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ABSTRACT 

Finding optimal path in a given network is an important content of intelligent transportation information service. Static 
shortest path has been studied widely and many efficient searching methods have been developed, for example 
Dijkstra’s algorithm, Floyd-Warshall, Bellman-Ford, A* et al. However, practical travel time is not a constant value but 
a stochastic value. How to take full use of the stochastic character to find the shortest path is a significant problem. In 
this paper, GPS floating car is used to detect road section’s travel time. The probability distribution of travel time is 
estimated according to Bayes estimation method. The combined probability distribution of a feasible route is calculated 
according to probability operation. The objective function is to find the route that has the biggest probability to arrive 
for desired time thresholds. Improved Genetic Algorithm is used to calculate the optimal path. The efficiency of the 
proposed method is illustrated with a practical example. 
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1. Introduction 

Finding optimal paths in a given network is one of the 
most fundamental problems in network studies and has 
broad applications in the physical and social sciences and 
in engineering, particularly in the fields of computer sci- 
ence, operations research, and transportation engineering 
[1]. Static shortest path has been studied widely and 
many efficient searching methods have been developed, 
for example Dijkstra’s algorithm, Floyd-Warshall, Bell-
man-Ford, A* et al. Dijkstra’s algorithm is a graph search 
algorithm that solves the single-source shortest path 
problem for a graph with non-negative edge path costs, 
producing a shortest path tree [2,3]. This algorithm is 
often used in routing as a subroutine in other graph algo-
rithms. The Floyd-Warshall algorithm compares all pos-
sible paths through the graph between each pair of verti-
ces [4]. The Bellman-Ford algorithm is an algorithm that 
computes shortest paths from a single source vertex to all 
of the other vertices in a weighted digraph [5]. Bellman- 
Ford is based on the principle of relaxation, in which an 
approximation to the correct distance is gradually re- 
placed by more accurate values until eventually reaching 
the optimum solution. A* uses a best-first search and 
finds a least-cost path from a given initial node to one 
goal node [6,7]. It is an extension of Dijkstra’s algo-  

rithm. Classical shortest path searching methods are 
based on fixed path costs. However, practical travel time 
of a road segment is a stochastic variable. Shortest path is 
a random variable also. Shortest path based on random 
travel time has been studied [8-10]. The studied methods 
are difficult to be used in practical because that the algo- 
rithms are difficult and the probability distribution of 
road section travel time is difficult to be obtained. 

Travel time collection is the precondition of optimal 
path finding. Many kinds of collectors can be used to 
collect traffic flow data, such as loop induce collector, 
microwave collector, video collector and so on [11]. The 
shortcoming of fixed collector is that the coverage is 
small and cost is expensive. It is difficult to obtain whole 
roadway traffic state. Instantaneous traffic information 
can be collected by the Floating Car Data (FCD) method. 
It has become the efficient means to obtain real-time tra- 
ffic information [12]. GPS floating car can collect travel 
speed parameter. Different driver has different drive style. 
The driving speed corresponding to different driver may 
be different under the same traffic condition. The travel 
speed is a stochastic variable. Average travel speed is 
often used to analyze traffic state. The stochastic charac- 
ter of traffic flow parameter is ignored. In this paper, the 
stochastic character is considered in the optimal path 
finding study. The probability distribution of travel time 
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has been widely studied [13]. In this paper, norm distri- 
bution is considered. 

After the travel time probability distribution being de- 
termined, how to find the optimal path based on stochas- 
tic distribution is a difficult problem. In the optimal path 
searching study, the least expected travel time is often 
taken as the objection [14]. In the optimum problem, it 
requires evaluating multiple integrals. Classic shortest 
path finding methods, such as Dijkstra’s algorithm, 
Floyd-Warshall, Bellman-Ford, A* and so on, are not 
suitable to be used here. Some heuristic methods have 
been adopted to resolve the optimal problem [15-17]. 
Based on previous research, GA-based routing algorithm 
has been found to be more scalable and insensitive to 
variations in network topologies. It is taken as the most 
efficient one. However, many paths generated through 
cross and mutation are unreasonable. For resolving the 
problem, some improved genetic algorithms were pro- 
posed. In this paper, the improved genetic algorithms 
proposed in [17] will be adopted to resolve the optimal 
path problem. At last, an example is analyzed to illustrate 
the efficiency of the proposed method. 

2. Travel Time Distribution Estimation 
Based on GPS Floating Car 

2.1. Travel Time Calculation Based on GPS 
Floating Car 

GPS floating car can provide localization data, speed, 
travel direction and time information. Data collection 
interval, which can be set according to practical require- 
ment, is often set as 30 seconds. These data are the es- 
sential source for intelligent transportation systems. In a 
certain time interval, a road section maybe includes sev- 
eral sample points of a floating car. Travel speed of a 
road section can be calculated according to simple float- 
ing car. The calculation method is described as follows. 

Let the length of a road section be denoted , the ve- 
hicle speed at the ith sample point be denoted by i  and 
the number of sample point be denoted by . Let 0  
denote the first sampling point, and 1  denote last sam- 
pling point. Travel speed of the road section is calculated 
as follows. 
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When the sample time interval is fixed, the formula 
can be simplified as 
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2.2. Travel Time Distribution Estimation 

A road section may include several floating cars in a 
sample time interval. The travel time of the road section 
based on each floating car can be calculated according to 
above introduced method. The probability distribution 
style is determined with hypothesis test method. The dis- 
tribution parameters of travel time are determined with 
Bayes method. The estimation method is introduced as 
follows. 

Suppose a continuous random variable be X , 
 ~ . , ΘX f    , with continuous parameter space . 

The parameter 
Θ

 ’s priori density is  . . XM  is the 
observation space of X . Based on data points 

1 2, , , nx x  x , the Bayes’ theorem can be expressed as 
follows. 
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where  1 2; , , , nl x x x   is the likelihood function of 
the observations.  

When travel time of a road section obeys normal dis- 
tribution, the probability distribution can be denoted by 
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Given n data points  0 1 2, , , nD x x x  , who obey a 
normal distribution, the two parameters’ joint priori-dis- 
tribution according to Jeffrey’s method is 
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According to above Bayesian method, the distribution 
of travel time can be determined. 

3. Distribution of Shortest Path 

Let  , ,G S E T  be a road network, where  is the STravel time of a road section can be calculated, i.e. 
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vertices set,  is the link set, and  is the weight 
value set of . Let 1 2 k  denote a path from 
start node  to end node n . The travel time of sec-
tion  is denoted by i

E
E

1

,2,

T
R S S S 

SS
, 1 ,i i k X  that obey normal 

distribution  ,i iN   . The shortest path is denoted by 
variable . It can be calculated according to the fol-
lowing equation. 

Y

1 2y x x   nx            (9) 

The travel time of each road section is supposed inde- 
pendent. According to probability theory, the sum of 
independent normally distributed variables is also nor- 
mally distributed. The distribution parameters are as fol- 
lows. 
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The distribution of shortest path y can be described as 
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After the probability distribution being determined, the 
probability of arriving at objection in time  is as fol- 
lows. 

t

y           (13) 

4. Shortest Path Calculation with  
Genetic Algorithm 

The optimum route is obtained through maximization 
. It can be summarized as following optimization 

problem. 
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where  is the feasible path set from source node to 
destination node.  

From the above optimization problem, we can see that 
the object function is an integration function. It is diffi-

cult to obtain the analytic solution. Genetic algorithm is a 
problem solving method based on the concept of natural 
selection and genetics. It has been quite successfully ap-
plied in machine learning and optimization problems. It 
is adopted to resolve the optimization problem. Classic 
genetic algorithm will generate unreasonable path. Im- 
proved genetic algorithm is used to analyze the optimum 
problem. The algorithm is introduced as follows. 

The GA design involves several key components: ge- 
netic representation, population initialization, fitness 
function, selection scheme, crossover, and mutation. A 
sample road network is shown as in Figure 1. The objec-
tion is to find the optimum route from source node 1 to 
destination node 12. The GA method can be described as 
follows. 

1) Genetic representation 
A routing path from source node to the destination 

node is encoded by a string of positive integers that rep-
resent the IDs of nodes through which the path passes. 
Each position of the string represents an order of the 
node in the road network. A feasible route is from the 
source node to the destination node without circle. Fig-
ure 2 is a sample from source node to the destination 
node. 

2) Population initialization 
The initial population P  is composed of a certain 

number of chromosomes. The source node is taken as the 
starting point of a chromosome , which is constant. A 
feasible route is generated though selecting one of the 
neighbors provided that it has not been picked before. It 
keeps doing this operation until it reaches to destination 
node. The population scale is determined according to 
practical requirement. 

p

3) Fitness function 
For a given solution, evaluate its quality, which is de- 

termined by the fitness function. In this paper, the fitness 
function is the probability of arriving at destination in 
time . The probability distribution of a given solution  t
 

 

Figure 1. Road network. 
 

1 2 3 7 11 12 
 

Figure 2. A feasible path from source to destination node. 
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is calculated according to (13). 
4) Crossover and mutation 
The single-point crossover is supposed to exchange 

partial chromosomes. With the crossover probability, 
each time we select two chromosomes i  and j  for 
crossover. They should possess at least one common 
node. The crossover process is shown as in Figure 3. 
After selection and crossover the population will undergo 
the mutation operation. 

r r

With the mutation probability, each time we select one 
chromosome i  on which one gene is randomly selected 
as the mutation point. The mutation will replace the sub 
path by a new random sub path. Mutation process is 
shown as in Figure 4. 

r

5) Selection 
After crossover and mutation, initial and new gener- 

ated chromosomes are used for selection. The chromo- 
some with high fitness value has great chance to be cop- 
ied to the next generation.  

Repeat the process until terminating condition is 
reached. 

5. Examples 

One year GPS floating car data of 3500 taxis are pro- 
vided by Jinan Urban Public Passenger Transport Man- 
agement Services Center. In the aggregation of GPS 
floating car data, the upload interval is set 20 seconds. 
The uploaded record items include vehicle’s running speed, 
direction, longitude, latitude et al. parameters. The lon-
gitude, latitude, direction parameters are used to locate 
the vehicle position with map matching method. The pro- 
bability of the traffic state is analyzed with the pro- posed 
method. The selected road network is shown as in Figure 
1. The time interval between two analyses is 5 minutes. 
The traffic flow data from 8:00 to 8:05 are selected. 

5.1. Data Processing 

Firstly, we will make the map matching according to the 
GPS floating car data. The data that are invalid to ana- 
lyze traffic flow are deleted. They are recovered with 
forecasting method. In this example, exponent smoothing  
 

R1 1 2 3 7 6 10 11 12

R2 1 2 3 4 8 7 11 12
 

R1’ 1 2 3 7 11 12   

R2’ 1 2 3 7 6 10 11 12  

Figure 3. Crossover of chromosome. 
 

R1 1 2 3 7 11 12 
R1’ 1 2 6 10 11 12  

Figure 4. Mutation of chromosome. 

method is used to forecast missing or deleted running 
GPS floating car data. 

5.2. Travel Time Calculation 

Travel time is estimated with (3) according to each float- 
ing car. The probability distributions of travel time of the 
road section corresponding to each time section are esti- 
mated with Bayesian method. The obtained distribution 
parameters of each time section are listed in Table 1. 

5.3. Optimum Route Calculation 

Use the improved GA method of section 4 to find the 
optimum path. The parameters of GA are set as follows. 
The initial population number is set 5 and generated 
chromosomes are shown in Figure 5. The crossover rate 
and mutation rate are set 0.4 and 0.1 respectively. The 
iteration threshold value is set 20. When , the op- 
timum route is 

10t 
11 11 2 3 7 2optR     

7t 
2 3 4 8 12

  whose 
probability is 0.97. When , the optimum route is 

opt 1R        whose probability is 
0.31. 

5.4. Results Analysis 

From the example’s analysis results we can find that the 
optimum route based on stochastic travel time can be 
obtained with the proposed method. When the desired 
travel time is different, the optimum route is different 
also. 

6. Conclusion 

Optimum path based on random travel time is an impor- 
tant problem. The optimum path finding method pro- 
posed in this paper is based on stochastic travel time, 
which can describe the real traffic situation properly. The 
probability of arriving at destination point in desired time 
is taken as the objection function. Classic optimum path 
finding methods, Dijkstra’s algorithm and A*, are not 
suitable to be used to solve the optimum path problems. 
In this paper, an improved genetic algorithm is adopted 
to solve the optimum problem. From the practical exam- 
ple analysis results we can find that the proposed method 
is efficient in dealing with optimal path problem. GPS 
floating car has been widely adopted. It is possible to  
 

R1 1 2 6 10 11 12   

R1 1 5 6 7 8 12   

R1 1 2 6 5 9 10 11 12 

R1 1 2 3 7 6 10 11 12 

R1 1 2 3 4 8 7 11 12 
 

Figure 5. Initial population. 
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Table 1. Probability distribution parameters of road network    2, . 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 1.5, 0.23 ∞ ∞ 1.6, 0.16 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

2 1.8, 0.19 0 1.7, 0.28 ∞ 100 1.4, 0.12 ∞ ∞ ∞ ∞ ∞ ∞ 

3 ∞ 1.6, 0.24 0 2.1, 0.22 ∞ ∞ 1.4, 0.12 ∞ ∞ ∞ ∞ ∞ 

4 ∞ ∞ 2.2, 0.18 0 ∞ ∞ ∞ 1.6, 0.20 ∞ ∞ ∞ ∞ 

5 1.5, 0.13 ∞ ∞ ∞ ∞ 1.8, 0.31 ∞  2.2, 0.14 ∞ ∞ ∞ 

6 ∞ 1.4, 0.15 ∞ ∞ 1.9, 0.21 ∞ 1.6, 0.21 ∞ ∞ 2.7, 0.21 ∞ ∞ 

7 ∞ ∞ 2.4, 0.33 ∞ ∞ 1.7, 0.22  2.4, 0.33 ∞ ∞ 1.6, 0.13 ∞ 

8 ∞ ∞ ∞ 1.7, 0.26 ∞ ∞ 2.5, 0.32 ∞ ∞ ∞ ∞ 1.2, 0.21

9 ∞ ∞ ∞ ∞ 2.1, 0.21 ∞ ∞ ∞ ∞ 1.8, 0.31 ∞ ∞ 

10 ∞ ∞ ∞ ∞ ∞ 2.5, 0.33 ∞ ∞ 1.9, 0.16 ∞ 1.8, 0.31 ∞ 

11 ∞ ∞ ∞ ∞ ∞ ∞ 1.7, 0.14 ∞ ∞ 1.8, 0.28 ∞ 1.8, 0.31

12 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.3, 0.22 ∞ ∞ 1.7, 0.30 ∞ 

Note: ∞ denotes that the two node are not connected directly. 

 
apply the proposed method to practical system. With the 
development of floating car, the data scale will become 
larger and larger. How to extend the proposed optimal 
path finding method to large scale data is our future re- 
search work. 
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