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ABSTRACT 

The piezoresistive effect in graphene ribbon has been simulated based on the first-principles electronic-state calculation 
for the development of novel piezoresistive materials with special performances such as high flexibility and low fabric- 
cation cost. We modified theoretical approach for piezoresistivity simulation from our original method for semiconduc- 
tor systems to improved procedure applicable to conductor systems. The variations of carrier conductivity due to strain 
along with the graphene ribbon models (armchair model and zigzag model) have been calculated using band carrier densi- 
ties and their corresponding effective masses derived from the one-dimensional electronic band diagram. We found that 
the armchair-type graphene nano-ribbon models have low conductivity with heavy effective mass. This is a totally dif- 
ferent conductivity from two-dimensional graphene sheet. The variation of band energy diagrams of the zigzag-type 
graphene nano-ribbon models due to strain is much more sensitive than that of the armchair models. As a result, the 
longitudinal and transverse gauge factors are high in our calculation, and in particular, the zigzag-type graphene ribbon 
has an enormous potential material with high piezoresistivity. So, it will be one of the most important candidates that 
can be used as a high-performance piezoresistive material for fabricating a new high sensitive strain gauge sensor. 
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1. Introduction 

One-atom-thick graphene sheet (see Figure 1) is gather- 
ing a lot of attention because of its unique electrical and 
mechanical properties such as high electron mobility and 
stiffness after its discovery by Novoselov et al. [1]. The 
piezoresistance effect is defined as the electrical resisti- 
vity change under mechanical stress [2]. With the ardent 
interest to merge graphene into piezoresistor applications, 
researchers are driven to study the piezoresistance effect 
of graphene sheets fabricated by various methods. Lee et 
al. reported that the gauge factor of graphene grown on 
Ni and Cu films by chemical vapor deposition was 6.1, 
with 1% applied strain [3]. Chen et al. found that the 
gauge factor of mechanically exfoliated graphene was 

nearly 150 [4]. Hosseinzadegan et al. reported that the 
gauge factor of graphene prepared by chemical vapor 
deposition on Si/SiO2 wafer was 18,000 [5]. A recent 
theoretical work predicted that the conductivity of gra-  
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phene changed from the conductive state to the semi- 
conductive state by the splitting of band gap due to strain 
[6], though single-layer graphene is generally impossible 
to have a band-gap [7]. If a band-gap exists, the strain- 
induced band-gap modulation could be one source of 
piezoresistivity in graphene [5]. In our previous work 
[8-13], the simulation of piezoresistivity based on the 
first-principle band structure has been developed for se- 
miconductor systems. In this work, the gauge factors of 
graphene models have been evaluated by our original 
simulation method based on the first-principles band 
structure with some modifications which can be applied 
to conductor systems. 

2. Method of Calculation 

First-principles calculations of the periodic boundary 
models for graphene have been carried out by FHI98MD 
program package [14] based on the density functional 
theory (DFT) [15]. For the DFT exchange-correlation 
interaction, the generalized-gradient approximation (GGA) 
method was used by Perdew-Burke-Ernzerhof (PBE) 
functional [16]. We adopted the three-dimensional super- 
cell approximation technique with norm-conserving pseu- 
dopotentials prepared according to the Hamann me- 
thod [17] and wave functions with plane-wave expan- 
sion. 

The zigzag and armchair models have been defined as 
shown in Figure 2, where these models have been devi-  
 

 

Figure 2. Top views of (a) Armchair model (9 rings) and (b) 
Zigzag model (13 rings), and (c) 3D-dimensional periodic 
boundary condition for these models. 

sed by cutting out a fragment with a one dimensional 
periodic boundary, and all dangling bonds of C atoms 
were terminated with H atoms. The direction of the frag- 
ment which is parallel to the y direction can be defined as 
the longitudinal direction, while the parallel to the x 
direction can be considered as the transverse direction as 
illustrated in Figure 2(c). To represent graphene ribbon, 
vacuum space about 5 Å along x direction is considered. 

3. Results and Discussion 

3.1. Geometrical Optimization of Graphene  
Sheet 

C-C length of the graphene sheet in the strain-free condi- 
tion has been optimized by the first-principles calculation. 
We found that the optimized value of the C-C length of 
graphene is 1.422 Å which is corresponding to the C-C 
length for the minimum total energy. This value is com- 
pletely corresponding to the experimental value (1.42 Å) 
by Heyrovska [18]. 

C-C length in the strain condition can be evaluated by 
using Poisson’s ratio as indicated in Equation (1). 

perp

axial

,
ε

υ
ε

= −                   (1) 

where εperp is the transverse strain (perpendicular to the 
applied load) and εaxial is the axial strain (in the direction 
of the applied load). The value of υ has been calculated 
by partial optimization of graphene sheet, where one 
lattice constant with 1% uniaxial tensile strain is fixed. 
We investigated two different strain directions: the first 
is the V strain while the second is the U strain as 
illustrated in Figure 1. The Poisson’s ratio is determined 
as υ = 0.28 for the V strain and υ = 0.14 for the U strain. 
Experimental results of Poisson’s ratio of graphene sheet 
have given a wide range of values from 0.12 to 0.3 
[19-24]. Actually, the results of partial optimization are 
sensitive and our results υ = 0.28 or 0.14 satisfy the 
experimental measurements. 

We applied the optimized C-C length and Poisson’s 
ratios to the graphene ribbon models. In this paper, we 
simulated the 9-ring armchair and 13-ring zigzag gra-
phene ribbon models. The structural parameters of the 
models shown in Figure 2, number of C atoms (NC), and 
numbers of H atoms (NH) are tabulated in Table 1. 

3.2. Modeling and Calculation of Armchair  
Models 

The whole image of band energy diagram of the 9-ring 
armchair model is shown in Figure 3. The valence band 
(VB) maximizes and the conduction band (CB) mini- 
mizes at the Y point, respectively, and zero band gap was 
observed. Accordingly, the armchair graphene ribbon can 
be considered as a semi-metal or zero-band gap semi-  
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ters of graphene models. 

y 

 
Table 1. Structural parame

L (Å) 
MODEL TYPE NC NH Lx (Å) 

Strain free Longitudinal strain Transverse strain 
Lz (Å) 

Armchair model (9 rings) 20 2 27.108 10.000 2.463 2.488 2.460 

Zigzag model (13 rings) 54 4 38.924 4.266 4.309 4.260 10.000 

 

 

Figure 3. Band energy diagram of 9-ring armchair model

onductor. In detail, the highest VB subband and the 

. 
The blue lines are VB subbands and the red lines are CB 
subbands. 
 
c
lowest CB subband are in double degeneracy at the Y 
point, in the vicinity of the Fermi energy. This feature 
can be also derived by the simple Hückel method qualita- 
tively for the armchair model, as shown in Figure 4. As 
the common characteristic of the armchair models, the π 
orbitals of all of armchair models are localized at the 
edges of graphene ribbon, and no conductance path exists 
in the center of graphene ribbon. The interaction due to π 
orbitals along the longitudinal direction is very small 
because of the non-bonding state due to the anti-sym- 
metric relation for the translation with the phase factor 

iπ
e y yL

, and accordingly, the band energy variation of 
egenerate subbands with respect to k point is quite 

small near the Y point. As a result, low conductivity with 
heavy effective mass can be explained by using the band 
orbital interaction. This is one of the most important 
effects due to miniaturization to armchair-type nanorib- 
bon in the sense that a totally different conductivity from 
two dimensional graphene sheet can be given. 

According to the longitudinal or transve

these d

rse strain, 
va

change so much. These features are in good agreement 

ling and Calculation of Zigzag Models 

 

train Gauge Factors 

sistivity ρ 
sity and 

riations of the band structures of armchair models have 
been observed. As it is clear from the band energy 
diagram shown in Figure 5, the degenerate subbands in 
the vicinity of the Fermi energy are not lifted by the 
longitudinal or transverse strain effect, and the feature of 
conductivity based on the band energy diagram will not 

with quite small band orbital interaction as shown in 
Figure 4. 

3.3. Mode

The whole image of band diagram of the 13-ring zigzag
model is shown in Figure 6. The VB maximizes and the 
CB minimizes near the Γ point, respectively. Figure 7 
represents the band energies diagrams for the strain-free 
and strain 13-ring zigzag models. As compared with the 
armchair models, the variation of band energy diagrams 
of the zigzag models by the strain is much more 
sensitive. In particular, the characteristics of VB top 
and CB bottom subbands near the Fermi energy are 
caused by both of the longitudinal and transverse strains. 
Actually, the π orbitals of VB top and CB bottom are 
delocalized, and the band orbital interaction is easy to be 
caused due to strains. 

3.4. Evaluation of S

The electrical conductivity G or the electrical re
can be represented in terms of carrier den
effective mass by the conventional treatment [25]. Varia- 
tions of band structure will exert an influence on them, 
and frequently contribute to a sudden turn of the conduc- 
tivity. In this paper, we have introduced the band carrier 
densities for conductive state. The conductivity has been 
represented as, 

2
*

e ,j jn τ1

j j

G
mρ

= =             (2) 

where nj is the jth conduction band car
density, m* is the band effective masse, relaxa-

rier electron area 
j  τj is the 

tion time, and e2 is the square of the absolute value of the 
elementary electric charge. The band carrier densities nj 
are defined with the Fermi energy and temperature T; 

( )( ) ( )2
d exp 1

j y FE k E
n k H E k E

  −
  = − + ,j y j y F

BS k T


    
 

(3
where S is the surface area of the graphene model (S = L  
× L ), 

) 
x

y ( )( )–j y FH E k E  
t to the band di

is the Heaviside step func
spersion of

oltzmann 

tion 
with respec  jth subband Ej(ky), 
and kB is the B constant. By using the calculated 
band energy of the jth subband and k-point weight, Ej,ky  
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Figure 4. Degenerate π orbitals at Y point near the Fermi 
energy for the 9-ring armchair models with 2 unit cells. 
 

 

 

Figure 6. Band energy diagram of 13-ring zigzag model. 
 
and ݓky, nj can be approximated as 

Figure 5. Band energy diagrams for 9-ring armchair (a) No
strain model; (b) Longitudinal strain model; (c) Transverse
strain model. 

 
 

,

1−
,2

1y

j k Fy

j k F

B

E E

E E

k T
>

exp
y

y

j k
k

n w
S

 −  
+=     

   (4) 

The value of EF can be solved easily with the total
number of valence electrons in the model as follows, 



 

1

,
4 2 exp 1y

y

j k F

C H k
j k

E E
N N N w

k T

−
 −  

= + = +     
  (5

y B 
) 

We have performed a sampling with 11
the Γ-Y path.The effective mass is generally a 3 × 3 
tensor, a

 points along 

nd the reciprocal matrix of effective mass is 
defined as [26] 

( )
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 ∂ ∂ ∂
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   (6) 

where E is the band energy and ħ is equal to Planck’s 
constant divided by 2π. The band energies of our 
graphene models remain constant along the transverse 
directions, namely, 

0,
E E∂ ∂= =               (7) 

x zk k∂ ∂

and therefore, the band effective ma
the graphene models can be defined sim

ss of the jth band for 
ply as a scalar, 

12
* 2

2
.j

j
y

E
m

k

−
 ∂

=   ∂ 
              (8) 
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Figure 7. Band energy diagrams for 13-ring zigzag (a) No 
strain model; (b) Longitudinal strain model; (c) Transverse 
strain model. 
 

In this paper, the second derivative on the right hand 
of Equation (8) has been estimated numerically as 

( )
2∂ +

(
with ∆ky = 0.05 × (2π/Ly). For the relaxation time  
graphene systems, we have introduced the approximation 
that all of the band relaxation times are equal and co

consideration of the canceling of almost part of band 

2 2

2j y j y y j y y j y

y y

E k E k k E k k E k

k k

       Δ + − Δ −       =
∂ Δ

 

9) 
in

ns- 
tant regardless of stress [8-13]. This procedure seems to 
be rough to some extent, but the variation rate of carrier 
conductivity can be easily and adequately represented in 

relaxation times.  
Gauge factor can be defined as, 

0 1
,

R R
K

R
α

α ε
−

= ⋅             (10) 
0 α

w resistances at applied 
strain εα (α denotes longitudinal or transverse) and at no 
strain, respectively. From Equations
gauge factor equation can be written as follows: 

here Rα and R0 are the graphene 

 (2) and (10), the 

( )
( )

*
,0 ,0

*
, ,

1
1 ,
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n m
K
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α

α α αε

 
 = −
 
 




       (11) 

Using the data obtained from the energy diagrams 
which are tabulated in Table 2, we can easi
the values of the gauge factors for both arm
and zigzag model as shown in Table 3. 

 the longitudinal 
an

basis 
calculation. The variations of carrier 
aphene ribbon have been calculated 

us

ly calculate 
chair model 

It was found that the carrier electron area densities of 
armchair model do not change due to any strains and the 
effective masses are very large regardless of strains. 
From the view point of piezoresistivity,

d transverse gauge factors seem to be large because the 
variation ratios of inverse effective masses due to strain 
become large by high sensitivity with small values. As 
compared with the armchair model, drastic changes in 
the carrier electron area densities and effective masses 
due to strain can be observed in the zigzag model. 

4. Conclusion 

In this paper, the gauge factors in armchair and zigzag 
graphene ribbon models have been simulated on the 
of first-principles 
conductivity of gr

ing band carrier densities and their corresponding 
effective masses. We found the different characteristics 
 

Table 2. Armchair and zigzag model properties. 

Model type EF (eV) Σjn j(cm−1) (mj
∗/m0

a))−1

No strain model −2.359 7.490 × 10  0.0286 17

Longitudinal strain −2.408 7.496 × 1017 0.04
air

gs)
47 

mch
(9-rin

 strain

Ar

Transverse −2.356 7.489 × 1017 0.0408 

No strain model −2.149 1.909 × 1016 8.6424 

Longitudinal strain −1.158 1.031 × 1017 2.4308 
Zigzag 

(13-rings)
Transverse strain −2.152 1.127 × 1016 6.1671 

 
Table 3. Gauge  grahene models. 

a ) 

factors of

G uge factor (Kα

Model ty Longitudinal strain Transverse strain 
KT) 

pe 

model (KL) model (

Armchair model (9-rings) 56 42.4 

Zigza ings) 34. 7.4 g model (13-r 2 13
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in conductivity betwee  
The longitudinal and trans e facto  in
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A. Firsov, “Electric Field
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n armchair and
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rs are high
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 ur calculation, and in ula

ibbon has an enorm tenti with 
piezoresistivity if we find good systems and conditions 
for graphene ribbon fabrication. 
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