,---.

(21)
Using formula (29) on page 146 of [12] we have:
R T —y% PR
IO dvv“ Y% “2ve 2 =2(v')" K;,_M(y), (22)
VeR",yeR" ueR,
and this implies that:
T[Z
oy'Mm S22 g2ss?
M, (LE WV U )=——e ¥ ——
ol ) N 2s¢?
+o0 . . Tu —u?/(2s¢?
><IO du smh(u)sm(;]e /o)
« J.(:Ocdme,l/z (y)e_ycoshu ,
'eR,V eRY,t,t' 20,
t—-t'>0m=0,1---.
(23)
From Formula (24) on page 197 of [12] it follows that:
oo yeosnu _Sinh(u/2
IO dyK,,,, (y)e ™" :n#,UGR. (24)

sinh(u)

From Formulaes (23) and (24) and using formula (37)

on page 92 of [12] we can conclude that
M (tLE WV 1)=1, &'eR, VeR" tt'>0,t-t'>0
and that M, (t,&',V't")=V", &'eR,
vV eR"t,t'>0,t-t">0 . Note that the moments
Myp,m=2,3,---, diverge. In fact, when n=0
integrating (20) first with respect to k when keR,
and then with respectto & when &£ eR, we have:
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My (8E V1) = %Jj:dfj;wdvvm

TEZ

V\/_ ,252 g2ss?
ﬂ\/7 2sg2 °°

x _rmdvv'“"/2 !
0

J.j:dkeZk(gfgw)gL (t -t k,v,V, ¢, p)

_y2

“du sinh(u)sin(%)em2 (25)

, S'eRV eR,U'20,t-t'>0,m=0,1,--

Formula (25) is equivalent to Formula (23) and shows
that in order to have a convergent integral we must choo-
se —1/2<m<3/2.

vZ +v'? +2w'cosh (u)

When n>0 using Formulaes (15) and (18) in the de-
finition (19) we have:

j dée ”fj dvy™ xj “dke =g (t-t' kv, Ve, p)

2

M, (£EV,T)
B e”sv\/_ n- n( p)a,ggz o252
-2
I dvym Y2 /e

C

7 j dusinh (u )sin[;r—lijeuz/(zsgz)
se? &

Jn—n? 1—p2 (26)
K —\/v2 +Vv'? +2w'cosh (u)
1
&

EeRVeR"t,t'>20,t-t'>0,n=12,--,

Note that for n, =1,2,---, when
~l<p<—J(n-1)/n, or -1)/n, <p<1 the
integrals appearing in (26) with n=12,---,n,
m=0,1,---, and the corresponding moments are con-

vergent. A similar existence condition for the moments
of the lognormal SABR model has already been derived
in [13], however in [13] no explicit integral repre-
sentation formula for the moments like Formula (26) is
given.

Note that when n=1 and m=0 formula (??) gives
Mo (L& t) ef, FeRVeR ,1t'>0t-t'>0,
when pe(-1,1).Recall that x'=e, &'eR.

Let us conS|der now the moments £ .,n,m=0,1-,

\/vz +v'2+2w'cosh (u)
m=0,1,---.

with respect to zero of the variables ¢& ,
defined by (11)-(14), i.e.

Ly (L&) = [TdEE [T p (4w, VL),
f'eRV eR,1,1'20,t—-t'>0,mn=0,1,--
(@7)

The procedure used here to calculate the moments (27)
generalizes the procedure used in [4] to calculate the
moments with respect to zero of the variables x., v
t >0, of the normal SABR model.

Substituting (15) into (27) and using the properties of
the Fourier transform we have:

v, t>0,

dJ'

-1)’ +0 o0
) x|, dvmeOdk5(k)—ng(t—t’,k,v,v’g,p)

:anu e

v —gL (t=t'k,v,V'e, p)| o (28)

dk!

FeRV eR tt'20,t-t'>0,n,m=0,1,---.

Let us calculate the integrals contained in (28). For

i=01--- let G, be the j-th order derivative with
respect to k of the function g, evaluated at k =0,
that s, let G(s,v,v')=(d'g,/dk’)(s,0,v,v") ,

Copyright © 2013 SciRes.

s,v,v' e R". To simplify the notation we have omitted in
the previous formula, and we will omit from now on, the

dependence of g, and of G;, j=01--, from &
and p. Using the functions G;, j=0,1,---, Formula
OJApPpS
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(28) can be rewritten as follows:
L, (&)
N n n—j i +00
:z[jj(g’) Jz’xfo dw"G, (t-t',v,v'),  (29)
j=0
EeRV eR Gt'>20,t-t">0,mn=0,1,---.

We restrict our attention to £, ,(t,&',V't'), &'eR,
V'eR", tt'>0,t-t'>0n=0,1---. In fact, in Section
3 in the solution of the calibration problems we will use
L., N=12,34. The choice of considering m=0 in
the moments used to solve the calibration problems is
due to the fact that in the financial markets the variable
X, t>0, and, as a consequence, the variable & ,
t>0, can be observed, while the variable v,, t>0,
cannot be observed. That is, the moments £ .,
n=0,1---, m>0, cannot be easily estimated from
observed data, while the moments £ ,, n=0,1---, can
be estimated immediately from observed data.

Let us define

L (s, &)=L, (LE V1)
= i[rj]](f')nj /Dy(sv),  (30)

-0
s=t-t'eR",&eR,vVeR" ,n=01--
where

D, (s,V)= jmdij (s,v,v")

- (1)
=, dvko 9 (S V)i SV ERT, j=01,-,
and

- N L ,
Dj(s,k,v)zmj0 dvg, (s,k,v,v), 32)
seR" keR, v eR", j=0,1,--.
We have
D, (s.v')=D, (5,k,v')| .
(dk’j dvg, (s.k VV)J , (33)
k=0

s,v'eR*, j=0,1,--

The functions D;, j=0,1.---, can be determined by
solving the initial value problems deduced below. The
function g, is the solution of the following initial value
problem (see [8]):

8g_|_=€2 Zazg’; _EVIZQL_kagVIZag_I;
os 2 ov 2 ov (34)

+%zkv'2gL, seR"  keR,V eR",

Copyright © 2013 SciRes.

9, (0,k,v,v)=68(v'-v),keR,v,vV' eR". (35)

Equation (34) is the Fourier transform of the backward
Kolmogorov equation of the lognormal SABR model and
the parameter k e R that appears in (34) is the con-
jugate variable in the Fourier transform of the variable
&'-EeR.

Integrating both sides of (34), (35) with respect to v
when veR" we have:

2 2 2
) _E e I,DZ —k—v'zD —kpev'? —2

+%zkv'2[~)o, seR ", keR,V eR",

D, (0,k,v)=1keR,V eR". (37)
When k =0, Equations (36), (37) reduce to:
2 2
aD gv'Za Z,Se]R+kERVER+ (38)
s 2 oV’
D, (0,v)=1v' eR". (39)

Equations (36)-(39) define initial value problems satis-
fied by I50 and by D,, respectively. Recall that the re-
lation between D, and D, is given in (33). It is easy
to see that D, (s,v')=1, s,v'eR", is asolution of (38),
(39). Let us obtain this solution using a procedure that
later will be extended to deduce explicit formulae for the
functions D; when j>0.

Deflnlng\/LD v and L[, through the relations:

L0 . sV'eR" , wv=In(v) ,
v’ eR+ (ie. v'( ) e”, veR)and
L(sv)=L(sv'(v)), seR"veR, problem (38),
(39) can be rewritten as follows:
L, & 0°L, & - .
=237 8 L, seR",veR, (40)

L(0v)=e"?veR (41)
The solution of (40), (41) is given by:

I:O (S,v) = J.j:dv"l’o (S,V—v')e’V’/Z,S eR",veR, (42)
where

L eV s ep v R (@3)

o (S,V) B 2nels

The integral (42) when q=(2j-1)/2 and j=0
can be computed using the formula
j:d VW (s,v—v') e’
_ el e, (44)
seR",veR,geR.
It follows that the solution L, of problem (40), (41)

— e—gzs/aeqvesszqz/Z
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is given by:
L(sv)= e 25 Bee " g2 S R* vy e R, (45)
From (45) it follows that
D, (s.v) =¥V, (s.In(v))
=We "2 21 s v eR".
Let us derive the initial value problems that are
satisfied by the functions D, (s,v')=D;(s,k,V')|, ,
sv'eR", j=12,-.-. Differentiating j times with
respect to k problem (34), (35) and substituting k =0
in the resulting equations, we have that when j=1 the

function D, (s,v'), sVv'eR", satisfies the following
initial value problem:

oD, & ,0°D,

(46)

1 1”2 2 +
—L = +—Vv“D,,s,v eR", 47
os 2wt o2 47)
Dl(O,v'):O,v’eR+, (48)

and when j=2,3,--- the function D;(s,V'),
s,v' e R", satisfies the following initial value problem:

D, g D, j,. ,
=5 (i-)(v) Dy,

0s 2
. ' aD* P
_JZIDSVZ#"_JEVZDFP (49)
seR*VeR", j=23--,
D, (0,v')=0,v' eR",j=2,3,--. (50)

Let us assume that

I:J- (S,V) = J.:drjlj:d VY, (S —7,v—V)

D; (s,v’):\/ﬂ_j (s,v'),s,V'eR", j=1,2, (51)

and considering the change of variable v=In(v'),

Vv'e R, define the following functions

L, (ig)z L (s.v'(v)) =L, (s,ev) , seR", veR,

1=12,---.

It is easy to see that (47), (48) imply that the function

L, , is the solution of the following initial value problem:

"~ 2 217 2 ~

oL _ 0L &ty Do

+%ze3v/250, seR*,veR",

s 2 oV

L(0v)=0veR, (53)

where Do (s,v)= Dogs,e” =1, seR", veR .
Moreover, from (49), (50) it follows that the functions

L;, =273, satisfy the initial value problems:

o, 200, g | _
- 2 [ —2(j-1)e**Dj
s 22 b U =

~jupee? 921 L ey (54)
ov 2
seR",veR",j=23,-,
L (0v)=0,veR,j=23.", (55)
where ISj(s,v):Dj(s,ev) ,

j=23,--.
The solution of (52)-(55) can be written as follows:

seR" , veR ,

x {—%( j —l)e?‘&/zﬁj_2 (z,v) - j(ng)ev_/2 % 5j_1 (2',17)+%zeav_/2 5j_1 (1,17)}, (56)

seR* ,veR,j=12,---,

where we have defined D ,(s,v)=0, seR", veR.
Let us give the explicit expressions of

D, (s,V')=W'L,(s,In(v')),s,v' eR", and of

£i(t.&,%), teR’, when j=1234 . Recall that

DJJ (SaV'):«/VEj(s,ln(v')),s,v’eRﬂ j=12,-, and

that Dy(s,v')=1, sV eR". Using Formulae (44), (56)
we have:

N2
le(s,v'):—l(V—J 6525(1—6’825), sv'eR", (57)
&

N2 N3 (1_ e—ZEZS ) (1_ e—3£25 )
D, (S,V') _ _(V_j s (1_e_525)+ Z’D(V_j ol _

£ 2 3

(58)

_ e—5$25 ) (1_ e—ngs )
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\3 _2¢%s _3¢2s N4 3625 _5g2s —6e2s
Y 2 1-e l-e Y 2 || 1—e 1-e 1-e
D,(s,v')=-6p| — | e¥°x - +18p%| — | e - +
D (s,v) p(s] [( 2 ] { 3 ]] p(g] 18 10 18
2 (V_’j“ 66825 1— efsgzs B 1- e—65zs s (V_,js elngs 1- 94825 . 1— e—7szs ~ 1— e—Qszs . 1- e—lOszs (59)
P 5 6 P\ 60 42 10 15
6 _ a9e%s _ a-lae’s _ a-15e%s
+%(V_J e15szs [{1 go J—S[l 670 ]+[1 830 J].S,V’eRJr,
&

where 1, 1, and I, are the following functions:

and finally
D, (s,V) = 1 (s,V)+ 1, (s,V) + 15 (s,V'), s,V eR",(60)

2
-3¢%s l_e—5£ ° _ —62%s
|<>4p[j *[(”)(5 e
~76% a9 _ a-10s%s
_4p RUES 1e +41e _21e
7 5 5
\5 —4s%s -9:%s —10£2%s

v 10e2 | | 1—€ l-e l-e

—4p|— | € -4 + 61
\6 _ 5% _ -9:%s _ —12£%s _ ~14£%s _ —15£2s
+2p2(v_J gises [ o 1€ | 1-e _g|1-e Lgll-e ol l-e
& 70 18 84 14 15

Y _ abe?s _ a-15e% _ a—20e%s _ a-21e%s
_p(v_j g2le’s 1-e _|1=¢ +9 1-e _|1=e , S,V eR",

£ 630 225 700 105

, 1- —55 s 1- e—Gezs V' 5 2 1_e—7525 1_e—9525 1_e—10525
2 (V) =+6 H J [ 6 H_Gp(ﬂ T e o T
952 1452 1552 (62)
1555 1-e 1-e + 1-e , S,erRJf,
7 9

762 _ a9e%s _ a-l0g2s
1 __12p(v_ 1057 1-e | 1-e N 1-e
& 18 30
+2p2 V_ eisgzsx 1_679325 B 1_e712525 10 1_6714525 B 1_e715525
& 45 12 70 15
N 6(\/_')6 615525 1- efggzs B 1— 6714525 N 1- e—lSszs (63)
& 270 70 90
Y _ ~11£%s _ —15£2s _ —18%s _ —20£2s _ —21£%s
—pV—Je“ngSle |1-e |1-e L3l 1-¢ ol l-e
& 770 150 126 100 105
A\ _ a-13e%s _ a22¢% _ a-27e%s _ a28%s
A o287 1-e | 1-e N l-e | 1-e sV eR".
20\ ¢ 819 198 63 84
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Recall that s=t—-t". From (30), (46), (57)-(60),
choosing t'=0, &' =&, v'=V, we have that s=t
and the first five moments with respect to zero of &,
teR", are given by:

L (659 ) =Dy (1.7,) =1, teR",& e R, e R", (64)

Q(tvégmvo):goDo(t’Vo)+2D1(t!\70)’
teR", & eR,V, eR",
[;(t’ézo'vo):gozD (t \70)+2502D1(t!\70)
—3§0 (t VO) D, (t,\70), (66)
teR" ,50 eRYV, eR",
Q(tvgovvo):EgDo(tho)+3Eole1(t’\70)
—3&,D, (t,9,)— D, (t,7,), (67)
teR" R, eR",
ﬁjt(t’go’vo):SE;Do(t!Vo)+462g2D1(tv\70)
—6ED, (1,V,) - 4&,2D, (1Y) (68)
+D,(1,%), teR",& e RV, eR".

(65)

The moments £, L£,, L£,, L, depend on the pa-
rameters of the lognormal SABR model ¢, p, V, and
on the time t. In particular, L, depends on ¢, Y,
and t, while £,, £, £, depend on &, V,, p and
t. The moment £, does not dependon &, V,, p, t
and cannot be used in the study of calibration problems
for the lognormal SABR model. Formulaes (65)-(68) for
the moments of the lognormal SABR model are the new
closed form moment formulae announced in Section 1
and are the formulae used in the next sections to solve
the calibration problems discussed previously. Analo-
gous formulae can be deduced (at least in principle) for
all the remaining moments £ . defined in (27). Of
course as n,m increase the formulae for £ . become
more and more involved. Note that, as already said in
Section 1, closed form formulae of observable quantities
implicitly defined by (9), (10), (3), (4) such as (65)-(68)
are very useful to build computationally efficient me-
thods to solve calibration problems.

In [4], Formulae analogous to (65)-(68) for the mo-
ments of the forward prices/rates variable of the normal
SABR model (6), (2), (3), (4) are derived and used to
solve calibration problems.

3. Two Calibration Problems for the
Lognormal SABR Model

Let us study the calibration problems of the lognormal
SABR model (11)-(14) announced in Section 1. Recall
that the parameters ¢, p, V, are the unknowns and
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that we want to determine these parameters starting from
the knowledge of a set of data. We consider the sets of
data specified previously. The corresponding calibration
problems are formulated using the closed form Formulaes
(65)-(68) for the moments of the logarithm of the for-
ward prices/rates variable and are solved numerically.

Let us begin formulating the first calibration problem.
Let T >0 be given. We consider multiple independent
trajectories of the lognormal SABR model (11), (12) as-
sociated to the initial conditions (13), (14) assigned at
time t=0. The set of data of the first calibration prob-
lem is the set of the logarithms of the forward prices/
rates observed at time t=T in this set of trajectories.

In particular, letting n be a positive integer, we
consider n independent copies & , i=1,2,---,n, of
the random variable & solution at time t—T of
(11)-(24). For i=1,2,---,n let .fT be a realization of

&L The set:

D, ={&,i=12,n}, (69)
is the data sample used in the following calibration
problem:

Calibration problem 1: multiple trajectories calibra-
tion problem.
Given T >0, n>0 and the data set D, defined in

(69), reconstruct the values of the parameters &, p
and V, of the lognormal SABR model (11)-(14).

To solve this calibration problem we compare the
theoretical values of the four moments LJ j=12,3,4,
given by (65)-(68) with the estimates of these moments
obtained from the sample D, of the observed data.

It is easy to see that the random variables:

AOT)=s3(E) j=1234 (0)

i=1
are unbiased estimators of, respectively, /3’} ,
=234 . For j=1234 |let us consider the
realization A;(n,T), in the data sample D,, of the
random variable A (n,

T), thatis:
Ay (n, )—%an(“),jzl,z,m. 71)

i=1
The unknown parameters &, p, V, of the normal
SABR model can be determined as solutions of the fol-
lowing constrained nonlinear least-squares problem:

grrllcl_z::o ( (1,85 )= A (n, T)) (72)
subject to the constraints:
£>0,-1< p<1¥; >0, (73)

where o;, j=12,3,4, are non negative weights that
will be chosen in Section 4.
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Note that roughly speaking when n increases the
“quality” of the moments A;(nT), j=1234,
estimated from the data sample increases and this should
make easier to solve satisfactorily the Calibration prob-
lem 1.

The numerical experience shows that the constrained
nonlinear least-squares problem (72), (73) has many
local minimizers with similar objective function values.
This means that the solution of problem (72), (73) is
sensitive to the choice of the initial guess of the
minimization procedure used to solve it. To construct
good initial guesses of problem (72), (73) we take a
closer look to the explicit expression of the moment
Formulae (65)-(68). In particular, we consider the
asymptotic expansion of the moment £ (formula (65))
when &£t —0. Let T,,T, be suchthat 0<T, <T,, we
approximate £ with the first- and the second-order
Taylor's expansions of base point t=0. The first-order
approximation of £ when t=T, is used to obtain the
initial guess for the parameter V,. The second-order
approximation of £, when t=T, is used to obtain the
initial guess for the parameter &. To build an initial
guess of the parameter o it is necessary to use
higher-order moments. We prefer to exploit the fact that
-l<p<1 and that the availability of the explicit
moment formulae makes computationally very efficient
the solution of problem (72), (73). This means that, when
necessary, at an affordable computational cost, it is
possible to use multiple initial guesses for the parameter
p.
The data sample D, defined in (69) used in Calibra-
tion problem 1 to formulate problem (72), (73) must be
completed with the auxiliary data & , &
i=12,---,n, (observed at time t=T, and t=T,)
needed to build the initial guess of the minimization
procedure used to solve problem (72), (73). For sim-
plicity, it is possible to choose T =T, or T =T, asitis
done in the numerical example discussed in Section 4. In
this case, the data contained in (69) are used both to
formulate the nonlinear least-squares problem (see (72),
(73)) and to obtain the initial guess for V¥, (when
T =T,) or, the initial guess for ¢ (when T =T,).

This set of data is realistic in several contexts of
science and engineering where, for example, the obser-
vations are obtained in experiments done in a laboratory.
In fact, repeated experiments are a routine work in a
laboratory. However, most of the times this is not re-
alistic for observations made in the financial markets
where usually it is not possible to repeat the “experi-
ment”. That is, in the financial markets repeated obser-
vations at a given time t >0 of independent realizations
of the forward prices/rates random variable ¢& are
usually not available. This is a serious concern which
implies that the Calibration problem 1 is of limited in-
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terest in finance.

The second calibration problem for the lognormal
SABR model (11)-(14) overcomes this difficulty. In fact,
the data sample considered in the second calibration
problem is the set of the logarithms of the forward pri-
ces/rates observed on a discrete set of known time values
along a single trajectory of the lognormal SABR model.
This data sample is easily available in the financial mar-
kets. It can be identified with a time series of the log-
arithms of the forward prices/rates observed in the finan-
cial market.

Going into details, let M be a positive integer and let
ty,t,---,ty be M +1 discrete time values such that
t>t,, i=12-- M, and t,=0. Recall that the
times t, i=0,1---,M, are known. The data of the
second calibration problem are the logarithms of the for-
ward prices/rates observed at the times t,t,,---,t,,. For
i=12,---,M let us denote by ¢ the logarithm of the
forward prices/rates observed at time t=t; along one
trajectory of the stochastic process ¢&,t>0. The set:

D, ={&i=12,+M}, (74)

is the data sample used in the following calibration
problem:

Calibration problem 2: single trajectory calibration
problem.

Given M >0 , M+1 discrete time values
ty,t,---,ty, such that t >t_,, i=12---,M, and
t, =0, and given the data set D, defined in (74),
determine the values of the parameters ¢, p and V¥,
of the lognormal SABR model (11)-(14).

The Calibration problem 2 can be formulated as the
following constrained nonlinear least-squares problem:

M 4 v\
mn3 S [46E0-E) ] @9
subject to the constraints (73). The constants @, ,
i=12,---,M, j=12,34, in (75) are non negative
weights that will be chosen in Section 4. Note that yvhjen
M increases the *“quality” of the terms (;) ,
i=12,---,M, j=1,2,3,4, does not increase, it is only
the number of addenda of (75) that increases. For this
reason we expect Calibration problem 2 to be more
difficult than Calibration problem 1.

The numerical experience with problem (75), (73)
shows that the behaviour of the constrained nonlinear
least-squares problem (75), (73) is similar to the
behaviour of problem (72), (73). This implies that the
availability of a good initial guess for the numerical
optimization algorithm used to solve (75), (73) is very
helpful to obtain a satisfactory solution. In order to build
this initial guess we exploit the moment formulae derived
in Section 2. In particular, we use the first- and the
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second-order Taylor’s approximations of £ (see (65))
with base point t=0. From the first-order Taylor's
approximation at t=0 of £ evaluated at the
beginning of the trajectory (i.e. using the observations
& with i small, thatis i=12,---,10 in the numerical
example of Section 4) we obtain the initial guess of V.
From the second-order Taylor's approximation at t=0
of £ evaluated at the end of the trajectory (i.e. using
the observations & with i close to M, that is
i=91,92,---,100 in the numerical example of Section 4)
we obtain the initial guess of &. Sometimes also the

g

first-order Taylor’s approximation of T with base

point t=0 is used to construct the initial guess of the

numerical optimization algorithm used to solve (75), (73).

In this last case the first-order Taylor’s approximation at
t=0 of £ is used to obtain the initial guess of the
parameter ¥, and the first-order Taylor’s approximation

at t=0 of % is used to obtain the initial guess of

the parameter ¢ . These approximations are evaluated at
the beginning of the trajectory. As explained more in
detail in Section 4, in financial applications a priori
information about p is available. That is, due to the
financial meaning of the variables, we must expect
p<0. In Section 4 we exploit this information to
choose an initial guess for the parameter p .

4. Some Numerical Experiments

In this section we discuss three numerical experiments.
In the first numerical experiment we solve the Calibra-
tion problem 1 using synthetic data. In the second and
third numerical experiments we solve the Calibration
problem 2 using, respectively, synthetic and real data.
The real data studied are the data belonging to a time
series of exchange rates between currencies (euro/U.S.
dollar exchange rates).

The numerical experiments presented in this section
can be “interpreted” as follows. As already said, the first
numerical experiment can be seen as a “physical experi-
ment” done in the context of a scientific laboratory where
it is possible to make repeated observations of the same
quantity. This type of experiment usually is based on a
“physical model” (i.e. in this case the lognormal SABR
model) where the parameters of the model have a precise
physical meaning (i.e. they are masses, charges, ...). In
these circumstances the main scope of a calibration
problem (such as Calibration problem 1) is to determine
the numerical values of these parameters in the best pos-
sible way. Note that in this kind of experiments usually a
more accurate value of the parameters can be obtained
increasing the numerousness of the data sample used in
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the calibration problem. The second and third numerical
experiments can be seen as experiments in finance or in a
different context where it is not possible to make re-
peated observations of the same quantity. Note that in
mathematical finance the model and its parameters are
mainly an auxiliary tool. In fact, the model is simply an
instrument to interpret the data or to forecast future data.
In the practice of the financial markets the calibrated
financial models (such as the calibrated lognormal SABR
model) are used to do option’s pricing and to hedge
portfolios. In these contexts it is not really important to
know the exact values of the model parameters. In some
sense even the existence of “exact” values for the model
parameters can be debated. In mathematical finance the
key fact is to show that the calibrated model is able to
interpret the observations, that is, for example, to show
the consistency of the option prices computed using the
calibrated model with the option prices observed in the
market.

Let us describe the setting of the first numerical
experiment. Let T >0 be givenand n, m be positive
integers. Let At=T/m be the time increment and
t =iAt, i=0,1---,m, be a discrete set of equispaced
time values. Let & =&, v, =V, be the solutions of
(11)-(14) at_time t=T . The n independent
realizations & , i=12,---,n, of the random variable
& used as data in Calibration problem 1 are ap-
proximated integrating numerically n times (in cor-
respondence of different realizations of the Wiener
processes) the lognormal SABR model (11)-(14) in the
time interval [0,T] using the explicit Euler method (see
[14]).

In the numerical example we choose T =1, m=100,

n=1000 , £=01, p=-02, &= =1 and
v, =V, =0.5. The parameters
(g,p,\70)=(0.1,—0.2,0.5), (76)

are the “true” values of the unknowns of the calibration
problem considered (i.e. they are the values of the
unknowns used to generate the data). We reconstruct
these unknown parameters solving Calibration problem 1
using as data sample the set of the logarithms of the
forward prices/rates observed at time t=T =1 in
n=1000 independent trajectories of the lognormal
SABR model (11)-(14) (with the parameter values given
in (76) and & =& =1). These trajectories are ap-
proximated integrating numerically using the explicit
Euler method the model (11)-(14). In particular, when
n=1000 let us denote by &, i=12,-,n, the
approximations of &'_,i=1,2,---,n, obtained at time
t=T =1 integrating with the explicit Euler method
n=1000 independent trajectories of the model (11)-(14)
(with the parameter values given in (76) and
& =& =1). The set:
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75T:l,n:looo = {gTi:l!i =12, ",1000}, (77)

is the sample of synthetic data used to solve Calibration
problem 1.

In a similar way when we choose T =100, n=1000
(leaving the other parameters unchanged) we generate

the data set D;_io; 1000 ={$Ti:100,i=1, 2,---,1000}. As

explained in Section 3, this second data sample is used in
the construction of the initial guess of the numerical
optimization algorithm used to solve the constrained
nonlinear least-squares problem (72), (73) corresponding
to the data sample Dy, j000-

The data sets D;_; 100 AN D g0 11000 USE in the
numerical experiment are available at [15].

Using Dy 000 @Nd Dy 11000 aNd the first- and
second-order Taylor’s approximations of £ with base
point t=0, as suggested in Section 3, we find
Vi =0.515 and &"=0.099 as initial guesses of,
respectively, V, and ¢. Note that in the notation of
Section 3 we have chosen T=T, =1 and T,=100.
The initial guess p™ of p ischosenas p" =-0.05.

Given (&",p", 7' )=(0.099,-0.05,0.515) as initial
guess, the nonlinear least-squares problem (72), (73) is
solved using Dy, as data sample. In this
numerical example the moments considered in (72) are
all of the same order of magnitude so that it is possible to
choose in (72) the weights o; =1, j=12,34. Note
that Formulae (65)-(68) suggest that in general the
weight o; must decrease when the index j increases.

The nonlinear least-squares problem (72), (73) is
solved using the FMINCON routine of Matlab. The solu-
tion found starting from the initial guess
(£".p",9;")=(0.099,-0.05,0515) is:

(¢.0.9)=(&"p".%;)=(0.076,-0.222,0.508). (78)

The relative L? -error of the initial guess
", p", %' ) =(0.099,-0.05,0.515) with respect to the
“true” solution (76) is 0.275. The relative L*-error of the
solution (78) of the least-squares problem with respect to
the “true” solution (76) is 0.062.

To study the sensitivity of the solution procedure
proposed with respect to the presence of noise in the data
we add noise of known statistical properties to the
synthetic data contained in° D;_; 10000 Dr_ioo.nz1000 aNd
we study the quality of the solutions of Calibration
problem 1 found as a function of the noise properties. In
particular given & >0 let us consider the following
“noisy” data sample:

S {le (1+8, (1-2rand)),i =1, 2,.--,1000},

(79)
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where rand is a random entry taken from a uniform
distribution on the interval (0,1). In a similar way we
add noise to D;_y ,_1000 10 Obtain the “noisy” data sam-
ple & _i00.n-1000 -

Given & >0 we compute the relative L*-error
between the “true” solution (76) and the solution of
Calibration problem 1 found with the numerical
procedure described above. We repeat the entire
procedure N, times and we compute the mean of the
L? -relative errors of the N, solutions found. We denote
by E%,Nl,n this mean relative error. The mean relative

errors  Egy 10000000 Obtained when N, =1000 ,

n=1000 and 4 =0.01,0.05,0.1 are shown in Table 1.

As already explained, it is expected that in this ex-
periment a more accurate value of the parameters can be
obtained by increasing the amount of the data sample
used in the calibration problem. To validate this idea, we
increase the number n of the data samples involved in
the experiment. We consider n=10000 and we con-
struct the data samples Dy 10000+ Drosoo.neio00 aNd
the corresponding “noisy” data samples & 10000+
5r:1oo,n:1oooo ' The data sets DT:l,n:lOOOO and DT:lOO,n:lOOOO
used in the numerical experiment are available at [15].
Given ¢ >0 we compute the mean relative errors
Eg n,-1000.n-10000 ODtained when N, =1000, n=10000
and & =0.01,0.05,0.1. The results obtained are shown
in Table 2. The comparison of Tables 1 and 2 shows a
substantial reduction of the mean relative errors when
9 =0.05 and 4 =0.1 and only a marginal reduction
of the mean relative errors when 4 =0.01. This sug-
gests that the presence of noise even in small quantity
degrades the solution obtained.

The second numerical experiment presented consists
in solving Calibration problem 2 using a sample of
synthetic data. Given the number of observations M >0

Table 1. Calibration problem 1: the mean relative error

Eg nt00n1000 @S @ function of &,
|91 Ey, ,N;=1000,n=1000
0.01 0.124
0.05 0.215
0.1 0.328

Table 2. Calibration problem 1: the mean relative error

Eg n,-to00n10000 85 @ fUnction of g, .
31 ES,‘N]:IDDO,n:mDDO
0.01 0.104
0.05 0.141
0.1 0.170
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and a time increment ot >0, let t, =idt,

i=0,1---,M, be a discrete set of observation times. Let
& be the approximation of a realization of
& 1=12,---,M, obtained integrating with the explicit
Euler method one trajectory of the lognormal SABR
model (11)-(14). Let us choose M =100, 6&t=1,
£=01 p=-02, &=£&=1 and v,=V,=0.5.
That is, we want to reconstruct the unknown parameters
(76) by solving Calibration problem 2 using as data
sample the set of the logarithms of the forward prices/
rates observed at time t,,i=12,---,M =100, along one
trajectory of the lognormal SABR model. The set

B, :{é,i:l,z,---,loo}, (80)

is the sample of synthetic data used to solve Calibration
problem 2. The data set D, used in the numerical
experiment is available at [15].

_Proceeding as discussed in Section 3 using the data set
D, , the least-squares fit of the first-order Taylor’s
approximation of £ with base point t=0 evaluated
at t, i=12,---,10, gives ;' =0.533 as initial guess
of V,. Using the data set , the least-squares fit of the
second-order Taylor's approximation of £ with base
point t=0 evaluated at t,, i=9192,...,100, gives
&" =0.114 as initial guess of . To obtain an initial
guess of the parameter p we take advantage of the “a
priori” information that in finance the correlation be-
tween forward prices/rates and stochastic volatility is
usually negative. In fact, as it is easy to understand in the
financial markets when the prices go down the volatility
goes up and viceversa. Exploiting this fact and the fact

that —1< p<1 the initial guess p™ of p that we
chooseis p™ =-05.
Starting from the initial guess
" p"¥')=(0.114,-05,0.533) the solution of

C;allbratlon problem 2 that uses as data the observations
&, 1=20,30,---,80, of D, is obtained solving the
nonlinear least-squares problem (75), (73) using the
FMINCON routine of Matlab. Note that in (75) we prefer
to use only a subset of the observations of the data
sample D, (i.e. i=20,30,---,80, a subset of data
corresponding to the central part of the trajectory) to
avoid the presence of too many addenda in the objective
function (75). In the numerical computation the weights
o, 1=20,30,---,80, j=1,2,34, are chosen such
that the addenda of (75) are of the same order of
magnitude Using D, as data and

™ p", ~'”)—(0.114,—0.5,0.51-33) as initial guess the
solutlon of problem (75), (73) found is:

(2.0.9)=(&".p".7;)=(0.019,-0.168,0.472). (81)

The relative L2 -error of the initial guess
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", p",¥;')=(0.114,-05,0.533) with respect to the
“true” solutlon (76) is 0.551. The relative L?-error of the
solution (81) of the least-squares problem with respect to
the “true” solution (76) is 0.167.

Let us point out that the data of Calibration problem 2
are supposed to be prices/rates observed in the financial
markets, that is, these data are not affected by noise as
the data observed in physics. However, let us study the
sensitivity of the solution of Calibration problem 2 found
with the numerical procedure proposed with respect to
the presence of noise in the data. We add noise to the
synthetic data contained in D, and we study the quality
of the solution of Calibration problems 2 found as a
function of the noise properties. In particular given
9, >0 let us consider the following “noisy” data sam-

ple:
& :{g (1+9,(1-2rand)),i =1, 2,--.,100}, (82)

where rand is a random entry taken from a uniform
distribution on the interval (0,1).

Given 9, >0 we compute the relative L?-error be-
tween the “true” solution (76) and the solution of Cali-
bration problem 2 found with the numerical procedure
described above. The entire procedure is repeated N,
times and the mean of the L” -relative errors of the N,
solutions found is calculated. Let E N, De this mean
relative error. The mean relative errors E ,-1000 OD-
tained when N, =1000 and & =0.01, 005 0.1 are
shown in Table 3.

Table 3 shows mean relative errors greater than the
corresponding mean relative errors of the first numerical
experiment. The calibration problem studied in the
second experiment is more difficult than the calibration
problem studied in the first one. This is due to the
quantity of the data and above all to the quality of the
quantities entering in the nonlinear least-squares problem
deduced from the data sample D, when compared, for
example, to the quantity of data contained in the data
sample Dr_ 000, AN Dy 1911000 - That s, there are
100 data in D, and 2000 data in Dy, 40
D 4gon-1000 aNd the moments estimated from the data
contained in Dy _; 1000 Drjoo.nz000  USiNG formula (71)
are of high quality due to the average over a sample of
n=1000 observations. There is no a similar effect in

Table 3. Calibration problem 2: the mean relative error
Eg v 000 @S afunction of 8.

9 =H—
0.01 0.239
0.05 0.265

0.1 0.369
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Calibration problem 2.

In the context of finance the natural way of formulat-
ing a new version of Calibration problem 2 (i.e. a “single
trajectory” calibration problem) that defines more accu-
rately the model parameters is to acquire at the observa-
tion times not only the forward prices/rates data, but also
the data relative to the prices of one or of several options
having as underlying the forward prices/rates. This last
problem is a “single trajectory” calibration problem that
exploits more deeply than Calibration problem 2 the in-
formation contained in the prices. We do not consider
this problem here. For example, when the Heston model
is used instead of the lognormal SABR model this prob-
lem has been studied in [6].

Note that the FMINCON routine of Matlab used to
solve problems (72), (73) and (75), (73) is an elementary
local minimization routine. Higher quality results can be
obtained solving problems (72), (73) and (75), (73) using
global minimization methods. Moreover, the explicit
moment formulae that define the objective functions (72),
(75) can be used to develop ad hoc minimization algo-
rithms to solve problems (72), (73) and (75), (73). This is
beyond our purposes in this paper.

In the third numerical experiment we consider a time
series of exchange rates between currencies (euro/U.S.
dollar exchange rates) in the period going from
September 14th, 2010, to July 20th, 2011. The exchange
rates considered are daily exchange rates expressed in
U.S. dollars and are the closing value of the day (in New
York) of one euro expressed in U.S. dollars. Recall that a
year is made of about 252 trading days and that a month
is made of about 21 trading days. Figure 1 shows the
euro/U.S. dollar currency’s exchange rate as a function
of time. The data set shown in Figure 1 is available at
[15].

We use the lognormal SABR model to interpret the
data shown in Figure 1. In order to use the model in the
form (11)-(14) we take the logarithm of the data shown
in Figure 1. That is, we solve the Calibration problem 2
using a window of 20 consecutive observations as data
and we study the stability of the solution found with re-
spect to shifts of the data along the time series. The
model resulting from the calibration can be used to fore-

1.55
1.5

5 N/'V/\"VV" R ‘\N

E 14t ‘

3135 LN A || —curo/U.S.dollar|
Z 13 AN Currency

2125

1.2
115

27/09/2010
27/10/2010
27/11/2010
27/12/2010
27/01/2011
27/02/2011
27/03/2011
27/04/2011
27/05/2011
27/06/2011

Figure 1. euro/U.S. dollar currency’s exchange rate versus
time.
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cast exchange rates and to compute option prices on ex-
change rates.

We solve Calibration problem 2 using the real data of
Figure 1 associated to a time window made of
M +1=20 consecutive observation times, that is the
observations corresponding to 20 consecutive trading
days, and we move this window across the data set dis-
carding the datum corresponding to the first observation
time of the window and inserting the datum correspond-
ing to the next observation time after the window. The
calibration problem (75), (73) is solved for each choice
of the data window. We choose &t=1/252, & =&
equal to the first observation (i.e. logarithm of the ex-
change rate observed) of the window considered,
o, =1, i=12,---19, j=1,234. The initial guess
of the numerical method used to solve the nonlinear
least-squares problem (75), (73) has been chosen as fol-
lows: (g‘”,p‘",vg”)z(o.oa —0.05,0.05) . Note that a data
window made of twenty data has too few points to im-
plement satisfactorily the asymptotic analysis of the
moment formulae discussed in Section 3. Note that to
make possible the effective numerical solution of prob-
lem (75), (73) the independent variables in (75), (73)
have been rescaled.

The reconstructions of the parameters obtained mov-
ing the data window along the data set of Figure 1 are
shown in Figure 2. In Figure 2 the abscissa corresponds
to the data window used to reconstruct the model para-
meters. The data windows are numbered in ascending
order beginning with one according to the order in time
of the first day of the window considered. In particular,
Figure 2 shows that the parameters &, o reconstructed
remain essentially stable when the window is moved
along the data time series. Occasionally & and p
have spikes that probably indicate that the numerical
procedure used to solve problem (75), (73) has failed.
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Data window
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Figure 2. The parameters ¢,p,V, reconstructed from the
data of Figure 1 versus time.
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The parameter V, reconstructed changes when the
window is moved along the data time series. This is cor-
rect since V, is the stochastic volatility of the first day
of the window and in a stochastic volatility model (such
as the lognormal SABR model) there is no reason to ex-
pect this value to be constant.

The fact that the values of the parameters &, p,V,,
obtained calibrating the lognormal SABR model on the
real data shown in Figure 1 through the “moving win-
dow” procedure are “stable” (see Figure 2) supports the
idea that the lognormal SABR model is able to interpret
the data considered. In fact, this stability property sug-
gests that the relation between the data and the parame-
ters of the lognormal SABR model established solving
problem (75), (73) is not an artefact of the numerical
methods used to solve the nonlinear least-squares prob-
lem. In particular, the stability shown guarantees that the
lognormal SABR model provides “stable” option prices
and hedging strategies.
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