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ABSTRACT 

Currently, a growing number of programs become available in statistical software for multiple imputation of missing 
values. Among others, two algorithms are mainly implemented: Expectation Maximization (EM) and Multiple Imputa- 
tion by Chained Equations (MICE). They have been shown to work well in large samples or when only small propor- 
tions of missing data are to be imputed. However, some researchers have begun to impute large proportions of missing 
data or to apply the method to small samples. A simulation was performed using MICE on datasets with 50, 100 or 200 
cases and four or eleven variables. A varying proportion of data (3% - 63%) was set as missing completely at random 
and subsequently substituted using multiple imputation by chained equations. In a logistic regression model, four coef- 
ficients, i.e. non-zero and zero main effects as well as non-zero and zero interaction effects were examined. Estimations 
of all main and interaction effects were unbiased. There was a considerable variance in the estimates, increasing with 
the proportion of missing data and decreasing with sample size. The imputation of missing data by chained equations is 
a useful tool for imputing small to moderate proportions of missing data. The method has its limits, however. In small 
samples, there are considerable random errors for all effects. 
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1. Introduction 

The problem of missing values occurs in many areas of 
sociological, psychological and medical research. It is the 
rule rather than the exception that data collected on indi- 
viduals usually do not fill out a person by variable matrix, 
and some entries remain open. The proportion of missing 
values varies widely between and within studies, ranging 
from almost zero to far above 50% for some variables in 
some studies. Older work usually proceeded by first se- 
lecting variables with small amounts of missing data and 
then selecting the cases without missing data for these 
variables. 

In the last 20 years or so, sophisticated techniques for 
dealing with missing data, such as multiple imputation, 
have been developed [2] and explored in practical re- 
search [e.g. 3]. Early studies usually relied on comparing 
these methods with the analysis of complete cases and 
single substitution based on data with real missing data. 
It was found that the results can differ remarkably de-  

pending on the method applied, particularly when the 
proportion of missing data was high. However, it was 
often not possible to decide which results were the best 
[e.g. 4]. Studies performing simulations with various me- 
thods have shown that nearly all methods of substituting 
missing data lead to better results than no substitution 
and that multiple imputations generally perform particu- 
larly well [e.g. 5]. While multiple imputations were ori- 
ginnally developed for larger datasets with small propor- 
tions of missing data, i.e. in data for public use, [e.g. 6,7] 
today they are also considered for application in mod- 
erate to small samples of n = 100 to n = 20 [8,9], or when 
the rates of missing data are extremely high [up to 95%: 
10]. Even if the advantages of substituting missing data 
using multiple imputation have been proven, currently it 
is still unclear how large a sample needs to be so that these 
advantages become apparent, how much missing data can 
be substituted, and how far complex estimates, such as 
coefficients for interaction terms, are affected by the sub- 
stitution. *An early draft of this paper was published by Hardt, J. and Görgen, K. 

[1]. There is a distinction in research between data missing 
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completely at random (MCAR), missing at random 
(MAR) or missing not at random [MNAR: 11]. MCAR 
means that the pattern of missing data is totally random, 
i.e. it does not depend on any variable within or outside 
the analysis. MAR is a somewhat misleading label be- 
cause it allows strong dependencies in the pattern of mis- 
singness on other variables in the analysis. For example, 
if in a set of variables all data for men are missing and 
for women are non-missing, the dataset is still MAR as 
long as gender is included as a variable. The formal defi- 
nition is that missing data are at random given all infor- 
mation available in the dataset. This definition has the 
disadvantage that it can never be tested on a real dataset 
—it is always possible that unobserved variables influ- 
ence the pattern of missingness—at least partially. 
MNAR describes precisely this latter situation: there is 
an unknown process that explains the missing data. For 
example, if one is interviewing about socially undesir- 
able behaviour such as lying, stealing or fraud, it is plau- 
sible to assume that missing values reflect higher rather 
than lower levels of such behaviour, but modelling the 
answering process exactly is usually not possible. One 
prominent question for MNAR is the one about income, 
which often has moderate to high rates of missing data, 
usually in the range of 20% - 50%. 

Methods for single substitution replace the missing da- 
ta with the mean (or mode), conditional mean or other 
prognostic equations. They have been shown to bias re- 
gression coefficients and to underestimate the variances 
[e.g. 12,13]. However, in datasets with very small pro- 
portions of missing data, e.g. less than 5% per variable, 
they may perform well enough for most practical appli- 
cations in the social sciences and medicine [5,14,15]. 
Larger proportions of missing data are probably better 
dealt by using multiple imputation techniques. Various 
methods are available, and all impute several values for 
each missing datum with some random variation, consi- 
dering that each substitution contains some uncertainty 
[16]. They can be roughly divided into three groups: hot- 
deck, joint modelling and chained equation imputations. 

Hot-deck imputations substitute every missing datum 
with the nearest observed value of a neighbour—they 
vary based on how the latter is defined. Simple hot-deck 
procedures merely choose a random draw, more complex 
ones stratify the data using other categorical variables 
(continuous variables are categorized if necessary) and 
choose a nearest neighbour from the respective strata for 
each missing value [17,18]. Joint modelling approaches 
use maximum likelihood procedures to estimate the pa- 
rameters in the incomplete datasets, and then estimate the 
missing values using these parameters. They then switch 
back to estimating the parameters again, now using the 
imputed missing data, and so forth. The changes in pa- 
rameters and data after these cycles usually become 

smaller and smaller. The procedure is repeated until a 
certain criterion is reached. Chained equation methods 
first calculate a regression on a random draw taken from 
the observation without missing data for estimating each 
missing value of a certain variable, which is then replac- 
ed by the estimated value plus some random error. It then 
switches to the next variable. Unlike the joint modelling 
approach, no criterion for convergence can be specified. 
So, the procedure is repeated ten times for all variables to 
lead to a stable substitution for all missing data [19]. The 
procedure is repeated m times using different random 
draws to result in m datasets in which all missing data 
have been imputed. 

Rubin [6, p. 114] suggested that a number of m = 3 
data-sets with imputed missing data serve well for most 
purposes but recent studies have sometimes suggested 
that more imputed datasets may perform better [20,21]. 
Meng (1995) recommended creating 30 datasets. A case 
where all variables are missing will not receive any im- 
putation, or a quite plausible feature of the algorithm. In- 
tuitively less convincing is that a dataset comprising 25 
variables per case with one valid observation and 24 
missing data will receive 24 imputations, but this is in 
fact what would be done in multiple imputation. 

Once the imputed dataset is created, analyses are con- 
ducted parallely in each of the m samples, and the results 
are combined according to Rubin’s rules [6]. For regres- 
sion coefficients and other normally distributed parame- 
ters, this is simply the arithmetic mean for the point es- 
timates of the regression coefficients (β). To combine the 
standard errors, the arithmetic mean of the standard er- 
rors among the imputed dataset is also computed and 
some additional variance is added for the differences be- 
tween the point estimates of the β’s. Not normally dis- 
tributed parameters require some transformation before 
Rubin’s rules are applied [e.g. 22]. The recommendation 
is to enter all variables of the analysis into the substitu- 
tion process, even variables of only potential interest [7, 
11]. This recommendation makes sense in light of the 
MAR assumption, when for a correct substitution of miss- 
ing data all available information in the dataset should be 
included. However, including too many variables in small 
samples leads to overparameterization, with the effect 
that all associations can be distorted [23]. Within the dif- 
ferent methods for multiple imputation, chained equa- 
tions resulted in the least biased and most accurate esti- 
mates in a simulation study [24]. 

The aim of the present study is to explore the impact 
of multiple imputations by chained equations on logistic 
regression coefficients depending on the proportion of 
missing data that were substituted, the sample size and 
the number of variables in the substitution model. Four 
series of simulations were run for this purpose, with two 
for a main effect and two for an interaction effect, all 
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including non-zero and zero coefficients. We chose m = 
5 imputations for all simulations. 

2. Implementations 

Various software packages are available for multiple im- 
putation by chained equations—the most common are 
“mice”, an R-package, STATA’s MI command that has 
included a chained equation algorithm since version 12, 
and “ice”, an older STATA-package [19,20,25]. Since ver- 
sion 19, SPSS has also provided a useful chained equa- 
tion algorithm. The present study is largely based on 
“ice”, but some results from “mice” and STATA’s MI 
are included for comparison. The program “ice” was cho- 
sen because it ran most stably when the series of simula- 
tions was started. In the meantime, “mice” has been up- 
dated and now outperforms “ice” regarding stability [26]. 
SPSS could not be tested because it caused our computer 
to break down unpredictably. Results should not be af- 
fected by the choice of the package. All programs are im- 
plementations of the imputation method as described by 
van Buuren et al. [27, Section 3.2]. 

There are various different methods to deal with inter- 
action effects in multiple imputation. For interactions con- 
taining at least one categorical variable, imputing within 
subgroups has been suggested [e.g. 28]. Of course, this 
would not work for continuous variables. Here, we im- 
plemented a method suggested recently, where the inter- 
action terms are formulated before the imputation and 
added into the imputation model as just another variable 
[JAV: 29]. The method is easy to apply in every software, 
and has provided good results for Seamen et al. [29] 
study. However, it has been criticised by van Buuren [30] 
because the interaction terms are no longer the product of 
the underlying main effects, but receive additional ran- 
dom error due to the multiple imputation. Hence, many 
programs offer the possibility of passive imputations [e.g. 
26,31]. Here, the interaction terms are not used to impute 
data for the underlying main effects, but the main effects 
are used to impute the interactions. 

3. Material and Methods 

3.1. Sample 

The present study’s analysis was based on data examin- 
ing the risk of suicide attempts as a function of parent- 
child relationships [for details see 32]. A total of 437 pa- 
tients without any missing data served as the basis for the 
present analysis. Data on suicide attempts were collected 
using a Structured Biographical Interview [MSBI: 33]. 
For the present analysis, patients who reported a suicide 
attempt ever was coded “1”, all others “0”. Test-retest 
reliability of the dichotomised item on suicide attempts 

as examined in a sub-sample of 62 patients who were 

interviewed twice by different interviewers with a mean 
time lag of two years. The kappa between the two meas- 
urements was 0.50, indicating moderate stability of the 
question. 

Data about parent-child relationships were collected 
with a questionnaire booklet. The patients filled out the 
“childhood questionnaire” (CQ), a 128-item instrument 
assessing parent-child-relationships [34]. The CQ was 
designed for adults to retrospectively describe their rela- 
tionships with their parents. It contains eight dimensions, 
each concerning both mother and father: perceived love, 
punishment, trivializing punishment, parents as models, 
ambition, role reversal, parental control, and competition 
between siblings. Examples for items of each scale are 
given in Hard et al. [32]. All scales range from “0” to “3”, 
indicating that the statement described the respective 
dimension of the parent-child-relationship “not at all”, 
“rather not”, “quite a bit”, or “very well”. The subscales 
of the CQ show good internal consistency as well as 
good test-retest stability over a two-year period: coeffi- 
cients are both in the 0.80 range [35].  

In total, 11 variables were used in the present dataset, 
one was a dichotomous response, all others were con- 
tinuous. The variables Y and X1 - X3 comprise the four- 
variable simulation, Y and X1 - X10 the eleven-variable 
simulation. The variables are partly skew distributed (see 
Table 1), and contain a complex pattern of linear and 
nonlinear associations. The model that fit best in the pri- 
mary analysis was Y = X1 + X2 + X3 + X1*X2 + X2*X3 
[32]. For the present analyses, βx1 and βx2 were chosen to 
represent the non-zero and the zero main effects, and β 

x1*x2 and βx1*x3 the interactions, respectively (see Table 
2). 

3.2. Simulation Method 

Random draws of n = 50, 100 and 200 subjects were ta- 
ken from the sample1. Simulations were started by de- 
leting completely at random [MCAR: e.g. 36] and sub- 
stituting 3%, 8%, 13% ··· 63% of the data in the ex- 
planatory variables. Missing data were then imputed us- 
ing a mice algorithm as described above. Four imputation 
runs were performed for each dataset, one containing six 
variables: the response Y, a significant main effect X1, a 
nonsignificant main effect X2, a significant interaction 
effect X1*X2, and a nonsignificant interaction effect 
X1*X3 (X3 was included, too of course, but no results are 
presented here). A second comprised only Y, X1, X2, and 
X3 to estimate the main effects. The third and fourth runs 
comprised the same variables, but included an additional            
1The original analysis included a simulation with n = 400. However, 
results did not differ very much from those obtained with n = 200 so 
that we decided to omit presenting them here. Interested readers can 
obtain them from JH. w 
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Table 1. Variable description. 

Variables N = 50 100  200 

Continuous  x  SD x  SD  x  SD 

Mother-Child relationship         

X1: Love  1.79 0.85 1.88 0.82  1.87 0.80 

X2: Control  1.05 0.76 0.99 0.73  0.94 0.74 

X3: Role-reversal  0.82 0.72 0.77 0.65  0.67 0.66 

X4: Punishment  0.90 0.79 0.84 0.77  0.79 0.75 

X5: Trivialising punishment  1.32 0.75 1.35 0.74  1.46 0.79 

X6: Ambition  0.95 0.79 0.89 0.73  0.77 0.68 

X7: Mother as a model  1.15 0.81 1.21 0.80  1.20 0.77 

Father-Child relationship         

X8: Love  1.52 0.80 1.53 0.87  1.59 0.84 

X9: Punishment  0.98 0.81 0.94 0.81  0.85 0.78 

X10: Trivializing punishment  1.20 0.79 1.19 0.79  1.32 0.84 

Binary  %  %   %  

Y: Lifetime suicide attempt  0.20  0.14   0.14  

 
Table 2. Regression coefficients before substitution of missing data. 

N =  50  100  200 

  β SDß  β SDβ  β SDβ 

Main effect model: Y = X1 + X2 + X3      

ßX1  0.31 (0.59)  0.74 (0.52)  0.76 (0.34) 

ßX2  0.37 (0.76)  −0.31 (0.61)  0.12 (0.35) 

Interaction model: Y = X1*X2 + X1*X3 + X2*X3      

ßX1*X2  1.75 (0.94)  0.71 (0.63)  0.82 (44) 

ßX1*X3  0.60 (1.1)  0.01 (0.79)  0.18 (52) 

 
seven auxiliary variables because it is realistic to assume 
that an analyst would not merely include the variables of 
primary interest for the final analysis but would like to 
have some additional information available—for exam- 
ple should unexpected results turn up. The X-variables 
have a mean correlation of r = 0.39, with a range from 
0.01 - 0.84. The simulations for main effects did not 
contain the interaction terms of the regression model, the 
simulations for the interaction models contained all un- 
derlying main effects. As can be seen in Table 2, the 
coefficients were reproduced comparatively well in the 
three different sample sizes, except for the main effects 
with n = 50, where the non-zero and the zero coefficient 
showed basically the same value. The random draw was 
kept nevertheless in order to avoid introducing spurious  

results. For each percentage of missing data, the estima- 
tion was repeated 200 times with a different starting 
value to estimate the variance due to the introduction of 
missing data. All simulations were performed up to 63% 
of missing data, or until the program broke down. The 
latter was partly the case because the imputations could 
not be performed, and partly because the logistic regres- 
sion stopped. No attempt to force the programs was made 
after a breakdown. No missing data were replaced in the 
response variable, and all simulations were based on m = 
5 multiple imputations of the dataset. 

4. Results 

Figure 1 shows the estimated β-coefficients over the 200       
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Figure 1. ß-regression coefficients (y-axis) for various proportions of missings (x-axis) in an imputation model with four va- 
riables Rows display: (1 left) ßx1, (2 left) ßx2, (1 right) ßx1*x2, (2 right) ßx1*x3, Columns display: (1) n = 50, (2) n = 100, (3) n = 200. 
 
replications for each proportion of missing data for the 
main effects when only four variables were included into 
the imputation model (run 1 and 2). The upper row dis- 
plays the non-zero main effects, the lower one the zero 
main effects. The columns display the sample sizes n = 
50, n = 100, and n = 200. For better comparability, all 
Y-scales were restricted to the range from −1 to +2, X- 
scales represent the range of missing data in all Xs from 
0% to 65%. 

It can be seen that the simulation revealed generally 
unbiased estimates. However, the more missing data 
were introduced, the lower the precision of the estimates 
became. The distribution of the estimated coefficients 
was approximately normal. When 63% of data were 
missing, one would probably prefer not to perform any 
analysis with data from the present condition, the stan- 
dard deviation lies around one then. This means that 
about one third of the observed regression coefficients 
would be much lower or higher than the true value. Re- 
garding a main effect with a sample size of n = 200, we 
would recommend substituting no more than 40% of the 
missing data under the conditions simulated here. Re- 
garding an interaction effect, the cut-off should be earlier. 
The two simulations with smaller sample sizes look even 
worse. With n = 100, the simulation results became com- 
pletely imprecise when 42% of the data were missing, 
and we would suggest the following limit: imputations 
should be performed with a maximum of missing data of 
about 30%. With n = 50, the breakdown occurred at 33%, 
and whether to substitute if more than 20% of the data 
are missing in such a small sample should be considered 
carefully. 

The pattern was positively influenced by including au- 
xiliary variables into the substitution model. Figure 2 
shows the results of the same data as before, but now the 
seven auxiliary variables have been included into the 

substitution model in addition to the four central vari- 
ables. There was still no bias, and precision increased. In 
the smaller samples of n = 50 and n = 100, the break- 
downs occurred at higher rates of missing data than with- 
out auxiliary variables. An analysis of the break-downs 
shows that single extreme outliers occurred here. For 
example, an extreme outlier for βX1 in n = 100 was ob- 
served when 63% of the data were missing, with a value 
of β = 927 (standard error = 400 000), the next extreme 
was 460 (standard error = 100 000). The occurrence of 
such extreme values was always associated with extreme 
standard errors. Even an estimate of β = 4 still had a stan- 
dard error of 6000. 

A different result was obtained for the interaction ef- 
fects (see Figures 3). Including auxiliary variables did 
not improve the estimates very much. The problem here 
was not bias but rather precision. In the small sample of 
n = 50, a breakdown already occurred when 8% or 13% 
of the data were missing, and in larger samples, precision 
was considerably smaller than for main effects. Again, 
coefficients take on extreme values in the imputation for 
small samples with few variables when large proportions 
of data are missing. 

Figure 3 shows a comparison of various programs 
utilizing the 4 variables. This was done solely for n = 100, 
because it was not expected that any program would be 
better for small or large samples specifically. Hence, re- 
sults should be compared to the middle column of Figure 
1. The first column displays the four regression coeffi- 
cients when the imputation is performed using STATA’s 
ice but with the option “passive” selected. This means 
that the interaction terms were not used as predictors to 
impute the missing values of X1, X2 and X3. Such a speci- 
fication makes sense intuitively. In the present example, 
results are considerably better than those obtained with 
he JAV method as used before. Hence, whenever possible, t     
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Figure 2. ß-regression coefficients (y-axis) for various proportions of missings (x-axis) in an imputation model with 11 vari- 
ables Rows display: (1 left) ßx1, (2 left) ßx2, (1 right) ßx1*x2, (2 right) ßx1*x3, Columns display: (1) n = 50, (2) n = 100, (3) n = 200. 
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Figure 3. Passive imputation, STATA’s MI, R’s “mice” all n = 100, variables = 4 Rows display: ((1 left) ßx1, (2 left) ßx2, (1 right) 
ßx1*x2, (2 right) ßx1*x3, Columns display: (1) passive imputation using STATA’s ice, (2) STATA’s MI, (3) R’s mice. 
 
the passive option should be selected. However, the JAV 
method has the advantage that it can be used with any 
program. The second column displays the results when 
STATA’s MI program was used. We specified “mi im- 
pute chained (pmm) variables” to receive results most 
comparable to “ice”. As the graph shows, differences 
between the two programs are negligible. The last col- 
umn displays the results when R’s “mice” was selected to 
perform the imputations. The code used can be obtained 
from the first author. Here, we can see some advantages 
because mice would still produce results even with large 
amounts of missing data where STATA would fail. How- 
ever, precision of the estimates is not higher. 

The practical evaluation of the programs revealed that 
they were generally easy to handle, applications could be 
done in a few lines, and the time to learn the main fea- 
tures was a few hours. The time required to run the mul- 
tiple imputations nonlinearly depended on the number of 
variables in the imputation model. With four variables, it  

took less than a second to create a single imputed dataset, 
with 30 it took several seconds and with 300 several hours 
(on a standard PC built in 2010). The number of imputed 
datasets linearly determined the running time. Sample 
size or proportion of missing data did not play a signifi- 
cant role. There were no relevant differences between 
“mice”, “STATA’s MI” and “ice”. 

5. Discussion 

With multiple imputations by chained equations, the sta- 
tistician has a tool that can effectively eliminate missing 
data in a dataset and that can be very helpful in the ana- 
lysis of data. In the present simulations, it resulted in un- 
biased estimates even when relatively large proportions 
of the data were missing, this held true for non-zero and 
zero coefficients, and for main effects as well as for inte- 
ractions. However, depending on the proportion of miss- 
ing data, a large amount of random variance became vi- 
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sible. Only a small amount of this variance stemmed from 
the imputation, the major part came from the missing 
data themself (data not shown). 

The latter cannot be controlled by the researcher, and 
can lead to severe misinterpretation of the data. This is 
particularly the case for interaction effects, and the pro- 
bability of estimating them precisely decreases drastical- 
ly when large amounts of data are missing—and the one 
for finding false positive effects increases. The regular 
user will not perform 200 replications of an analysis, but  
only one. In addition, there is no possibility of comparing 
the results obtained with a dataset after imputation with 
those of a dataset without any missing data. As a result, 
we would recommend that the analyst should provide a 
table of descriptive statistics before the multiple imputa- 
tion was performed when he publishes his data to enable 
the reader to estimate possible effects introduced by the 
imputation. There is no clear rule as to how much miss- 
ing data can be substituted—under the present condition 
in a sample of n = 50 and only four variables, we would 
not recommend substituting more than about 20%, but in 
large samples with many variables and particularly when 
main effects are predominantly of interest, the propor- 
tions of missing data could be much higher. 

Inclusion auxiliary variables can be beneficial, and in 
most data analyses it would be likely to occur. However, 
including too many auxiliary variables leads to over-pa- 
rameterization, which will lead to a situation where all 
associations become biased downwards. In a previous 
study [23] we examined the effects of auxiliary variables 
in a linear regression analysis and recommended as a rule 
of thumb that the number of variables in the imputation 
model should not be larger than one third the number of 
cases that have observed data. Here, the effect of auxil- 
iary variables was not explored systematically, but we 
would assume that this rule of thumb would also apply. 

The choice of the program is not essential as long as 
there are missing data only in continuous variables. Miss- 
ing data in binary variables or categorical variables with 
more than two categories will cause most programs to 
break down when samples are small or have many vari- 
ables, in such cases mice would probably be the best 
choice. A situation where a researcher obtains a false re- 
sult due to large outliers does not constitute a risk; the 
extreme standard error would be a clear warning for the 
researcher—given that he does not overlook it. 

6. Conclusions 

The present study has the following limitations. (1) As 
with any simulation, it is restricted to a certain range of 
situations. Reality is usually more complex. (2) We used 
a MCAR mechanism to introduce the missing data. Here, 
we did not find any bias. This is an important result, but 
cannot be generalized for MAR or even MNAR condi-  

tions. (3) We used a parameter of a logistic regression on 
an unevenly distributed response (14% yes, 86% no) as a 
single outcome. Other outcomes or other statistics may 
lead to different conclusions. However, there is a grow- 
ing literature on how to deal with missing data in special 
problems, e.g. for Cox regression [37] or ROC-curve es- 
timation [38]. (4) In these simulations, we intentionally 
pushed the imputation programs up to the point where 
they broke down. Clearly, a statistician should not go so 
far in a real data analysis. As we have demonstrated, the 
estimates with large amounts of missing data became so 
imprecise that a statistician should admit that there are 
situations where there is no way to analyse a certain da- 
taset. 

Given these caveats, multiple imputations by chained 
equations can be recommended for the analysis of data 
with missing values. As long as the proportion of missing 
data is moderate—say up to 20%—and only main effects 
are of interest, it can even be applied to small datasets 
like n = 50. Smaller datasets than n = 50 are not suitable 
for regression analysis anyway, so no conclusion about 
them can be drawn from the present study. When interac- 
tions are to be analysed, larger datasets are needed. Mak- 
ing use of the “passive” option can improve the estimate 
drastically. Since the implementation of multiple imputa- 
tion is relatively easy, and the time to run the imputation 
on a modern computer seldom exceeds one night, they 
can be recommended for the imputation of moderate 
amounts of missing data without any restrictions. When 
there are larger amounts of missing data, multiple impu- 
tation is still a method of choice, but only for larger sam- 
ple sizes. Additionally, some drawbacks have to be taken 
into account. In small samples, it is questionable whether 
the benefits of such an analysis outweigh the risks. For 
very simple analyses, e.g. main effect models, it may still 
be applied. For more sophisticated analyses, it will carry 
a high risk of drawing false conclusions. 
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