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ABSTRACT 

We develop a long-term dynamic model for controlling invasive species using the theory of cooperative games. The 
model is applied to control of invasive buffelgrass in the Arizona desert, which directly competes with indigenous spe- 
cies and can increase wildfire risk. Interest groups care about damages to three threatened resources: saguaro, cactus, 
riparian vegetation, and buildings. The model optimally allocates labor and a budget to protect these resources by con- 
trolling the buffelgrass population over a multi-period planning horizon. The solution is based on computing the 
Shapley values for the interest groups. A homeowner strategy of creating defensible space around structures to protect 
against wildfire affords less protection to the other resources. A similar result holds for protection of saguaros, which 
are also spatially concentrated. Under the optimal solution, groups caring about spatially-dispersed, riparian vegetation 
would compensate homeowners and groups caring about saguaros for a reallocation of resources toward greater protec- 
tion of dispersed vegetation. Results highlight the importance of the spatial configuration of players and the resources 
they wish to protect in invasive species control problems. 
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1. Introduction 

The invasion of non-native species may lead to signifi- 
cant ecological and economic damages. When non-native 
species occupy new areas, they can eradicate native 
plants and animals as they compete for ground surface, 
sunlight, moisture, and nutrients. The invasion of non- 
native species can cause drastic changes to an ecosystem 
[1-3]. Invasive species provide fuel for fires, which could 
destroy native habitats and man-made structures. While 
humans introduce some invasive species intentionally, 
for instance to serve as food crops, many are introduced 
accidentally or they escape from confinement and spread 
through ecosystems [1]. About 50,000 non-native species 
in the United States cause $115 billion in damages and 
losses annually, and that around $21 billion is spent on 
controlling non-native species population each year [4]. 
Naturally, there is an extensive literature for the control 
of invasive species. Epanchin-Niell and Hastings [1] 
provide a detailed review of the studies on the economi- 
cally optimal control of some established invasive spe- 
cies.  

Moody and Mack [5] and Martin et al. [6] perform a 
comparative study of the efficiency of different treatment 
variants on invasive species, while Wadsworth et al. [7] 
compare alternative strategies based on proximity for 
human settlements, weed population size, age and spatial 
distribution. Jetter et al. [8] study and provide a review 
for the benefits and costs of biological control programs. 
Olson [9] gives a review of a variety of optimization 
methods to solve the invasive species management prob- 
lem including dynamic programming [10], optimal con- 
trol theory [1,10] and genetic algorithms [11]. Burnett et 
al. [12] study the problem of determining the optimal 
amount of resources that should be applied for control- 
ling specific invasions including estimates of real costs, 
damages and spread patterns into an optimization frame- 
work. Epanchin-Niell and Hastings [1] and Olson and 
Roy [13] investigate the optimal control principles for 
invasive species management and corresponding influ- 
encing factors through theoretical models. 

In this paper, we consider a long-term dynamic model 
for controlling invasive species using cooperative game 
theory with the application to buffelgrass control in the 
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Arizona desert. Buffelgrass is an invasive bunchgrass 
that was introduced to Arizona from Africa for cattle 
forage. Established buffelgrass forms large and dense 
colonies that exclude other species and is difficult to 
eradicate. The plants reduce the space available for the 
native species and compete with them for scarce water 
and nutrients. Furthermore, buffelgrass can easily lead to 
big fires. Büyüktahtakın et al. [14] study the spread and 
control of buffelgrass in Arizona as a spatial-dynamic 
problem. The authors provide two heuristic strategies: 
potential damage weighting and consecutive year treat- 
ment to solve the problem with some computational re- 
sults to demonstrate the performance of these heuristics 
in terms of the relative damage reduction to no treatment 
and to static optimization. In another study, Büyük- 
tahtakın et al. [15] provide a large scale, nonlinear 0 - 1 
integer programming model for the dynamic control of 
invasive weeds while they introduce a multi-objective 
optimization model in [16]. In another study, the authors 
consider three different valued and threatened resources 
including saguaros, buildings and vegetation as players 
of the game, and provide optimal control strategies based 
on conflict resolution [17]. In this paper, we propose a 
model, which decides the optimal allocation of labor and 
budget to these resources to control the population of the 
species in a multi-period planning horizon based on the 
theory of cooperative games. 

If no cooperation is assumed between the decision 
makers, then each of them wants to maximize its own 
benefit without any consideration to the others. The Nash 
equilibrium is the most common solution concept for 
such cases [18,19]. In this paper, we consider a coopera- 
tive case and aim to find out what payoff will be awarded 
to each decision maker in the cooperation given the sets 
of feasible payoffs to each coalition. We aim to answer 
this question by using cooperative game theoretical 
methodology. There are several different ways to model 
the cooperation of the decision makers including conflict 
resolution [20,21], multi-objective optimization [22], 
partial cooperation [23], and solution concepts based on 
characteristic functions [18]. In this paper, this last ap- 
proach is selected and the Shapley values [24,25] of the 
three-person cooperative game are determined. 

The invaded area is modeled as a gridded landscape, 
where each cell of the grid represents one acre of land. 
The potential for an invasive weed to become established 
as well as damages and the cost of control are defined by 
the carrying capacity, which varies across the landscape. 
The damage in any cell depends on the buffelgrass 
population density in the cell and the location of the val- 
ued, threatened resources with respect to the cell and its 
close neighborhood. We define the decision variables to 
represent the management decision, which is to treat or 
not to treat a cell in a given period. If it is treated, then 

the population decreases immediately depending on the 
kill rate of the herbicide treatment, otherwise its popula- 
tion grows according to the natural growth model. We 
have limited treatment resources including labor and 
budget, which drastically can change the optimal control 
strategy compared to the unconstrained optimal policy 
[11,26]. Given labor and budget constraints, our goal is 
to minimize the total discounted damage during the en- 
tire considered time interval subject to competing re- 
sources. 

This paper is organized as follows: In Section 2, we 
present the formulation of the 0 - 1 dynamic model for- 
controlling invasive species. The applied game theoretic- 
cal solution methodology is described in Section 3. Ex- 
perimental results and their analysis are provided in Sec- 
tion 4. In Section 5, conclusions and future research di- 
rections are outlined. 

2. Mathematical Model 

In this section, we provide a model with the objective of 
minimizing the total damage caused by the invasion, 
which is the present value of the sum of costs correspond- 
ing to total damages across space and time. The notations 
are as follows: 

 0,t T  denotes any year of the time horizon T; 
 ,i j  indicates cells of the grid by row i and column j 

in the landscape; 
   0,1ijy t   is the decision variable of cell  ,i j  

at time t, where   1ijy t   if the cell is treated and 
  0ijy t   otherwise; 

 ijN t  represents the population volume of cell 
 ,i j at time t; 

ijK  is the carrying capacity of cell  ,i j ; 
 ~  ~i j tN  is the vector of buffelgrass population 

volumes in the eight cells surrounding cell  ,i j  at time 
t. 

Let g be the logistic growth function such that the 
population grows fast at the beginning and then at a de- 
creasing rate when the population approaches the carry- 
ing capacity. The state transition relations without treat- 
ment are formulated as 

      *
~ ~1 , ,Nij ij i j ijN t g N t t K          (1) 

However, if possible treatment is considered, the new 
state can be stated as follows: 

 
    

    

*

*

0,   if  1 1
1

1 1 ,  otherwise

c
ij ij

ij

ij ij

N t ky t N
N t

N t ky t

     
 

   (2) 

since if the cell is treated, then the population becomes 
    * 1 1ij ijN t ky t  , and if this volume is below a 

given threshold cN , then the treatment eradicates buf- 
felgrass completely from the cell. 
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Let  ijC t  denote the cost of treating cell  ,i j  in 
year t: 

   *
1 2 3 4 ,ij ij ij ijC t c c N t c s c d     

where ijs  is the average cell slope, ijd  is the distance 
of the cell from the closest road, and the coefficients 

1 2 3 4, , , and c c c c  are estimated by the least squares me- 
thod based on recent treatment records [28]. 

The labor requirement  ijL t  is also assumed to have 
a linear form, 

   *
 1 2 3 4 ,i j ij ij ijL t c c N t c s c d  

where the coefficients 1 2 3 4, ,  and  c c c c  are also obtained 
by the least squares method using actual recent treatment 
data [28]. 

Finally, let    r
ijD t  represent the damage to resource 

r in cell  ,i j , which depends on the buffelgrass popu- 
lation  ijN t  and the proportion of resource r at risk in 
cell  ,i j  and in the surrounding cells,  r

ijR , and the 
management priority for resource r, .rd We then give its 
formulation as: 

       .r r
ij r ij ijD t d R N t  

We then formulate the optimization problem for re- 
source r as a nonlinear 0 - 1 integer programming prob- 
lem as follows: 

     
1 1 0

min Π
I J T

r r
ij

i j t

D t
  

             (3) 

subject to: 
Constraints (1) & (2) 

     
1 1

I J

ij ij
i j

C t y t B t
 

             (4) 

     
1 1

I J

ij ij
i j

L t y t L t
 

             (5) 

The objective function (3) defines the total damage 
caused by the weed population over all cells and all years 
during the given time period of T + 1 years. Given that 
 B t  and  L t  are the annual budget and available 

labor in year t, constraints (4) and (5) guarantee that both 
the budget and labor restrictions are satisfied. 

3. Solution Methodology 

Let  1,2,3  denote the set of the three interest 
groups, each of them wants to control the buffelgrass 
population considering only one resource j: riparian 
vegetation, houses and other building structures, and sa- 
guaros. The characteristic function of the three-person 
cooperative game is a real-valued function v defined on 
all possible coalitions. Function v is defined as follows: 
Let    be any coalition. Then   0v   , and if 

  , then 

   

r

min max Π r

r r
v

  

   
             (6) 

In the special case of   , 

   min Π r

r

v


 


              (7) 

The Shapley value of the interest groups can be com- 
puted from the values of the characteristic function. Let 
  denote the number of members of the coalition  ; 

then the Shapley value for interest group r is given as 

        
all 

1 ! !

!
r v v r

 
  



  
     (8) 

Notice that if r , then the corresponding term of 
the summation is zero, so we have to consider only those 
coalitions that contain interest group r. It can be proved 
that 

   min Πr r

r r


 

 
 

            (9) 

That is, in implementing the Shapley value, minimiz- 
ing the overall damage is the best possibility for all in- 
terest groups. That is, the sum of the three damages is 
minimized. However, the actual damages for the indi- 
vidual interest groups are not necessarily equal the 
Shapley values. In such cases side payments have to be 
used to compensate interest groups that have larger ac- 
tual damages than the Shapley values. This can be either 
direct financial compensation or compensation can be 
made by providing more labor for additional treatments. 
Under side payment compensation, every player receives 
their Shapley value. So, if a player’s payoff exceeds this 
value, the player must compensate other players. Other- 
wise, the player should receive compensation from oth- 
ers. 

4. Numerical Results 

The feasible decision space is determined by the model 
constraints as well as by the recommendation of the Buf- 
felgrass Working Group [27] that treatments have to be 
continued at least for a consecutive three-year period. 
The logic of this strategy derives from the logistic growth 
process of the buffelgrass population. If buffelgrass 
population of treated cell is close to its carrying capacity, 
a single year of treatment will push that population back 
the fast-growing part of its growth curve. The population 
quickly rebounds in subsequent years, so that a single 
year of treatment has little long-term effect. Earlier re- 
search has verified that the three-year treatment strategy 
is highly effective [14,15]. 

The area is divided into cells, a 40 × 50 rectangular 
array of cells is considered. The buffelgrass population 
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has a 12-year history in Arizona, so the current year is set 
to 12. We consider treatment until year 30. We calibrate 
the parameters of the numerical buffelgrass spread model 
to replicate actual, historic spread behavior of buffelgrass 
based on recent treatment records in and around the De- 
sert Lab and the exotic plant surveys performed since 
1983 at Tumamoc Hill [28].  

The future damages for each resource after this period 
are taken into account by computing the maximum pos- 
sible damage value  *r

ijD  for each cell if the cell is left 
untreated from the current period to the end of the plan- 
ning horizon and consider the weighted averages: 

       *Π 1r r r
ij

i j

p w w D             (10) 

with w = 0.5 coefficient value. 
Because side payments are considered among the in- 

terest groups, all damages were computed with their dol- 
lar values. The estimated values of houses and replace- 
ment costs for saguaros and other important desert plants 
were obtained from the Office of Arid Land Studies of 
the University of Arizona. We solve the resulting linear 
binary integer program by a branch and bound algorithm 
[29]. In our computations, we used a state of art integer 
programming solver ILOG CPLEX (2010) [30]. 

In computing the characteristic function values as 
shown in Equation (6), notice that the maximum damage 
with r  occurs if the cells controlled by the groups 
outside coalition   are not treated at all. So  v   is 
obtained by minimizing the overall damage for the coali- 
tion under this additional constraint. Figure 1 shows the 
cell grid with the indication of each interest group and 
the grid cells which are controlled by that interest 
group. 

For the experimentation, we assume that each own  
 

 

Figure 1. Cell grid with controlling interest groups: ri- 
parian (1), houses (2), and saguaros (3). 

group has their own budget allotted based on the area of 
the land they had and only control their own land. Even 
though a grid cell is controlled by only one interest group 
shown in Figure 1, a grid cell may have all three valuable 
resources. Once the interest groups join the coalition, their 
objective is to minimize the damage to all the resources 
that are concerned by the coalition. Since minimizing the 
damage is equivalent to maximizing damage reduction, in 
the numerical part, we simply considered damage reduc- 
tion, which is actually the difference between possible 
largest damage and the actual damage. Table 1 shows the 
characteristic function values with actual damage reduc- 
tions in million $ for the 32 8  possible coalitions of the 
three interest groups. 

Utilizing Equation (8) the Shapley value with for in- 
terest group 1, 2 and 3 can be computed as follows: 

             

        

1 1
2 1 1,2 2 3

6

1,3 2 2,3 2 1,2,3

v v v v

v v v

    

   

 

             

        

2 1
2 2 1,2 1 3

6

2,3 2 1,3 2 1, 2,3

v v v v

v v v

    

   

 

and 

             

        

3 1
2 3 1,3 2 1

6

2,3 2 1,2 2 1, 2,3

v v v v

v v v

    

   

 

Based on the values shown in Table 1, we have 

 1 4.852   

 2 6.497   

 3 5.685   

 
Table 1. Characteristic function values with actual dam- 
age reductions. 

Coalition
Riparian 

group 
Housing 

Saguaro 
group 

Total  v 

  0.000 0.00 0.00 0.00 0.00 

{1} 0.39 0.15 0.39 0.93 0.39 

{2} 0.31 4.64 0.30 5.25 4.64 

{3} 1.89 0.09 1.88 3.86 1.88 

{1,2} 0.77 6.12 0.77 7.66 6.89 

{1,3} 4.01 0.29 4.01 8.31 8.02 

{2,3} 2.04 5.03 2.04 9.11 7.06 

{1,2,3} 5.37 6.31 5.36 17.03 17.03
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The values of  2  and  3  indicate that the interest 
group of homeowners and saguaros should be compen- 
sated by the riparian group for their controlling efforts. 
Figure 1 provides some intuition for this result. Most 
structures are concentrated on the fringe of the study area. 
Acting alone, an optimal strategy for homeowners is to 
create “defensible space” around structures, reducing 
buffelgrass populations to protect against wildfire risk. 
Likewise, saguaro populations are less scattered through- 
out the study area than riparian vegetation. Creating de- 
fensible space around saguaros provides fewer benefits to 
other, dispersed vegetation. Thus, the interest group that 
cares about dispersed resources will have to compensate 
those groups wanting to protect more spatially concen- 
trated resources. The actual treatment strategies are ob- 
tained from the optimization problem (7). The three 
damage trajectories when all the parties are in coalition 
are shown in Figure 2. The damage values are obtained 
by solving the optimization problem (1), (2), (4) and (5) 
with objective (10) when considering all parties are in 
coalition. In Figure 2, we observe that the damage re- 
duction trajectory is almost linear for houses. On the 
other hand, we observe that the damage reduction func- 
tion trend is exactly same for riparian and saguaros. 
Therefore blue and green trajectories are identical in Fig- 
ure 2. 

5. Conclusions 

In this paper, a dynamic model was introduced for con- 
trolling invasive species. The case study used data for the 
increasing ecological problem caused by the buffelgrass 
population in the Southern Arizona Desert. We consid- 
ered three interest groups. The first group’s interest is to 
minimize damage to riparian vegetation; the second 
group represents the interest of homeowners; while the 
third group wants to preserve the famous saguaros of the 
Arizona desert. Because all groups have the common  
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Figure 2. Damage reduction trajectories for years 12 
through 30. 

interest of preserving the environment and man-made 
structures, they must cooperate to gain the maximum be- 
nefits of damage reduction. 

This study used cooperative game theory, the solution 
concept of Shapley, which is based on the characteristic 
function values for all possible coalitions of the three 
interest groups. Our numerical results indicate that in 
order to have the optimal cooperation of the home- 
owner’s as well as saguaro protection groups in control- 
ling the buffelgrass population, they have to be compen- 
sated for their efforts. Results highlight the importance of 
the spatial configuration of players and the resources 
they wish to protect. An important subject for future re- 
search is to apply other cooperative game-theoretic con- 
cepts and methods to this spatial invasive species control 
problem to compare solution results to those obtained in 
this paper. 
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