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ABSTRACT 

We study two calibration problems for the lognormal SABR model using the moment method and some new formulae 
for the moments of the logarithm of the forward prices/rates variable. The lognormal SABR model is a special case of 
the SABR model [1]. The acronym “SABR” means “Stochastic- ” and comes from the original names of the model 

parameters (i.e., , ,   ) [1]. The SABR model is a system of two stochastic differential equations widely used in 

mathematical finance whose independent variable is time and whose dependent variables are the forward prices/rates 
and the associated stochastic volatility. The lognormal SABR model corresponds to the choice 1   and depends on 

three quantities: the parameters ,    and the initial stochastic volatility. In fact the initial stochastic volatility cannot 

be observed and can be regarded as a parameter. A calibration problem is an inverse problem that consists in determine- 
ing the values of these three parameters starting from a set of data. We consider two different sets of data, that is: i) the 
set of the forward prices/rates observed at a given time on multiple independent trajectories of the lognormal SABR 
model, ii) the set of the forward prices/rates observed on a discrete set of known time values along a single trajectory of 
the lognormal SABR model. The calibration problems corresponding to these two sets of data are formulated as con- 
strained nonlinear least-squares problems and are solved numerically. The formulation of these nonlinear least-squares 
problems is based on some new formulae for the moments of the logarithm of the forward prices/rates. Note that in the 
financial markets the first set of data considered is hardly available while the second set of data is of common use and 
corresponds simply to the time series of the observed forward prices/rates. As a consequence the first calibration prob- 
lem although realistic in several contexts of science and engineering is of limited interest in finance while the second 
calibration problem is of practical use in finance (and elsewhere). The formulation of these calibration problems and the 
methods used to solve them are tested on synthetic and on real data. The real data studied are the data belonging to a 
time series of exchange rates between currencies (euro/U.S. dollar exchange rates). 
 
Keywords: SABR Model; Calibration Problems; FX Data 

1. Introduction 

We study two calibration problems for the lognormal 
SABR model using the moment method and some new 
formulae for the moments of the logarithm of the forward 
prices/rates variable. The lognormal SABR model is a 
special case of the “Stochastic- ” model which has 
become known under the acronym of SABR model [1]. 
The SABR model is widely used in the theory and prac- 
tice of mathematical finance, for example, it is widely 
used to price interest rates derivatives and options on cur- 
rencies exchange rates. 

Let  be a real variable that denotes time and tt x , t , 
be real stochastic processes that describe, res- 

pectively, the forward prices/rates and the associated 
stochastic volatility, as a function of time. The SABR 
model [1] assumes that the dynamics of the stochastic 
processes t

v
0,t 

x , t , , is defined by the following 
system of stochastic differential equations:  

v 0t 

 d d ,t t t tx x v W t


0,            (1) 

 d d ,t t tv v Q t 0,               (2) 

with the initial conditions:  
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 0 0 ,x x                      (3) 

                     (4) 0 0 ,v v 

where  0,1   is the  -volatility and 0   is the 
volatility of volatility. Note that in the original paper [1] 
the volatility of volatility   was called . The 
stochastic processes W  ,  are standard 
Wiener processes such that 0 0 , , t , 

, are their stochastic differentials and we assume 
that:  

,t tQ 0,t 
0W Q  d tW dQ

0t 

 d d d , 0,t tW Q t t            (5) 

where   denotes the expected value of   and 
 is a constant known as correlation coefficient. 

The initial conditions 0

 1,1  
x , 0  are random variables that 

are assumed to be concentrated in a point with pro- 
bability one. For simplicity, we identify these random 
variables with the points where they are concentrated. 
We assume 0  (with probability one) so that 
Equation (2) implies that  (with probability one) 
for . Note that the initial stochastic volatility 0  
and the stochastic volatility t , , cannot be 
observed in the financial markets. That is, 0  must be 
regarded as a parameter of the model together with 

v

tv 
0v 

0

v
0t  v

0t 
v

 , 
  and  . 

The value of the parameter  0,1   determines the 
forward prices/rates process, that is, it determines 
Equation (1). The most common choices of   are: 

0  , 1 2   and 1  . 
Setting 0   in (1) the forward prices/rates process 

reduces to:  

 .             (6) d d ,t t tx v W t 0

The corresponding model (6), (2), (3), (4) is known as 
the normal SABR model. This model has a forward 
prices/rates process whose increments are stochastic 
normally distributed, that is, the increments are normally 
distributed with mean zero and a stochastic standard de- 
viation lognormally distributed. This permits to the for- 
ward prices/rates tx , , to become negative. Usual- 
ly this is not a desirable property. In fact, in financial 
applications most of the times prices/rates are supposed 
to be positive. However, in some anomalous circumstan- 
ces negative quantities such as negative interest rates can 
be considered. 

0t 

The choice 1 2   in (1) gives the following 
forward prices/rates process:  

 d d ,t t t tx x v W t 0.

model the volatility , is a constant, that is, 

         (7) 

The model (7), (2), (3), (4) can be seen as a stochastic 
volatility version of the CIR model with no drift. The 
CIR model is a short term interest rate model introduced 
by Cox, Ingersoll and Ross (CIR) in [2]. In the CIR 

0tv v

tv , 0t 

  , 0t  . Note at model (7), (2), (3), (4) 
 CIR model (with no drift) when 0

th  the 
reduces to the   . 
When 0   the volatility is governed by (2). I
SABR l (7), (2) when the initial conditions (3), (4) 
are positive (with probability one) negative forward 
prices/rates can be avoided. 

Finally, the choice 1

n the 
mode

   in (1) produces:  

 d d , 0.x x v W tt t t t             (8) 

(8), (2), (3), (4) is knowThe m
SA

odel n as lognormal 
BR model. It is a stochastic volatility version of the 

Black model. The Black model is a special case of the 
Black-Scholes model [3] obtained when the drift para- 
meter of the Black-Scholes model is equal to zero. In the 
Black model the underlying asset price is modeled as a 
geometric Brownian motion. Unlike in the Black model, 
where the volatility is a constant, in the lognormal SABR 
model the volatility is a stochastic process itself (see (2)). 
Note that model (8), (2), (3), (4) reduces to the Black 
model when 0  . In the lognormal SABR model the 
positivity (wit bability one) of the forward prices/ 
rates tx  is guaranteed for 0t   when the initial condi- 
tions (3 , (4) are positive (w obability one). In parti- 
cular when the initial conditions (3), (4) are positive 
(with probability one) the absolute value in (8) can be re- 
moved. 

The c

h

hoice m

 pro

) ith pr

ade in this paper of studying t  

ic  

entrate on the study of t  

he log-

es/rates

he log-

no

ran

no

rmal SABR model is motivated by the fact that the 
lognormal model is the most used SABR model in the 
practice of the financial markets. Moreover, after the 
normal SABR model (that has been studied in [4]) the 
lognormal SABR model is mathematically the simplest 
model in the class of the SABR models (1)-(4). 

Note that in the SABR model the forward pr
dom variable is represented as a compound random 

variable and that the SABR model can be seen as a sto- 
chastic state space model [5]. Compound random vari- 
ables and state space models are widely used in science 
and engineering. This means that the methods and the 
results presented here to study the lognormal SABR 
model can be extended outside mathematical finance to a 
wide class of problems. 

In this paper we conc
rmal SABR model (8), (2), (3), (4), i.e., in (1) we 

choose 1  , and we study the calibration problem for 
this mod at is, we study the problem of determining 
the unknown parameters 

el. Th
 ,  , 0v  of the lognormal 

SABR model starting from the owl dge of a set of data. 
The sets of data considered are: i) the set of the forward 
prices/rates observed at a given time on multiple inde- 
pendent trajectories of the lognormal SABR model, ii) 
the set of the forward prices/rates observed on a discrete 
set of known time values along a single trajectory of the 

kn e
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lognormal SABR model. The formulation of the cali- 
bration problems corresponding to these two sets of data 
is based on some new closed form formulae for the mo- 
ments of the logarithm of the forward prices/rates vari- 
able. Using these formulae the calibration problems con- 
sidered are formulated as constrained nonlinear least- 
squares problems. The moments formulae are deduced 
extending to the lognormal SABR model a method in- 
troduced in [4] in the study of the normal SABR model.  

Note that the data set used in the first calibration prob- 
le

proach to study the calibration prob- 
le

 least-squares 
pr

hat, extending the results presented in [4], it is 
po

significance levels in this paper.  

 of the moments of the 
lo

f the 
Lognormal SABR Model 

oments of 
the es of the lognormal 

m, that is, a data sample made of observations at a 
given time on multiple trajectories, is hardly available in 
the financial markets. In fact, in the financial markets 
usually it is not possible to repeat the “experiment” as 
done routinely in contexts where observations are made 
in experiments carried out in a laboratory. This implies 
that the first calibration problem although realistic in se- 
veral fields of science and engineering has limited appli- 
cations in finance. Instead, the second calibration prob- 
lem is of practical use in finance since single trajectory 
data samples are easily available in the financial markets 
and can be identified with time series of observed for- 
ward prices/rates.  

An alternative ap
m for the lognormal SABR model corresponding to the 

single trajectory data sample consists in extending the 
method proposed in [6,7] to study a similar calibration 
problem for the Heston model and for some of its varia- 
tions. This method is based on the idea of maximizing a 
likelihood function. However, the use of closed form 
moment formulae (see Formulae (65)-(68)) rather than 
the use of a likelihood function involving the transition 
probability density function of the differential model and 
the solution of a kind of Kushner equation (see [6,7]) 
gives to the method based on the moment formulae pre- 
sented here a substantial computational advantage in 
comparison to the method suggested in [6], [7]. A similar 
statement holds when the method presented here is com- 
pared to methods where averages of quantities implicitly 
defined by the differential model (such as the moments) 
are computed using statistical simulation.  

The numerical solution of the nonlinear
oblems that translate the calibration problems consider- 

ed can greatly benefit from the availability of a good ini- 
tial guess to initialize the optimization algorithm. In Sec- 
tion 3 we discuss briefly how to exploit the first moment 
formula obtained in Section 2 to build the initial guesses 
needed. 

Note t
ssible to define ad hoc statistical tests that can be used 

to associate a statistical significance level to the parame- 
ter values obtained as solution of the calibration prob- 
lems. We do not consider statistical tests and statistical 

The remainder of the paper is organized as follows. In 
Section 2, new formulae for some

garithm of the forward prices/rates variable of the log- 
normal SABR model are derived. In Section 3, the cali- 
bration problems for the lognormal SABR model corre- 
sponding to the two data sets discussed previously are 
formulated as constrained nonlinear least-squares prob- 
lems. Finally, in Section 4 we solve numerically the cali- 
bration problems presented in Section 3 and we discuss 
the results obtained in numerical experiments on synthe- 
tic and on real data. The real data studied are time series 
of euro/U.S. dollar exchange rates.   

2. Formulae for the Moments o

Let us deduce closed form formulae for the m
 logarithm of forward prices/rat

SABR model. Let us consider the model given by:  

 d d , 0,t t t tx x v W t             (9) 

 d d ,t t tv v Q t 0,            (10) 

with ositive initial conditions (3)
assumption (5). That is, we assume

p , (4) and the 
 0x   (with 0

probability one) and 0 0v   (with probability one), so 
that Equations (9), (10) imply 0tx   (wit ability 
one), and 0tv   (with bility one) for 0t  . 

Let 

h prob
 proba

 lnt tx  , 0t  , be logarithm of the 
forward pr tes. Using the variables t

 the 
ices/ra  , t

e sto re Equations (9), (10) and the 
initial conditions (3), (4) are rewritten as fo ow   

 

v , 0t  , 
th

ll s:
chastic diffe ntial 

21
d d d , 0,

2t t t tv t v W t            (11) 

 0,d d ,t t tv v Q t      

 

       (12) 

 0 0 0ln ,x               (13) 

     

Starting from the expression 
transition robability density fun
pr

0 0.v v              (14) 

obtained in [8] for the 
p ction of the stochastic 

ocesses t , tv , 0t  , we deduce explicit formulae 
(eventually involving integrals) for the moments with 
respect to zero of t , tv , 0t  , and of tx , tv , 0t  . 
In particular, we derive closed form formulae (that do not 
involve integrals) f  th e momen w  r t 
to zero of t

or e first fiv ts ith espec
 , 0t  . 

In [8], using the backward Kolmogorov Equation 
associated to (11), (12), the following formula for the 
transition probability density function Lp  of the sto- 
chastic processes ,t tv , 0t  , implicitly defined by 
(11)-(14) has been obtained:  
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 
   

   

, , , , ,

1
Lp v t v t 



 

d e , , , , , ,
2

, , , , , 0, 0,

k
Lk g t t k v v

v v t t t t

   

 

 







  


       

 

 

   (15) 

where is the imaginary unit and we have   t  , 

t tv v ,    , , tv v  , 0t t  ,  0t t  . In (15),
when 0  we must choose 0t     , 0v v    

n
. The

functio  Lg  is gi

 

ven by:  
 

       
 

2

0

, e

d e sinh ,

, , , , 0, 1,1 ,

k
v

v v

2
8

2

2
, , , , e

v vs

L

v
g s k v

K k v K k v

s k v v





     

 

 

 


  
 


 


  

 


 

     


  



   (16) 

where the function K  
 of 

denotes the second type modi- 
fied Bessel function order   (see [9] p. 5). Finally, 

 2 k , ,k   is defined as  

   
2

2
2

1
k k

k


  2
2

i , .k 


       (17) 

The function Lg  can be rewritten as follows [8]:  

 
 

   

    
 

 

2

2 2 2

2 2

2 22 2

2
8 1

, , , , e e
k

L

v
g s k v v

v v






 



2 2

202

1

2 cosh 22 2

0

,

e
d sinh sin e

2

d e e e ,

, , , , 0, 1,1 .

v vs

s u s

vv kvv k
y v v vv u vvy y

u
u u

ss

y

s k v v



 



 





 





 

 
     

 



   
 



     






  

  (18) 

Formulae (15), (16) or (15), (18) give Lp  

ilit

as a two 
dimensional integral of an explicitly known integrand. 
Note that in (15) the transition probab y density 
function Lp  is written using the variables  lnt tx  , 

tv , 0t  . It is easy to obtain a formula analogous to 
formula (15) for the transition probabil

ritten in the original variables t

ity density 
function w x , tv , 0t  . 

Formulae (15), (16) and (15), (18) are representation 
formulae for Lp  that hold when     . These 1,1 for- 
mulae have been obtained in [8]. Previously when 

0   for Lp nly series expan wers of  o sions in po   
with base point 0   were known (see, for example, 

] and t  references therein). 
Let us begin de g some formulae for the moments 

,n m , , 0,1, ,n m    with respect to zer

[10,11 he
rivin

o of the vari- 
ables tx , tv , 0t  , of the lognormal SABR model (9), 

3), (  

   , , , , d e d , , , , , ,n m
n m t v t vv p v t v t   

 


       

(10), ( 4), namely, 

0

, , , 0, 0, , 0,1,

L

v t t t t m n           
 

0n 

.

(19) 

We distinguish two cases, that is: the case  and 
the case 

When 
0n  . 
0n   we have:  



,



  0, 0
, , , d d , , , ,m Lt v t vv p v t v   



     
 

0

,

, , , , ,

d ,0, , , , ,

, , , 0, 0, 0,1,

m

L

m
L

t

k t t k v v

vv g t t v v

v t t t t m

 

 



 







0
d e dk mk vv g



   



 


 

 

  

        






 

   (20) 

where   is the Dirac’s delta. From (18) we have:  

 

   

 

2

2

0

202

3 2 cosh2 2
0 0

d ,0, , , ,

2

d d e e e ,

, , 0, 1,1 , 0,1, .

m
L

v v
y ym y uv v

vv g s v v

ss

vv y

s v m

 



 






   







   



    



 


 

(21) 

Using formula (29) on page 146 of [12] we have:  

22 22 2
8 e

e d sinh sin e
s s u sv u

u u
      

   1 23 2 2 2
1 20

d e e 2 ,

, , ,v y      

v v
y y

v vvv v K y





   

  

and this implies that:  

(22) 

 

   

2

22

2 2

2
8

0, 2

2

20

cosh
1 20

2 e
, , , e

2

d sinh sin e

d ( )e ,

, , , 0,

0, 0,1, .

sm s

m

u s

y u
m

v
t v t

s

u
u u

s

yK y

v t t

t t m
















 

 





   

 

   
 



    
  






 



 

(

From Formula (24) on page 197 of [12] it follows that:  

23) 

   
 

cosh
1/20

sinh 2
d e ,

sinh
y u u

yK y u
u

 
      .   (2

on page 92 of [12] we can conclude

4) 

From Formulaes (23) and (24) and using formula (37) 
 that 

 0,0 , , , 1t v t      , , 0,v t t t   0t   , , 
and that  , t v0,1 , ,t v     , ,    

, , 0, 0t t t tv      . Note that the moments 

0, , 2,3, ,m m    diverge. In fact, when 0n   
integrating (20) first with respect to k  when k  , 
and then with respect to   when   we have:   ,    
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    

 

 

2
2

22
2

0,

2
8 2

202

1 2
2 20

e

e
2 e d sinh sin e

2
1

d , , , , 0, 0, 0,1, .
2 cosh

m

us s
s

m

t k g

v v u
u u

ss

vv v t t t t m
v v vv u











 

  

         

         
  



  



    (25) 

 
Formula (25) is equivalent to Formula (23) and shows 
at in order to have a convergent integral we must choo- 

0

1
, , , d d d , , , , ,

2
kmv t vv t t k v v    

   

 
     

    
L

When using Formulaes (15) and (18) in the de- 
finition (19) we have:  

0n   
th
se 1 2 3 2m   . 
 

     

 
   

 

 
 

2

22 2 2

, 0

2 2
2 2

8
2 202

2 2

2 2
1

1 2

0

1
, , , d e d d e , , , , ,

2

1e e
2 e d sinh sin e

2

1
2 cosh

d e

kn m
n m L

sn s u s

n v vm

t v t vv k g t t k v v

n nv v u
u u

ss

n n
K v v vv

vv

 

  

 

   



 





   

 


   

  

      


           

      
  

  







 

u

2 2
,

2 cosh

, , , 0, 0, 1,2, , 0,1, .

v v vv u

v t t t t n m 



  

           

     (26) 

 
Note that for  when  with respect to zero of the variables t1 1, 2, ,n  

 1 11 1n n      or  1 11 1n n     the 
integrals appearing in th n

and the co nding mo
the moments

 logno

(26) wi 11,2, , ,n    
ments are 0,1, ,m    rrespo con- 

vergent. A similar existence condition for  
of the rmal SABR model has already been derived 
in [13], however in [13] no explicit integral repre- 
sentation formula for the moments like Formula (26) is 
given. 

Note that when 1n   and 0m   formula (??) gives 
 1,0 , , , et v t      , , , , 0, 0v t t t t          , 

wh

, 
defined by (11)-(14), i.e.  


.

tv , 0t  , 

  , , , , d dn m
n m t v t vv p  

 

 0
, , , , , ,

, , , 0, 0, , 0,1,

L v t v t

v t t t t m n



 

        

          
 

(2 ) 

The procedure used here to calculate the moments (27) 
generalizes the procedure used in [4] to calculate
m

7

 the 
oments with respect to zero of the variables tx , tv , 

0t  , of the normal SABR model. 
Substituting (15) into (27) and using the prope ies f 

ourier transform we have:  

en  1,1   . Recall that ex    ,   . 
Let us consider now the mo , , 0,1, ,n mments 

rt  o
the F,n m     

 

         

   

, 0
0

00
0

1 d
d d , ,

j
mvv k k g t t k, , , , ,

d

d
d , , , , ,

d

, , , 0, 0, , 0,1, .

n
n j

n m Lj j
j

jn
n j j m

L kj
j

n
t v t v v

j k

n
vv g t t k v v

j k

v t t t t n m

j

    

  















       
 
       
 

        

  

 

 




          (28) 

 
Let us calculate the integrals contained in (28). For 

 let 

 


0,1,j   jG  be the -th order derivative with  j
respect to k  of the function Lg  evaluated at 0k  , 

 that is, let   , , d d ,0, ,j j
j LG s v v g k s v v  , 

, ,s v v 
the previ

. To simplify the notation we have omitted in 
ous formula, and we will omit from now on, the 

dependence of Lg  and of jG 0,1,j   , fro, m   
and  . Using the functions jG , 0,1,j   , Formula 



L. FATONE  ET  AL. 350 

(28) can be

.



We restrict our attention to 

 rewritten as follows:  

 

  

,

0
0

, , ,

d , ,

n m

n
n j j

j

t v t

n
vv G

j








  

     
 

 



  (29)  ,

, , , 0, 0, , 0,1,

m
j t t v v

v t t t t m n 



          
,0 , , ,n t v t    ,  ,   

,v   
3 in th

n , 1n 

, 0, 0,t t t t n   
e solution of the ca

, 2,3, 4 . The choice

0,1,  . In fact, in 
libration problems 

 of considering 

Section 
we will use 

0m,0   in 
lems isthe

due to
 moments used to solve the ob  

arkets the variable 

t

 calibration pr
financial m the fact that in the 

x , 0t  , and, as a consequence, the variable t , 
0 , can be served, while the variable tv 0 , 

cannot be observed. That is, the moments ,n m , 
0,1,n   , 0m  , cannot be easily estimated from 

e ata, while the moments ,0n , 0,1,n   , c  
timated immediately from observed data. 

Let us define  

   

   

*
,0, , , , ,

, ,

n n

n
n j j

s v t v t

n
D s v

 

 

    

 

t 

obs rved 
be es

 ob

d

, t 

an

0

, , , 0,1,

j
j j

s t t v n


  .

 

 

 
 

       



  

   (30) 

where 

   

 

0

00
d


 

, d , ,

d
, , , , , , 0,1, ,

d

j j

j

L kj

D s v vG s v v

v g s k v v s v j
k






 

  




(31) 

and 

   
0

d
, , d , , , ,

d

, , , 0,1, .

j

j Lj
D s k v vg s k v v

k

s k v j



 

 

   



  
    (32) 

We have 

   

 

0

0
0

, , ,

d
d , , , ,

d

, , 0,1, .

j j k

j

Lj

k

D s v D s k v

vg s k v v
k

s v j









 

 
  

 

 







    (33) 

The functions jD , 
tial value 

0,1,j  
problem

, can be deter
solving the ini s deduced belo
function 

mined by 
w. The 

Lg  
 (see [8]

is the solution of the following initial value 
problem ):  

22 2

   0, , , , , , .Lg k v v v v k v v           (35) 

Equation (34) is the Fourier transform of the b
Kolmogorov equation of the lognormal SABR model and 
the parameter 

ackward 

k 
gate variable in the Fourie

 that appears in (34) is the con- 
ju r transform of the variable 
    . 

Integrating both sides of (34), (35) with respect to v  
when v   we have:  

22 2
2 2 20 0 0

022 2

D D Dk
v v D k v

2 2

, , , ,
2

2
2

2

2 2
1

L L L
L

L

g g gk
v v g k v

s vv

kv

 
      

g s k v 

 







   (34) 

    

2
0

1
, , , ,

2

vv

 
s

kv D s k v 

      
 

 
 

       
   (36) 

 0 0, , 1, , .D k v k v             (37) 

When 0k  , Equations (36), (37) reduce to:  
22

20 0
2

, , ,
2

D D
v s k v

s v

      
 

    ,   (38) 

  0 0, 1, .D v v              (39) 

Equations (36)-(39) define initial value problems satis- 
fied by  and by , respectively. Recall tha

is given in (33). It is easy 
 see t

0D
lation between 

hat 

 0D
 and 

t the re- 

0D 0D  
to  D s v0 , 1 , 

this 
,s v

solutio

 , 
n us

is 
ing a 

la

a solution of (38), 
(39). Let us obtain procedure that 

ter will be extended to deduce explicit formulae for the 
functions jD  when 0 . 

Defining L
j 

0 ,   and 0L  through the relations:  
   0 0,D s v ,L vv s   ,  , ,s v  ln v  , 

v   (i.e.   ev   ,   ) and  
    0 0, ,L s L s v  , ,s    , problem (38), 

(39) can be rewritten as follows:  
2

s


 



) 

 

2 2
0 0

02
, , ,

2 8

L L
L s

 


   


        (40

  2
0 0, e .L           (41) , 

The solution of (40), (41) is given by:  

    2
0 0, d , e , , ,  (42) L s s s    

  


       

wh re  e

   2 22 28
0

1
, e e ,

sss s
 


2
, .

2 s



   


 (43) 

ntegral (42) when The i  2 1 2q j   and 0j   
can be computed using the formula  

 
 22 2 2

0

4 1 88 2e e e ,

, , .

s q s q

s q

  







 

    
    ) 

d , e

e e

q

q s q

s 



  
 





  
 (44

It follows that the solution of problem (40), (41) 0L  
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is given by:     , , , , , 1,j jD s v v L s v s v j      2, ,   (51) 

  2 22 8 8 2
0 , e e e e , ,s sL s s           .    (45) 

From (45) it follows that  

and considering the change of variable  ln v  , 
v  , define the following functions  

      , , ,j j jL s v L s eL s    , , s    , 
1, 2,j .       

 

0 0

ln

, , l

v

D s v v L s v



   
     (46) 

2

n

e 1, , .v s v    
Let us derive the initial value problems th

sa

It is easy to see that (47), (48) imply that the function 
, is the solution of the following initial value problem:  1L

at are 
tisfied by the functions     0, , ,j jD s v D s k v k   22 2

021 1
12

3 2
0

e
2 8
1

e , ,
2

L L D
L

s

D s v





  

,


 

  
  

 

  

  

 





    (52) 

, 
erentiating  times with 

 (34), (35) and su tin
,s

respect to 
,v   1,2,j   . Diff j

bstituk  problem g 0k   
in the resulting equation  1j   the s, we have that when
function  1 ,D s v , ,s v  , satisfies the following 
initial value problem:    1 0, 0, ,L               (53) 

22
2 21

02
, , ,

2 2

D D
v D s v

s v

1 v    
 


   (47) 

 1 0, 0, ,D v v           (48) 

and when 2,3,j    th tion  ,D s v , 
, ,s v   satisfies the 

where    0 0, , e 1D s D s   , , s    . 
Moreover, from (49), (50) it follows that the functions 

jL , 2,3, ,j    satisfy the initial value problems:  

  

    

e func
following in e problem:   

22 2
3 2

22

12 3 2
1

1 e
2 8 2

e e
2

, , 2,3, ,

j j

,

jj

j
j

L L j
L j D

s

D j
j D

s v j



 

 










 

 
   

 


 


  

 


 

    (54) 

j

itial valu

  
22

22
22

12 2
1

= 1
2 2

,

j j
j

2

, , 2,3, ,

j
j

D D j
v j v D

s v
D

j v D










 
  

 


  


     (49) 

       (50) 

Let us assume that 

j v
v

s v j 


    

 

 0, 0, , 2,3, ,jL j         (55) 

where    , ,j jD s D s 0, 0, , 2,3, .jD v v j     e , , s     , 
2,3,j   . 

The solution of (52)-(55) can be written as follows: 
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            (56) 

 
where we have defined 

2 1( , )j jj   

 1 , 0D s   , s  ,   . 
Let us give the explicit expressions of  
    , , ln , ,j jD s v v L s v s v      
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that 
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 0 , 1D s v  , 
we have: 
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and finally  

,       4 1 2 3, , , , , ,D s v I s v I s v I s v s v        

1I , 2I  and 3I  

(60) 

where are the following functions:  
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Recall that s t t 

, 0

. From (30), (46), (57)-(60), 
choosing 0t      , 0v v    we have that s t  

of tand th respect to zero e first five moments with  , 
t  , are
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u ci

 
d i . Of 

come ,
 m

ease the formulae for 

n 1, closed fo observable quantities 
implicitly defined by (9), (10), (3), (4) such as (65)-(68) 
are very useful to build computationally efficien  me- 
thods to solve calibration problems. 

In [4], Formu ae analogous to (65)-(6 ) f r th  mo- 
ments of the forward prices/rates variable of the normal 
SABR model (6), (2), (3), (4) are derived and used to 
solve calibration problems.  

3. Two Calibration Problems for the 
Lognormal SABR Model 

Let us study the calibration problems of the lognormal 
SABR model (11)-(14) annou ed in Section 1. Recall 
that the parameters  ,  , e unknowns and are th

that we want to determine these parameters starting from 
the knowledge of a set of data. We consider the sets of 
data specified previously. The corresponding calibration 
problems are formulated using the closed form Formulaes 
(65)-(68) for the moments of the logarithm of the for- 
ward prices/rates variable and are solved numerically. 

Let us begin formulating the first calibration problem. 
Let be given. We consider multiple 
traj f the lognormal SABR model (11), (12) as- 
so itial conditions (13), (14) assigned at 
time
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0T   
ectories o

ciated to the in
 0t

independent 

 . The set of data of the first calibration prob- 
lem e set of the logarithms of the forward prices/ 

d at time 
 is th

rates observe t T  in this set of trajectories. 
In particular, letting  be a positive integer, we 

consider  independen pies 
n

t con i
T ,  of 

 variable 
1,2, , ,i n 

the rando Tm   solution at time t T  of 
(11)-(14). For 1, 2, ,i n   let ˆi

T  be a realization of 
i
T . The set:  

 1
ˆ , 1, 2, , ,i
T i n           (69) 

is the data sample used in the following calibration 
pr

the data set  defined in 
(69), rec ues of the para ers 

oblem: 
Calibration problem 1: multiple trajectories calibra- 

tion problem. 
Given 0T  , 0n   and 1

metonstruct the val  ,   

e 
and 0v  of the lognormal SABR model (11)-(14

To solve this calibration problem we com
). 
pare th

theoretical values of the four moments *
j , 1, 2,3, 4,j   

given by (65)-(68) with the estimates of these moments 
obtained from the sample 1  of the observed data. 

It is easy to see that the random variables:  

   
1

1
, , 1, 2,3, 4,

n ji
j T

i

n T j
n




         (70) 

are unbiased estimators of, respectively, *
j ,  

1, 2,3, 4j  . For 1, 2,3, 4j   let us consider the 
realization  ˆ , ,j n T  in the data sample 1 , of the 
random variable  ,j n T , that is:  

   
1

1 ˆˆ , , 1,2,3,4.
n j

i
j T

i

n T j
n




     (71) 

The unknown parameters  ,  , 0v  of the normal 
SABR model can be determined as solutions of the fol- 
lowing constrained nonlin r least-squares problem:  

    
0

4
*

0 0
, , 1

ˆmin , , ,j j j
v j

T v n T
 

 



  72) 

s bject to the const

ea

  (

u raints:  

2

,  

00, 1 1, 0,v              (73) 

where j , 1, 2,3,4,j   are non negative weights that 
will be chosen in Section 4. 

Copyright © 2013 SciRes.                                                                               OJAppS 



L. FATONE  ET  AL. 354 

Note that roughly speaking when  increases the 
“q

 n
uality” of the moments  ˆ , ,j n T  1, 2,3,4,j   

estimated from the data samp
m er to lve s ib

rained 
no

n values

the 
m  construct 
good initial guesses of problem (72), (73) we take a 
closer look to the explicit expression of 
Formulae (65)-(68). In particular, we consider the 

 (f ula (65)) 
when be su

 with
der 

appr  

le increases and this should 
ake easi so atisfactorily the Cal ration prob- 

lem 1. 
The numerical experience shows that the const
nlinear least-squares problem (72), (73) has many 

local minimizers with similar objective functio . 
This means that the solution of problem (72), (73) is 
sensitive to the choice of the initial guess of 

inimization procedure used to solve it. To

the moment 

asymptotic expansion of the moment *
1 orm

0 . Let ch that 1 20 T T  , we 
approximate  the first- and the se nd-order 
Taylor's expansions e point t 

2t 
 *

1

oximation o

1 2,T T  

of bas
*
1  when

co
 The first-or0 .

f   1t T  

0v
is us
. Th

ed to obtain th
e second

e 
initial g
appr  

uess fo
oximation o

r th

1
e param
*  when

eter 
 2t T

-order 
f   is used to obtain the 

initial guess for the parameter  . To build an initial 
guess of the parameter   it is necessary to use 
higher-order moments. We prefer to exploit the fact that 

1 1    
nt formul
lution of p

and th

r

at th
akes co

lem (72)

e av

i

ailab
mput

, (73). Th
 com
al gu

ility o
onally
is m

putationa

f the exp
 very 

eans that, wh
l cost, it is 

for the param

licit 

en 

eter 

mome
the so

ae m
ob

ati

esses 

efficient 

necessary, at an affordable
possible to use multiple init
 . 

The defined in (69) used in Calibra- 
tion problem 1 to formulate problem (72), (73) must be 
co

data sample 1  

mpleted with the auxiliary data 
1

ˆi
T , 

2

ˆi
T , 

1, 2, , ,i n   (observed at tim   e  1t T and 2t T ) 
needed to build the initial guess of the minimization 
procedure used to solve problem (72), (73). For sim- 
plicity, it is possible to choose   or  as it is 
do

1T T 2T T
ne in the numerical example discussed in Section 4. In 

this case, the data contained in (69) are used both to 
formulate the nonlinear least-squares problem (see (72), 
(73)) and to obtain the initial guess for 0v  (when 

1T T ) or, the initial guess for   (when 2T T ). 
This set of data is realistic in several contexts of 

science and engineering where, for example, the obser- 
vations are obtained in experiments done in a laboratory. 
In fact, repeated experiments are a routine work in a 
laboratory. However, most of the times this is not re- 
alistic for observations made in the financial markets 
where usually it is not possible to repeat the “experi- 
ment”. That is, in the financial markets repeated obser- 
vations at a given time 0t   of independent realizations 
of the forward prices/rates random variable t  are 
usually not available. This is a serious concern which 
implies that the Calibration p m 1 is of limited in- 

terest in finance. 
The second calibration problem for the lognormal 

SABR model (11)-(14) overcomes this difficulty. In fact, 
ample considered in the second calibration 

problem is the set of the logarithms of the forward pri- 
ces/rates observed on a discrete set of known time values 
along a single trajectory of the lognormal SABR model. 
This data sample is easily available in the financial mar- 

ts.

roble

the data s

ke  It can be identified with a time series of the log- 
ari rd thms of the forwa prices/rates observed in the finan- 
cial market. 

Going into details, let M  be a positive in er t 

0 1

teg  and le
, , , Mt t t  be 1M   discrete tim ues su t 

1,i it t
e val ch tha

  1, 2, , ,i M   and 0 0t  . Recall that the 
times it , 0,1, ,i M  , are known. The data of the 
second calibration problem are arith  the for- 
ward prices/rates observed at the times 0 1, , , .

the log ms of

Mt t t  For 
1,2, ,i M   let us denote by î  the logarithm of the 

forward prices/rates observed at time it t  along one 
trajectory of the stochastic process , 0.t t   T  set:  he

 2
ˆ , 1, 2, , ,i i M            (74) 

is the data sample used in the following calibration 
problem: 

Calibration problem 2: single trajectory calibration 
problem. 

Given 0M  , 1M   discrete time values 

0 1, , , ,Mt t t  such that 1,i it t   1, 2, , ,i M   and 

0 0,t   and given the data set   defined in (74), 
determine the values of the parameters 

2

 ,   and 0v  
of the lognormal SABR model (11)-(14). 

The Calibration problem 2 can be formulated as the 
following constrained nonlinear least-squares problem:  

 
0

24
*

, 0 0
, , 1 1

ˆmin ( , , ) ,
M j

i j j i i
v i j

t v
 

  
 

  
 

       (75) 

subject to the constraints (73). The constants ,i j , 
1, 2, , ,i M   1, 2,3, 4,j   in (75) are non negative 

weights that will be chosen in Section 4. Note that when 
M  increases the “quality” of the terms  ˆ j

i , 
1, 2, , ,i M   1, 2,3, 4,j   does not increase, it is only 

the number of addenda of (75) that increases. For this 
reason we expect Calibration problem 2 to be more 
di pro

The num l exp
shows t  the behavio e con

q res problem

r the num
optimization 

 or
ent form

in Section 2. In particular, we use the first- and the 

fficult than Calibration blem 1. 
erica erience with problem (75), (73) 

hat ur of th strained nonlinear 
least-s ua  (75), (73) is similar to the 
behaviour of problem (72), (73). This implies that the 
availability of a good initial guess fo erical 

algorithm used to solve (75), (73) is very 
helpful to obtain a satisfactory solution. In der to build 
this initial guess we exploit the mom ulae derived 
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second-order Taylor’s approximations of
with base point . From the first-

of th  (i.e. ng th ervations 

 *
1  (see (65)) 

order Taylor's 0t 

e traject
approximation at 0t   of *

1  evaluated at the 
beginning 
ˆ

ory  usi e obs

i  with i  small, that is 1, 2, ,10i    in the numerical 
example of

s
 Sectio ess of 
econd

n 4) 
-or

we obtain
 Tay

 the in
lor's

itial gu 0

om the der  approximation at 0t
v . 

Fr   
ated at the e sing 

servations î

of 
the

*
1  

 ob
evalu (i.e.nd of t e trajecth ory  u

  with i  close to M , that is 
91,92, ,100i    in the numerical examp  o ection  

we obtain the initial guess of 
le f S 4)

 . Sometimes also the  

first-order Taylor’s approximation of 
*
1d

dt


 with base  

point is used to construct the initial g
num imization algorithm used to solv

at 

0t   
erical opt

1

uess of the 
e (75), (73). 

In this last case the first-order Taylor’s approximation at 
0t   of *  is used to obtain the initial guess of the 

parameter 0v  and the first-order Taylor’s approximation  

0  of t
*
1d

d


 is used to obtain the initial gu f 

the parameter 
t

ess o  

 . These approximations are evaluated at 
the beginning of the trajectory. As explained more in 
detail in Section 4, in financial applications a priori 
information about   is available. That is, due to the 
financial meaning of the variables, we must expect 

0  . In Section 4 we exploit this information to 
choose an initial guess for the parameter  . 

4. Some Numerical Experiments 

In this section we discuss three numerical experiments. 
In the first numerical experiment we solve the Calibra- 
tion problem 1 using synthetic data. In the second and 
third numerical experiments we solve the Calibration 
problem 2 using, ctively, synthetic and real data. 
The real data studied the da  belonging to a time 
series of exchange rates between currencies (euro/U.S. 

llar exc ange rates). 
The numerical experiments presented in this section 

can be “interpreted” as follows. As already said, the  
num ical experiment can be seen as a “physical experi- 
ment” done in the context of a scientific laboratory where 

make repeated observations of the same 
quantity. This type of experimen  usually is based on a 

respe
are ta

do h

first
er

it is possible to 
t

gno
l ha

al m

the n
o

more accurate value of the parameters can be obtained 
increasing the numerousness of the data sample used in 

ib n probl
erim an b

 pr ing and to hedge 
y important to 
eters. In some 

 setting of the first numerical 
ex

“physical model” (i.e. in this case the lo rmal SABR 
model) where the parameters of the mode ve a precise 
physic eaning (i.e. they are masses, charges, ...). In 
these circumstances the main scope of a calibration 
problem (such as Calibration problem 1) is to determine 

umerical values of these parameters in the best pos- 
sible way. N te that in this kind of experiments usually a 

the cal ratio em. The second and third numerical 
exp ents c e seen as experiments in finance or in a 
different context where it is not possible to make re- 
peated observations of the same quantity. Note that in 
mathematical finance the model and its parameters are 
mainly an auxiliary tool. In fact, the model is simply an 
instrument to interpret the data or to forecast future data. 
In the practice of the financial markets the calibrated 
financial models (such as the calibrated lognormal SABR 
model) are used to do option’s ic
portfolios. In these contexts it is not reall
know the exact values of the model param
sense even the existence of “exact” values for the model 
parameters can be debated. In mathematical finance the 
key fact is to show that the calibrated model is able to 
interpret the observations, that is, for example, to show 
the consistency of the option prices computed using the 
calibrated model with the option prices observed in the 
market. 

Let us describe the
periment. Let 0T   be given and n , m  be positive 

integers. Let t T m   be the time increment and 

it i t  , 0,1, , ,i m   be a discrete set of equispaced 
time values. Let 

mt T  , 
mt Tv v  be the solutions of 

(11)-(14) at time t T . The n  independent 
realizations ˆi

T , 1,2, , ,i n   of the random variable 

T  used as data in Calibration problem 1 are ap- 
proximated integrating numerically n  times (in cor- 
respondence of different realizations of the Wiener 
processes) the lognormal SABR model (11)-(14) in the 
time interval  0,T  using the explicit Euler method (see 
[14]). 

In the numerical example we choose 1T  , 100m  , 
1000n  , 0.1  , 0.2   , 0 0 1    and 

0 0 0.5v v  . The parameters  

   0, , 0.1, 0.2,0.5 ,v             (76) 

are the “true” values of the unknowns of the calibration 
problem considered (i.e. they are the values of the 
unknowns used to generate the data). We reconstruct 
these unknown parameters solving Calibration problem 1 
using as data sample the set of the logarithms of the 
forward prices/rates observed at time 1t T   in 

1000n   independent trajectories of the lognormal 
SABR model (11)-(14) (with the parameter values given 
in (76) and 0 0 1   ). These trajectories are ap- 
proximated integrating numerically using the explicit 
Euler method the model (11)-(14). In particular, when 

1000n   let us denote by 1

ˆ̂
,i

T   1, 2, , ,i n   the 
approximations of 1

ˆ , 1, 2, , ,i
T i n     obtained at time 

1t T   integrating with the explicit Euler method 
1000n   independent trajectories of the model (11)-(14) 

(with the parameter values given in (76) and 

0 0 1   ). The set: 
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 1, 1000 1, 1, 2, ,1000 ,i
T n T i         (77) 

is the sample of tic data used to solve Calibration 
problem 1. 

In a similar way when we choose 100T  , 1000n

ˆˆ ˆ

 synthe

  
(leaving the other para t s unchanged) we generate  

the data set 100, 1000 100
ˆ , 1,2, ,1000i

T n T i     . As  

explained in Section 3, this second data sample is used in 
the construction of the initial guess of the numerical 
optimization algorithm used to solve the constrained 
nonlinear leas res problem (72), (73) corresponding 
to the data sam ˆ

me er

 

t-squa
ple 

ed in th
numerical

Using and the first- and 
second-o or’s ap
point ugg io

  ˆ̂

1, 1000T n  . 
The data sets 1, 1000

ˆ
T n   and 100,

ˆ
T n us e 

 experi are avai

1, 1000
ˆ

n   and 100,
ˆ

T 

1000  
lable at [15]. ment 

T
rder Tayl

0 , as s

1000n  
proximations o

ested in Sect
f 1  with base 
n 3, we find 

*

t

0 0.515inv   and 0.099in   as initial guesses of, 
respectively, 0v  and  . Note that in the notation of 
Section 3 we have chosen 1 1T T   and 2 100T  . 
The initial guess in  of   is chosen as 0.05in   . 

Given    0, , 0.099, 0.05,0.515in in inv     as initial 
guess, the nonlinear least-squares problem ) is 

sing 1, 1000
ˆ

T n   as data sample. In this 
numerical example the moments considered in (72) are 
all of the same or gnitude so that it is possible to 
choose in (72) the weights 1j

(7

der of ma

2), (73
solved u

  , 1, 2,3, 4j  . Note 
that Formulae (65)-(68) suggest that in general the 
weight j  must decrease when ses. 

The nonlinear le lem (72), (73) is 
ing the FMINCON routine of Matlab. The solu- 
d starting from the initial guess  

 

 the index j
ast-squares prob

 increa

solved us
tion foun

 
  (78) 

The relative -error of the initial guess 

0, , 0.099, 0.05,0.515in in inv     is:  
* *   0 0, , , , 0.076, 0.222,0.508 .v v       *

2L

) is 0
   

e -error of the 
so lem wit

he sensitivity of the solution procedure 
respect to the presence of noise in the

0, , 0.099, 0.05,0.515in in inv     with respect to the 
“true” soluti 2on (76 .275. The relativ L

lution (78) of the least-squares prob h respect to 
the “true” solution (76) is 0.062. 

To study t
proposed with  data 
we add noise of known statistical properties to the 
synthetic data contained in 1, 1000

ˆ
T n  , 100, 1000

ˆ
T n   and 

we study the quality of the solutions of Calibration 
problem 1 found as a function of the noise properties. In 
particular given 1 0 

ple: 
 wing 

“n

 
distribu  interval 

let  considus er the follo
oisy” data sam

  ˆˆ ˆ 2i    1, 100 11 1 , 1, 2, ,1000 ,T n i     

(79) 

where  is a random entry taken from a uniform 
on the 1) . In a similar way we 

add noise to 100, 1000   to obtain the “noisy” data sam- 
ple 100, 1000T̂ n  . 

Given 1 0

0 1T rand  

rand
tion (0,

ˆ
T n

    com ute the relatiwe p ve -error 
be e” solution (76) and the 

ibed ab

2L
tween solution of 

Calibration problem 1 found with the numerical 
procedure desc ove. We repeat the entire 
procedure 1N  times and we compute the mean of the 

2L -relative errors of the 1N  solutions found. We denote 
by 

the “tru

r

1 1, ,N nE  this mean relative erro elative  
errors 

r. The mean r

1 1, 1000, 1000N nE    obtained when 1 1000N  , 

1000n   1and 0.01,0.05,0.1   are show  in Table 1. n

As already explained, it is expected that in this ex- 
periment a more accurate value of the parameters can be 
obtained by increasing the amount of the

 validat
 data sample 

used in the calibration problem. To e this idea, we 
increase the number of the data samples invo
the experiment. We nsider  and we con- 
st
the corresponding i

n  
 co
ple

 “no

lved in 
 10000n 

00

ata 
d

ruct the data sam s 1, 10 0
ˆ

T n  , 100, 10000
ˆ

T n   and 
samples 1, 10000

ˆ ,T n   

100, 10000T̂ n  . The data sets 1, 10000
ˆ

T n   an 100, 10000
ˆ

T n   
used in the numerical experiment are available at [15]. 
Given 0

sy” d
 

1   we compute the mean relative errors 

1 1, 1000, 10000N n    obtained when 1 1000N  , 10000nE   
and 1 0.01,0.05,0.1  . The results obtained are shown 
in Table 2. The comparison of Tables 1 and 2 shows a 
substantial reduction of the hen 

1 0.05
 mean relative errors w

   and 1 0.1   and only a marginal reduction 
of the mean relative errors when 1 0.01  . This sug- 
gests that the pres of noise even in small quantity 
degrades the solution 

ence 
obtained. 

The second numerical experiment presented consists 
in solving Calibration problem 2 using a sample of 
synthetic data. Given the number of observations 
 

0M   

Table 1. Calibration problem 1: the mean relative error 

N nE1 1, =1000, =1000  as a function of 1 . 

1  
1 1, 1000, 1000N nE    

0.01 0.124 

0.05 0.215 

0.1 0.328 

 
Table 2. Calibration problem 1: the mean relative error 

N1 1, =10 n00, =1E 0000  as a function of 1

1

. 

  
1 1, 1000, 10000N nE    

0.01 0.104 

0.05 0.141 

0.1 0.170 
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and a time increment 0t  , let ,it i t   
0,1, , ,i M   be a discrete set o tion times. Let 

ˆ̂
i

f observa
  be the approximat  of 

, 1, 2, , ,
it

i M
ion of a realization

    obtained integrating with t t 
d one trajecto lognor

model (11)-(14). Let us choose 100,M   1,t

he explici
 of mal SABR Euler metho ry  the 

   
0.1,  0.2,  

That is, we wan
  0 0 1    and 0 0 0.5.v v   
t to reconstruct th  p  

(76) by solving Calibration problem 2 using as data 
sample the set of the logarithms of the forward prices/ 
rates observed at time , 1,2, , 100,it i M   along one 
trajectory of the lognormal SABR model. The set  

 2

ˆˆ ˆ , 1, 2, ,100 ,i i           (80) 

e unknown arameters

is the sample of synthetic data used to solve Calibration 
problem 2. The data set 2̂  used in the numerical 
xperiment is available at [15]. e

Proceeding as discussed in Section 3 using the data set 
̂ , the least-squares fit of the first-order Taylor’s 
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tion (81) of the least-squares problem with respect to 
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Let u at the da ration problem 2 

are pposed to be prices/ s observed in the financial 
markets, that is, these data are not affecte by noise as 
the da erved in physic H dy the 

f the solution of Calib tion problem 2 found 
with the numerical proc ure proposed with respect to 
the presence of noise in the data. We add noise to the 
synthetic data contained in 2̂  and we study the quality 
of the solution of Calibration problems 2 found as a 
function of the noise properties. In particular given 
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r, let u
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   we compute the relative 2L -error be- 
tween the “true” solution (76) and the solution of Cali- 
bration problem 2 found with the numerical procedure 
described above. The entire procedure is repeated 2N  
times and the mean of the -relative errors of the 2N  
solutions found is calculated. Let 

2L

2 2,NE  be this mean 
relative error. The mean relative errors 

2 2, 1000NE   ob- 
tained when 1000N2   and 0.01,0.05,0.12   are 
shown in Table 3. 

Table 3 shows mean relative errors greater than the 
corresponding mea elative errors of the first numerical 
experiment. The calibration problem studied in the 
second experiment is more difficult than th

n r

problem studied in the first one
quantity of the data and abov
qu ng
deduced from the data sample 2̂


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100, 1000T n   and the moments estimated from the data 
contained in 1, 1000
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ˆ
T n   using formula (71) 

are of high quality due to the average over a sample of 
1000=n  observations. There is no a similar effect in  

 
Table 3. Calibration problem 2: the mean relative error 

NE2 2, =1000  as a function of 2 . 

1  
2 2, 1000NE   

0.01 0.239 

0.05 0.265 

0.1 0.369 
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Calibration problem 2. 
In the context of finance the natural way of f

w ve
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th
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re or ex h n the Heston m

e logn odel this p

 ho

ur purpos is paper.  
der a tim

series of e
nge rate n the p

rates con
.S. dollars and are the closing value of the day (in New 

year is m  tr ing days and that a month 
is made of about 21 trading days. Figure 1 shows the 
euro/U.S. dollar currency’s exchange rate as a function 
of time. T own in Figu s available at 
[15]. 

We use  lognormal SABR mo  interpret the 
data show  Figure 1. In order to u model in the 

he logarithm of the data shown 

 

ormulat- 
ing a ne rsion of Calibration problem 2 (i.e. a “single 
trajectory” calibration probl m) that defines more accu- 
rat  model ely the parameters is to acquire at e observa- 
tion times not only the forward prices/rates data, but also 
the data relative to the prices of one or of several options 
having as underlying the forward prices/rates. This last 
problem is a “single trajectory” calibration problem th t 
exploits more deeply than Calibratio  problem 2 the in- 
formation contained in the prices. We do not consider 
this problem he . F ample, w e odel 
is used instead of th ormal SABR m rob- 
lem has been studied in [6]. 

Note that the FMINCON routine of Matlab used to 
solve problems (72), (73) and (75), (73) is an elementary 
local minimization routine. Higher quality results can be 
obtained solving problems (72), (73) and (75), (73) using 
global minimization methods. Moreover, the explicit 
moment formulae that define the objective functions (72), 
(75) can be used to develop ad c minimization algo- 
rithms to solve problems (72), (73) and (75), (73). This is 
beyond o es in th  

In the third numerical experiment we consi e 
xchange rates between currencies (euro/U.S. 

dollar excha s) i eriod going from 
September 14th, 2010, to July 20th, 2011. The exchange 

sidered are daily exchange rates expressed in 
U
York) of one euro expressed in U.S. dollars. Recall that a 

ade of about 252 ad

he data set sh re 1 i

 the del to
n in se the 

form (11)-(14) we take t
in Figure 1. That is, we solve the Calibration problem 2 
using a window of 20 consecutive observations as data 
and we study the stability of the solution found with re- 
spect to shifts of the data along the time series. The 
model resulting from the calibration can be used to fore- 
 

 

Figure 1. euro/U.S. dollar currency’s exchange rate versus 
time. 

cast exchange rates and to compute option prices on ex- 
change rates. 

We solve Calibration problem 2 using the real data of 
Figure 1 associated to a time window made of 

1 20M    consecutive observation times, that is the 
observations corresponding to 20 consecutive trading 
days, and we move this window across the data set dis- 
carding the datum corresponding to the first observation 
time of the window and inserting the datum correspond- 
ing to the next observation time after the window. The 
calibration problem (75), (73) is solved for each choice 
of the data window. We choose 1 252,t   0 0    
equal to the first observation (i.e. logarithm of the ex-
change rate observed) of the window considered, 

, 1i j  , 1, 2, ,19,i    1, 2,3,4.j   The initial guess 
of the numerical method used to solve the nonlinear 
least-squares problem (75), (73) has been chosen as fol- 
lows:    0, , 0.05, 0.05,0.05in in inv    . Note that a data 
window made of twenty data has too few points to im- 
plement satisfactorily the asymptotic analysis of the 
moment formulae discussed in Section 3. Note that to 
make possible the effective numerical solution of prob- 
lem (75), (73) the independent variables in (75), (73) 
have been rescaled. 

The reconstructions of the parameters obtained mov- 
ing the data window along the data set of Figure 1 are 
shown in Figure 2. In Figure 2 the abscissa corresponds 
to the data window used to reconstruct the model para- 
meters. The data windows are numbered in ascending 
order beginning with one according to the order in time 
of the first day of the window considered. In particular, 
Figure 2 shows that the parameters ,   reconstructed 
remain essentially stable when the ndow is moved 
along the data time series. Occasi

wi
onally   and   

have spikes that probably indicate that the numerical 
procedure used to solve problem (75), (73) has failed.  
 

 

. rs v , ,  Figure 2 The paramete 0 onstructed from the 

data of Figure 1 versus time. 

rec
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 is moved along the data time s
The parameter  reconstructed changes when the 
window eries. This is cor- 
rect since 0v  is the stochastic volatility of the first day 
of the window and in a stochastic volatility model (such 
as the lognormal SABR model) there is no reason to ex- 
pect this value to be constant. 

The fact that the values of the parameters 0, , ,v

0v

    
obtained calibrating the lognormal SABR mod
re

least

ti
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