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ABSTRACT 
Non Wide Sense Stationary Uncorrelated Scattering (Non-WSSUS) is one of characteristics for high-speed railway 
wireless channels. In this paper, estimation of Non-WSSUS Channel for OFDM Systems is considered by using Com-
pressive Sensing (CS) method. Given sufficiently wide transmission bandwidth, wireless channels encountered here 
tend to exhibit a sparse multipath structure. Then a sparse Non-WSSUS channel estimation approach is proposed based 
on the delay-Doppler-spread function representation of the channel. This approach includes two steps. First, the de-
lay-Doppler-spread function is estimated by the Compressive Sensing (CS) method utilizing the delay-Doppler basis. 
Then, the channel is tracked by a reduced order Kalman filter in the sparse delay-Doppler domain, and then estimated 
sequentially. Simulation results under LTE-R standard demonstrate that the proposed algorithm significantly improves 
the performance of channel estimation, comparing with the conventional Least Square (LS) and regular CS methods. 
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1. Introduction 
In recent several years, High-Speed Railway (HSR) in 
China has made great progress and attracted the world’s 
attention [1]. The new speed record of high speed train is 
at 486.1 km/h [2]. The broadband wireless access on 
HSRs, also known as train-ground communication has 
become a hot issue. To develop high quality service wire-
less communications that meet the demand of next-gen- 
eration broadband wireless access for high-speed railway 
has become an urgent problem. It has been shown that 
the communication quality of the existing wireless net-
work of HSRs is quite poor, where a high rate of dropped 
calls and low data rate are observed [3]. LTE-R [4,5] 
basing on OFDM is commonly considered as a promis-
ing candidate to provide high quality of service. Since 
the serious time and frequency selective fading, which 
affects the OFDM symbol at the physical layer greatly 
impacts system OFDM performance, the estimation and 
compensation of the channel variation for each OFDM 
symbol is crucial [6]. 

In the wireless communication, one of the most prac-
tical assumptions about the wireless channel is that of 

Wide Sense Stationary Uncorrelated Scattering, (WSSUS). 
Existing fast fading channel estimation methods most 
generalized stationary uncorrelated scattering (WSSUS) 
as a precondition [7], or satisfied some certain channel 
statistical characteristics, e.g. Jakes’ channels [8]. How-
ever, this assumption is no longer valid when the tran-
sceivers operate in the high speed railway environment. 
Because for the HSR channel, the transceiver encounters 
different channel conditions and the train runs across the 
scenarios so rapidly [3]. This condition provokes the mul-
tipath arrivals associated with surface scattering fluctuate 
rapidly over time, in the sense that the channel gain, the 
arrival time, and the Doppler shifts of each arrival all 
change dynamically [9], as a result the channel is Non- 
WSSUS. The study of statistical characteristics of Non- 
WSSUS has drawn much attention of researchers [10,11]. 
But in order to perform OFDM channel estimation, the 
channel impulse response (CIR) is needed to be esti-
mated. 

Apart from the fact that HSR channel is Non-WSSUS, 
it is also sparse. For one thing, numerous experimental 
studies undertaken by various researchers in the recent 
have shown that wireless channels associated with a num-
ber of scattering environments tend to exhibit sparse struc-
tures at large bandwidths [12]. For another, compared  
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with urban and indoor conditions, the specular LOS com-
ponent is much stronger. Thus, the channel is generally 
lower density scattered [3], which enhances the sparse 
structures of the HSR channel. 

According to the characteristics of HSR channel men-
tioned above, a Non-WSSUS channel estimation approach 
is developed in this paper. It utilizes the channel delay- 
Doppler-spread representation to accommodate the Non- 
WSSUS of the CIR. This approach includes two steps. In 
the first step, it utilizes the delay-Doppler shifts basis to 
estimate the sparse HSR channel. In the second step, the 
channel is tracked by a reduced order Kalman filter in the 
sparse delay-Doppler shift domain, and then recovered 
by CS method sequentially. One can, in turn, use the de-
tected pilots to perform a sequential approach for channel 
estimation and data recovery. Our approach is not limited 
by certain statistical characteristics. 

This paper is organized as follows: Section 2 intro-
duces the Non-WSSUS channel and the OFDM system 
models. Section 3 explains the estimation of the sparse 
channel delay-Doppler-spread in the OFDM system. Sec-
tion 4 describes the sparse dynamic model for the Non- 
WSSUS HSR channel, and then our proposed approach 
for estimating Non-WSSUS channel is derived. Section 5 
presents the simulations results which validate our ap-
proach. Finally, our conclusions are presented in Section 
6. 

2. Non-WSSUS Channel and OFDM System 
Models 

2.1. Non-WSSUS Channel Models 
There are many equivalent ways of characterizing LTV 
systems. We use the delay-Doppler-spread function C(υ, 
τ) for channel characterization [13,14]. The time-varying 
frequency response H( , )t f  and the delay-Doppler spread-
ing function constitute a two-dimensional Fourier trans-
form pair. It is defined by 

2 22H( , ) C( , )e ej t j ft f d dπυ πτυ τ υ τ−= ∫ ∫


   (1) 

The quantity C( , )d dυ τ υ τ is the contribution to from 
a scatterer at delay and Doppler. The discrete representa-
tion of Equation (1) is given by [12], 

2 2

1
H( , ) e e

p
n n

N
j f t

n
n

t f πτ πυα −

=

= ∑            (2) 

which represents signal propagation over pN  paths. In 
another word, there are pN  pairs, corresponding to dis-
tinct scatterers at different delay and Doppler. We as-
sume that the channel is maximally spread in the delay 
and Doppler space, max[0, ]nτ τ∈  and max[0, ]nυ υ∈ . It 
has been shown that if nα  (the discrete coefficients of
C( , )υ τ ) is a function of discrete time n : ( )n nα , then 
channel is not WSS anymore [13]. If the matrix repre-

sentation of nα  is not diagonal, then channel is not US, 
which will be further demonstrated in Section 3. 

2.2. OFDM System Models 
In OFDM systems, the output symbol of the transmitter 
at time n is given by the N point complex modulation  

sequence 
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data symbol. 
The orthogonal short-time Fourier (STF) basis wave-

forms 02
0{ ( )e )j mW tg t nT π− , as a generalization of OFDM 

signaling to counteract the time selectivity of doubly- 
selective channels are used [14]. The parameter 

0 max max[ ,1/ ]T τ υ∈  and 0 max max[ ,1/ ]W υ τ∈  correspond 
to the time and frequency separation of the STF basis, 
and are chosen so that 0 0 1T W =  (which gives rise to an 
orthogonal STF basis). 

3. Estimation of the OFDM Sparse Channel 
Delay-Doppler-Spread 

3.1. Delay-Doppler-Spread Representation 
Consider signaling over wireless channels using symbols 
of duration T and (two-sided) bandwidth W, ( ) 0x t =  

[0, ]t T∀ ∉  and ( ) 0X f = , [ / 2, / 2]f W W∀ ∉ − , the-
reby giving rise to a temporal signal space of dimension 

0N TW=  [12]. 
So the maximum number of resolvable delays,  

max 1L Wτ= +    and the maximum number of resolvable 
Doppler shift, max / 2K Tυ=    . The matrix representa-
tion of delay-Doppler-spread nα  [15] is as 
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Now recall from Section 2 that the time-varying fre-
quency response (Equation (2)). The virtual representa-
tion of a doubly-selective channel therefore implies that 
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It is straightforward to see that if Hα  is not diagonal, 
then the thl scatterer will be interfered by other scatterers, 
leading to a correlated scatterer. 

3.2. Using CS to Estimate the Sparse Channel 
Delay-Doppler-Spread 

By sampling pilot symbols uniformly at random (without 
replacement) from the whole temporal signal space of 
dimension 0N , the D-sparse (the number of nonzero 
elements of delay-Doppler-spread function is D) channel 
delay-Doppler-spread estimation will have the following 
equation, 

H U vec(H )p p twα= +          (5) 

w h e r e 2~ (0, )t obsw N Iσ ,  
( )

H
( )

p
p

p

y receive pilots
x transmit pilots

= ,  

, ,U { / (u u ) : ( , ) }p p t n f mN n m pilotsε ′ ′= ⊗ ∈ , ε  is the 
system transmit energy budget, and tw is the channel ob-
servation noise. 

Since Hα  is sparse, it is can be recovered form
 

H p  
by various CS methods (here we use OMP and CoSaMP). 
Then the CIR can be built according to Equation (4). 

4. Estimation of Non-WSSUS Channel 
4.1. Non-WSSUS Channel Model 
Since the HSR channel is determined by its delay- 
Doppler-spread representation, we just need to discuss 
the dynamic model for delay-Doppler-spread function. 
For the currently non-zero coefficients of H ( )nα  at dis-
crete time n, we assume a spatially i.i.d. Gaussian ran-
dom walk model, with noise variance sysσ . The initial
H (0)α  is estimated by the CS sparse channel delay- 
Doppler-spread estimation method mentioned in Section 
3. H (0)α  is assumed to be generated from a zero mean 
Gaussian with variance 2

Dσ  ( )2 1/D Dσ = , and the non-
zero element is randomly selected. 

Let Tn  denote the support set of H ( )nα , i.e. the set 
of its nonzero coordinates, and let (H ( ))nS size nα= . In 
other words,

 1 2T [ , ]
nn Si i i=   where ki  are the non-zero 

coordinates of H ( )nα . Thus, under this assumption we 
have the dynamic model shown in Table 1. 

 
Table 1. Dynamic model for sparse delay-Doppler-spread. 

Hα(0) is generated from the D-sparse channel with randomly selected 
nonzero elements 

2
1(H ( )) (H ( 1)) ( ) , ( ) ~ (0, ) ,i i n i n i sys n nn n v v N if i T i Tα α σ −= − + ∈ ∈  

2
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4.2. Estimation of Non-WSSUS Channel 
Combining observation equation (Equation (5)) and state 
equation (Table 1) together, we get Non-WSSUS chan-
nel representation by utilizing the sparse delay-Doppler- 
spread function. This dynamic model of H ( )nα  can be 
tracked by Kalman filter, and then the CIR of Non- 
WSSUS channel can be recovered, as a result, the Non- 
WSSUS channel will be estimated sequentially. Since the 
delay-Doppler-spread is sparse, KF-CS method is em-
ployed to solve the dynamic sparse channel problem. The 
proof of the convergence of KF-CS and more details can 
be found in [16,17]. Take the KF-CS algorithm into ac-
count, our proposed two-step approach is summarized in 
Table 2. 

5. Simulation 
This approach was tested and compared according to the 
LTE-R standard. The channel parameters are: Channel 
parameters max: 10 sτ µ= , and the speed of the high speed 
train is 500 km/h leading to max 952.9Hzυ =  with the 
Carrier Frequency 2GHzcf = . The system parameters 
are: Total number of subcarriers N = 1024, number of 
effective subcarriers are 600. The effective bandwidth is 
W = 5.9 MHz. To avoid ISI, the symbol duration is 20 
times of the maxτ , i.e., 200μs . The 0 1172N TW= =  
and (2 1) 180N L K= ⋅ + = . For the OFDM system, the 
STF basis parameters are chosen to be 0 90kHzW =  and 

0 0T 1 / W=  to ensure an orthogonal STF, which corres-
pond to 18tN = , Nf = 65. The pilot arrangements are 
comb-type. 

We first justify the first-step of the proposed approach. 
The simulations are carried out under the assumption that 
only 10% of the channel coefficients are nonzero, i.e. D 
= 18. The channel matrix is generated from a zero mean 
Gaussian with variance 2

Dσ . 
Figure 1 depicts the mean square error (MSE) of the 

channel estimates and the bit error rate (BER) versus the 
channel signal-to-noise ratio (SNR) in the unit dB. It is 
seen that both CS-based methods (with 10% pilots and 
25% pilots) outperform the LS method (with 10% and 
25% pilots) significantly. The LS and severely under-
performs the CS estimator with 10% pilots even when it 
itself utilizes 25% pilots. 

 
Table 2. Two step approach to estimate the HSR Non- 
WSSUS channel. 

1. Utilize the delay-Doppler basis to estimate the sparse delay-Doppler- 
spread function Hα. 

1.1. Use the delay-Doppler basis Up and Hα to rebuilt the estimated 
CIR. 

2. Run KF-CS algorithm to track the Hα(n) in the sparse domain. Take 
step 1.1 into account, the Non-WSSUS CIR can be estimated  
sequentially over time n. 
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(a) 

 
(b) 

Figure 1. Performance of CS-based and LS channel estimation. 
(a): MSE versus SNR; (b): BER versus SNR. 

 
We justify the KF-CS algorithm by using Sequential 

Compressed Sensing toolbox [18]. Because of the com-
plexity of KF-CS, the large scale data test is very time 
consuming and easily exceed the hardware memory. In 
order to promote the efficiency for the practical use, the 
data symbols are divided into 5 blocks. In each block, 
there are 234 symbols and 25% of all are pilot symbols. 
The simulation results are shown in Figure 2. It can be 
seen that the KF-CS estimation eventually converges to 
that of the genie-aided KF (the KF that knows the sup-
port at each time) as the time length of n is large enough. 
In contrast the regular CS methods diverge badly with 
the increase of time n. What is interesting is that the KF- 
CS even outperforms the noiseless CS when n is short 
(around n is 4) in Figure 2 (Up). This is because that the 
Kalman filter can track the target signal from noisy en-
vironment. This means even the sparse system is static, 
one can also employ KF-CS to improve the estimation 
performance. 

 
(a) 

 
(b) 

Figure 2. Performance of KF-CS with the increase of time n. 
(a): time length is 25; (b): time length is 50. 

6. Conclusion 
We have considered the Non-WSSUS channel estimation 
in the HSR environment with OFDM system. We have 
proposed a two-step approach to solve this channel esti-
mation problem. In the first step, the channel CIR is es-
timated by the Compressive Sensing (CS) method by 
utilizing the sparse delay-Doppler-spread function. In the 
second the step, the channel is tracked by a reduced order 
Kalman filter in the sparse domain, and then recovered 
sequentially. The validation of this approach has been 
illustrated by numerical experiments. 

7. Acknowledgements 
The authors would like to thank Prof. Namrata Vaswa-
ni’s research team to share their accomplishment on in-
ternet. 

REFERENCES 
[1] S. Chen, “China Unveils High-Speed Railways,” 2011. 

Copyright © 2013 SciRes.                                                                                   CN 



C. WANG  ET  AL. 665 

http://news.bbc.co.uk/2/hi/8246600.stm 
[2] D. Xin., “Record-Breaking Train on Track,” 2010.  

http://www.chinadaily.com.cn/china/2010-12/04/content-
11651930.html 

[3] L. Liu, et al., “Position-Based Modeling for Wireless 
Channel on High-Speed Railway under a Viaduct at 2.35 
GHz,” IEEE Journal on Selected Areas in Communica- 
tions, Vol. 30, No. 4, 2012, pp. 834-845.  
http://dx.doi.org/10.1109/JSAC.2012.120516 

[4] T. Gao and B. Sun, “A High-Speed Railway Mobile 
Communication System Based on LTE,” Electronics and 
Information Engineering (ICEIE), 2010, Vol. 1, pp. 414- 
417. 

[5] K. Guan, Z. Zhong and B. Ai, “Assessment of LTE-R 
Using High Speed Railway Channel Model,” Interna- 
tional Conference Communications and Mobile Compu- 
ting (CMC), 2011, pp. 461-464. 

[6] F. Pena-Campos, et al., “Estimation of Fast Time-Vary- 
ing Channels in OFDM Systems Using Two-Dimensional 
Prolate,” IEEE Transactions on Wireless Communica-
tions, Vol. 12, No. 2, 2013, pp. 989-907. 

[7] L. L. He, S. D. Ma, and Y. C. Wu, “Pilot-Aided IQ Im-
balance Compensation for OFDM Systems Operating 
Over Doubly Selective Channels,” IEEE Trans on Signal 
Processing, Vol. 59, No. 5, 2011, pp. 2223-2233.  
http://dx.doi.org/10.1109/TSP.2011.2112649 

[8] H. Hijazi, et al., “Channel Estimation for MIMO-OFDM 
Systems in Fast Time-Varying Environments,” 2010 4th 
International Symposium on Communications, Control 
and Signal Processing (ISCCSP), 2010, pp. 1-6. 

[9] W. C. Li, and C. P. James, “Estimation of Rapidly Time- 
Varying Sparse Channels,” IEEE Journal of Oceanic En- 
gineering, Vol. 32, No. 4, 2007, pp. 927-939.  
http://dx.doi.org/10.1109/JOE.2007.906409 

[10] G. Matz, “On Non-WSSUS Wireless Fading Channels,” 
IEEE Transactions on Wireless Communications, Vol. 4, 
No. 5, 2005, pp. 2465-2478.  
http://dx.doi.org/10.1109/TWC.2005.853905 

[11] M. Jachan and M. Gerald, “Nonstationary Vector AR 
Modeling of Wireless Channels,” Workshop on Signal 
Processing Advances in Wireless Communications, 2005, 
pp. 625-629. 

[12] W. U. Bajwa, et al., “Compressed Channel Sensing: A 
New Approach to Estimating Sparse Multipath Channels,” 
Proceedings of the IEEE, Vol. 98, No. 6, 2010, pp. 1058- 
1076. http://dx.doi.org/10.1109/JPROC.2010.2042415 

[13] T. H. Eggen, B. B. Arthur and C. P. James, “Communica- 
tion over Doppler Spread Channels. Part I: Channel and 
Receiver Presentation,” IEEE Journal of Oceanic Engi- 
neering, Vol. 25, No. 1, 2000, pp. 62-71.  
http://dx.doi.org/10.1109/48.820737 

[14] Waheed Uz Zaman Bajwa, “New Information Processing 
theory and Methods for Exploiting Sparsity Inwireless 
SystemS,” Ph.D. Thesis, University Of Wisconsin-Ma- 
dison, 2007. 

[15] W. U. Bajwa, A. M. Sayeed and R. Nowak. “Learning 
Sparse Doubly-Selective Channels,” 46th Annual Allerton 
Conference on Communication, Control, and Computing, 
2008, pp. 575-582. 

[16] N. Vaswani, “Kalman Filtered Compressed Sensing,” 
15th IEEE International Conference on Image Processing, 
2008. ICIP 2008, 2008, pp. 893- 896.  

[17] N. Vaswani, “Analyzing Least Squares and Kalman Fil-
tered Compressed Sensing,” IEEE International Confe-
rence on Acoustics, Speech and Signal Processing, 2009. 
ICASSP, 2009, pp. 3013-3016.  

[18] http://home.engineering.iastate.edu/~namrata/research/Se
quentialCS.htm 

 

Copyright © 2013 SciRes.                                                                                   CN 

http://dx.doi.org/10.1109/JSAC.2012.120516
http://dx.doi.org/10.1109/TSP.2011.2112649
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4445731
http://dx.doi.org/10.1109/TWC.2005.853905
http://dx.doi.org/10.1109/JPROC.2010.2042415
http://dx.doi.org/10.1109/48.820737

