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ABSTRACT 

Attention direction for active vision systems has been of substantial interest in the image processing and computer vi- 
sion communities for video surveillance. Biological vision systems have been shown to possess a hierarchical struc- 
ture where a pre-attentive processing function directs the visual attention to regions of interest which are then possibly 
further processed by higher-level vision functions. Biological neural systems are also highly responsive to signals which 
appear to be chaotic in nature. In this paper we explore applying measures from chaos theory and fractal analysis to 
provide a robust pre-attentive processing engine for vision. The approach is applied to two standard data sets related to 
video surveillance for detecting bags left suspiciously in public places. Results compare quite favorably in terms of 
probability of detection versus false detection rate shown through Receiver Operating Characteristic (ROC) curves 
against two traditional methods for low-level change detection, namely Mutual Information, Sum of Absolute Differ- 
ences, and Gaussian Mixture Models. 
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1. Introduction 

The mechanisms for directing attention in the human vi- 
sual system have been the objective of significant re- 
search in the medical community and a number of com- 
puter science researchers have defined systems based on 
models of the human perception system [1,2]. Research- 
ers agree that one of the “undoubtable” low level features 
that direct attention is motion [1]. Park et al. note “tem- 
poral saliency has high priority over spatial saliency” and 
Le Meur et al. note “salient parts consist of abrupt on- 
sets” and “the appearance of new perceptual object con- 
sistent or not with the context of the scene could also 
attract our attention” [2]. Additionally, Wolfe notes that 
in the human visual system, “motion is one of the most 
effective pre-attentive features”, and “abrupt onset will 
capture attention” [3]. Likewise, “a mechanism that 
wanted to direct attention to any visual transient would 
be less useful since many uninteresting events in the world 
can produce such transients” [3]. One example of unin- 
teresting transients is spatio-temporally varying illumina- 
tion (i.e. moving/suddenly appearing light bands). Thus 
an effective pre-attentive system should detect motion and 
contextual change, while remaining relatively immune to 
spatio-temporal changes in illumination. It is important  

to note that pre-attentive systems are not responsible for 
higher level visual tasks such as segmentation, tracking, 
classification which occur higher in the visual processing. 
The proposed pre-attentive visual analysis is modeled af- 
ter biological vision systems and can be very advantage- 
ous for a distributed video surveillance system where 
pre-attentive cues can initiate the execution of much hi- 
gher complexity algorithms such as segmentation and 
tracking, automatic video recording, etc. 

One application of computer vision that is of particular 
interest today is surveillance for suspicious objects left in 
public places, such as backpacks carrying potential ex- 
plosive devices. This application is difficult since there is 
often considerable background motion (e.g. travelers 
through a train station) which can distract a vision system 
from detecting subtle objects of interest, and spatiotem- 
porally varying illumination resulting both from sunlight 
position changes during long term visual monitoring as 
well as due to illumination transients due to doors open- 
ing, lighted vehicles passing through the image scene, etc. 
While many researchers have been exploring the issue of 
interesting contextual change in the presence of illumina- 
tion change, these methods tend to be monolithic in struc- 
ture and require considerably more processing resources  
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than is cost-effectively available for pervasive low cost 
embedded applications [4-8]. 

While there are very few actual pre-attentive process- 
ing systems proposed, there are many change detection 
and background subtraction algorithms in the literature 
that provide the users usually segmentations of the change 
or identification of image frames within which change 
occurred. This is particularly popular in areas of remote 
sensing and surveillance. Remote sensing applications ty- 
pically employ some form of pixel-level subtraction [9- 
11]; which will then result in these “approaches suffering 
from differences in image radiometry” [10]. Change de- 
tection for video surveillance is commonly based on back- 
ground subtraction and one common method for per- 
forming this task is eigen-backgrounds [12], which ma- 
nage the background information through the principle 
components of the image greyscale amplitudes, and up- 
date the background based on pixel amplitude changes 
relative to the model. Clearly any of these systems that 
employ pre-attentive algorithms are based on simple im- 
age differencing will not be immune to illumination chang- 
es and many of the authors directly acknowledge this [2, 
8,10]. Another common method around for surveillance 
systems is Gaussian Mixture Models (GMM) [8]. As with 
the other common methods, however GMMs are not ro- 
bust to illumination changes [8]. Additionally, methods 
such as eigen-backgrounds and GMM require considera- 
bly additional processing to perform contextual change 
detection (long-term scene change) [8,12]. 

The author’s recent work in modeling moving objects 
in image fields as aperiodic forcing functions impacting 
the imaging sensor and thereby creating chaos-like sig- 
nals in phase space has been shown to be robust to de- 
tecting change and motion while ignoring illumination 
effects. The underlying processing of the proposed me- 
thod is based on fractal analysis of the image amplitude 
phase plot and requires relatively simple processing that 
would be suitable for high speed pre-attentive process- 
ing required for distributed video surveillance systems. 

In this paper we initially review the fact that contex- 
tual change in images results in chaos-like fractal behav- 
ior in phase space, while change due to illumination is 
topologically compact and non-fractal. We then discuss a 
suitable fractal measure for performing chaos theory in- 
spired analysis of image sequences to quantify these dif- 
ferent behaviors of illumination and change. We will 
then provide a processing framework for pre-attentive vi- 
sion for video surveillance using the proposed chaos-bas- 
ed approach. Lastly, we demonstrate its performance 
against the problem of suspicious left bags in complex 
real-world scenes, including a crowded subway station. 

2. Characteristics of Image Change 

The two mechanisms through which the pixel amplitudes  

of a perceived image can change are: (i) due to illumina- 
tion and (ii) due to appearance changes of objects within 
the image. These appearance changes can be caused by 
one of two mechanisms (i) change in position due to mo- 
tion, and (ii) sudden appearance due to an object being 
left in a scene. In [13-15] the author has shown that these 
changes can be modeled effectively by considering ob- 
jects moving through an image scene as aperiodic forcing 
functions which impact the imaging sensor and produce 
chaos-like behavior in the pixel amplitudes. This paper 
provides an extended coverage of the applications of 
chaos specifically to attention direction initially provided 
in [15]. Velazquez used the aperiodic forcing function 
model to explain the signals behavior of biological neural 
systems [16]. A useful tool for analyzing chaos-like be- 
havior in dynamical systems is the phase plot of the sys- 
tem over time. Previously, the author has demonstrated 
that the phase plots exhibit the principle of ergodicity 
which allows analysis of the temporal behavior of a sin- 
gle particle (in our case a pixel) to be replaced with ana- 
lyzing an ensemble of particles at a single time instance 
(an image pair in our application) [13,14]. This is a sig- 
nificant benefit as it greatly reduces the time frames with- 
in which events can be detected. This is critical for a pre- 
attentive system since requiring temporal analysis of long 
trajectories would add significant latencies into the ana- 
lysis, while frame-wise analysis supports real-time low- 
latency processing. The critical distinctions between the 
effects of illumination and the effects of contextual change 
will be addressed in the following two sub-sections. 

2.1. Image Illumination Change 

The effects of illumination on images within video se- 
quences have been shown by the author [13] and in pa- 
rallel by Cho et al. to result in a multiplicative change   
in illumination in the Lambertian scene radiance, , 
described by [17]: 

mL

     mL N I N I L           
   

,     (1) 

where   is the albedo of the object surface, N


 is the 
normal to the surface of the object, and I


 is the direc- 

tional illumination. Mester, et al. has also noted the mul- 
tiplicative nature of illumination and they developed a 
co-linearity model where changes in illumination are as- 
sumed constant over small regions. Then by treating lo- 
cal neighborhoods of pixels as a vector they define the il- 
lumination change as a scaling operation of one vector 
relative to another [6]. Likewise for specular objects the 
scene a more complex reflectance models, such as the 
Torrance-Sparrow model which combines specular and 
diffuse components of scene radiance, can be used [18]: 

 d sL K K I  


               (2) 
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where dK  is the diffuse component, and sK  is the 
speculative component of the surface. This more com- 
plex model still maintains the basic form of the illumi- 
nation multiplied by a surface descriptor, which implies 
illumination changes can be modeled multiplicatively 
by: 

     m d s d sL K K I K K I L            
     

  (3) 

The effects in phase space between an image pair ex- 
periencing spatio-temporally varying illumination changes 
are provided in Figure 1 where the reader is directed to 
note the locally compact conical structure in the phase 
plot due to spatio-temporal variation in the illumination. 
Also note the verification of the multiplicative illu- 
mination model where the higher amplitude pixels (fur- 
ther up on the phase plot) are shifted by a greater amount. 
Figure 2 provides an even more telling demonstration of 
the power of analyzing images in phase space rather than 
in traditional grayscale space. In Figures 2(a) and (b) we 
see the original background image and an image from a 
sequence with a subway entering a station. Note the 
strong angle of the phase plot in Figure 2(c) due to the 
significant increase in global illumination due to the car. 
Likewise note the conical structure of the phase plot in 
Figure 2(d) due to the spatial variation of illumination 
due to the windows of the car. Section 3 of this paper 
will highlight the algorithm used to allow us to ignore 
these illumination changes. 

Black, et al. attempt to model all possible conditions 
of change, including illumination, motion, deformation, 
noise, etc. [5], and use mixture modeling to identify pi- 
xels corresponding to each of these possible change me- 
chanisms. The use of mixture models is further extended 
in Tian, et al where multiple Gaussian mixtures (GMM- 
based methods) are used to model all possible illumina- 
tion changes without assumptions of them being due to 
moving objects, contextual change, illumination or sha- 
dows [8]. The limitations of the approach are “it cannot 
 

    
(a)                             (b) 

Figure 1. Effects of spatio-temporally varying illumination: 
(a) image with spatially varying illumination change (vector 
shows direction of motion of illumination in subsequent 
frames), (b) phase plot showing conic structure due to mul- 
tiplicative nature of illumination. 

  
(a)                          (b) 

  
(c)                            (d) 

Figure 2. Effects of spatio-temporally varying illumination 
and demonstration of its multiplicative nature: (a) back- 
ground image; (b) future image with subway present and 
significant complex spatially varying illumination change 
from windows, headlights, etc.; (c) phase plot showing effect 
in phase space of global illumination change in region (4, 4), 
and (d) conic structure of phase plot due to spatially vary- 
ing illumination in region (2, 4). 
 
adapt to quick-lighting changes and cannot handle sha- 
dows well” [8]. 

The issue of rapidly changing illumination failing for 
GMM approaches is also particularly problematic for a 
pre-attentive vision system since it would cause high 
numbers of false alarms. This can be seen clearly in Fig- 
ure 3 through Figure 4 where two subsequences of the 
subway data are processed using GMM. Figure 3(a) 
shows the subway entering the station and Figure 4(a) 
shows the GMM detections for that and a subsequent 
image only four time samples apart. Likewise Figure 3(b) 
and Figure 4(b) show the illumination effects detected 
by GMM for a later segment of the image sequence. Note 
the significant illumination detections in Figure 4 when 
these images are only separated by a short time interval, 
when compared to the huge time variation between the 
two images in Figure 2 for the phase plot generations. 
The next section will reinforce that when analyzing images 
in phase space there is a clear distinction between chang- 
es due to illumination and changes due to contextual 
change that cannot be captured by traditional grayscale 
methods such as SAD [19] and GMM [8]. 

In addition to reducing the false alarm rate of detecting 
actual contextual change due to illumination changes this 
powerful feature of phase space analysis has a profound 
effect on background image generation and management. 
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(a)                           (b) 

Figure 3. Typical image with interesting spatio-temporally 
varying illumination: (a) moving subway car, and (b) sub- 
way car doors open and shadows from people exiting. 
 

   
(a)                           (b) 

Figure 4. Detected changes due to illumination that is ig- 
nored by chaos theory but detected GMM using filtered 
data: (a) for image in Figure 3(a) where illumination is de- 
tected by GMM in grid cell (2,1) and (2,2) and (b) for image 
sequence in Figure 3(b) where extensive illumination is de- 
tected by GMM in grid cells (1,3), (2,3), (3,1), and (4,1). 
 
One of the key reasons GMM is quite popular is that it 
adjusts the background over time as illumination changes. 
Of course it needs to do this otherwise the GMM algo- 
rithm will detect illumination change as real change. Un- 
fortunately, rapidly changing illumination cannot be inte- 
grated effectively into the background model and like- 
wise cannot be removed from the background once it is 
integrated due to the slow time constraints of the mix- 
ture model evolution. The proposed chaos-based approach 
does not require an updated background image when 
there is illumination change, as the change can be de- 
tected by its unique behavior in phase space relative to 
substantive contextual change. The background images 
in this study were actually pieced together from sections 
of multiple images across all of the I-Lids dataset, with 
the regions selected solely on their lack of objects, irre- 
spective of the overall illumination. This provides a sig- 
nificant advantage for the proposed chaos-based app- 
roach over all traditional methods. 

2.2. Image Change Due to Motion or Context 

Recall that changes in an image that are of interest are 
due to object motion or object appearance. We can see  

from Equation (2) that the changes in reflectance occur- 
ring in the scene within a region captured by a pixel due 
to either motion of an object or the sudden appearance of 
an object result in non-linear multiplicative effects through 
the dot product of the surface normal (and its related al- 
bedo) with the illumination source. Cho and Kim in [17] 
witnessed non-linearities in the joint histograms but treat- 
ed them as outliers that confounded their computation of 
a global illumination change rather than analyzing them 
as a source of contextual change in images. The frame- 
wise phase plot interestingly is also structurally similar to 
the joint histogram of Cho and Kim [17]. Le Meur, et al. 
recognized and used nonlinear models to describe the sti- 
mulation of visual cells in biological systems [2]. Addi- 
tionally, Nagao, et al. explained the rapid transition of 
human recognition between two objects in the visual sys- 
tem through the transition between competing basins of 
attraction in a chaotic system [20]. 

Figure 5(c) shows the phase space trajectory due to 
motion between image pairs (Figure 5(a) and Figure 
5(b)) exhibits interesting chaos-like behavior when view- 
ed in the phase space of pixel amplitudes. Likewise Fig- 
ure 5(f) shows the phase space trajectory due to contex- 
tual change resulting from a left bag (Figure 5(e) versus 
Figure 5(d)). Notice these trajectories are considerably 
more complex than those shown in Figures 2(c) and (d). 
Tel and Gruiz also state, “[one difference] between cha- 
otic and non-chaotic systems is that, in the former case, 
the phase space objects… trace out complicated (fractal) 
sets, whereas in the non-chaotic case the objects suffer 
weak deformations” [21]. Clearly there is a distinct dif- 
ference in the behavior of the phase plots from illumina- 
tion change as from motion and contextual change, which 
we will exploit in this approach. 

Our proposed chaos-based approach directly exploits 
the underlying differing mechanisms of contextual change 
versus illumination change to devise a method for detect- 
ing the meaningful contextual change irrespective of the 
existing illumination and any illumination changes. An 
effective pre-attentive vision system should not precom- 
pensate or attempt to characterize illumination changes 
as in [6] or [19], but rather it should attempt to directly 
isolate regions of interest with contextually interesting 
change while being less sensitized to simple illumination 
change. As shown in Figure 5 the non-linear effects of 
the modeling change as aperiodic forcing functions re- 
sults in complex behavior in phase space, and we will 
show that this complex behavior can be effectively quan- 
tified through fractal measures, and these measures can 
serve as a robust indicator of the presence of change in 
an image sequence for identifying regions of interest in 
pre-attentive processing. 
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(a)                         (b) 

 
(c) 

   
(d)                           (e) 

 
(f) 

Figure 5. Chaotic behavior due to motion and contextual 
change: (a) first image with motion; (b) second image with 
motion; (c) phase plot; (d) first image with contextual change; 
(e) second image with contextual change, and (f) phase plot. 

3. Pre-Attentive Processing Using Fractal 
Analysis in Phase Space 

The processing flow for the proposed system is provided 
in Figure 6. The initial step of low-pass filtering reduces 
the effects of noise and can also support down-sampling 
for even higher performance. Note that both the chaos 
measures and the traditional Mutual Information and sum 
of absolute differences (SAD) are global dimensions. For 
attention direction, however, we are interested in more 
than simply knowing an entire image has motion or con- 

 

Figure 6. Chaos-based pre-attentive processing. 
 

 the sub-region in the image where the change occurs, 

al parallel paths for 
th

rocessing task is Compute Phase Plots 
w

nd Remove Background task uses the 
ph

nation with spatial variation appears as a cone in phase 

to
to allow us to more efficiently direct our more complex 
computational resources associated with the higher level 
vision processing. Consequently, rather than applying this 
measure to the entire image, the image is divided into a 4 
× 4 grid of sub-image cells and the measures are com- 
puted within these smaller regions. Future work is di- 
rected at integrating a quad-tree approach where regions 
are further subdivided based on possible characteristics 
of the resultant phase plots. Bang, et al. apply a SAD 
measure at a block level as well to provide regional de- 
tection for that method as well [19]. 

There are then two nearly identic
is processing, one for motion and one for contextual 

change. The only difference between the two paths is that 
in the motion processing there is a determination of time 
lag to be used between images while in the context path; 
the reference image is always used as the first image in 
the comparison. For selecting time lags, the system cur- 
rently uses one to eight image frame time lags for motion 
depending on the type of scene and objects (human ver- 
sus automobile for example), and uses a reference image 
constructed earlier to serve as the contextual change ref- 
erence image. 

The next p
here each pixel in one image is paired with the same 

pixel location in the second image. The amplitude of the 
pixel determines the y-axis location in phase space and 
the difference between the two pixels determines the x- 
axis location. For each pair of pixels, the corresponding 
(amplitude, delta-amplitude) phase plot location is incre- 
mented by one. 

The Detect a
enomena that the background is straight forward to 

detect in phase space; even if there have been illumina- 
tion changes as was shown in Section 2-A. In phase 
space the background appears as a straight line, with the 
slope of the line being determined by the change in glo- 
bal illumination between the two image frames. Illumi- 

textual change, but rather a coarse focusing of attention  
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space as shown earlier in Figure 1(b). The processing 
flow for Detect and Remove Background is provided in  
Figure 7. The first step in the processing is the threshold 
the phase plot to remove the lower amplitude trajectories 
which corresponds to any motion and spatially varying 
illumination, and leaves the background with any global 
illumination. The background always results in higher 
amplitudes in the phase plot, even with global illumina- 
tion change since there is no complex trajectory which 
spreads the amplitude throughout the phase space. This is 
a unique advantage of analyzing the signals in phase 
space, since background is always higher amplitude than 
complex illumination or motion trajectories. The thre- 
shold is initially set at 10% of the phase plot peak, and if 
the number of detected points is too low the threshold is 
reduced and the phase plot re-tested until at least ten 
points are detected to construct the line fit for the remo- 
val of any globally illuminated background from the phase 
plot. 

The background removal estimates the width and slope 
of the dominant line in the phase plot with the base of the 
line occurring at zero amplitude and zero amplitude 
change as shown in Figure 8. Note we use the transpose 
of the phase plot so we do not need to deal with infinite 
slopes. The power of using the mathematical structure of 
illumination change is provided by the fact that both 
SAD [19] and GMM methods [8] treat all grayscale dif- 
ferences the same while our proposed chaos-based ap- 
proach takes advantage of the structural differences in 
phase space between illumination change and motion/ 
contextual change, thereby allowing it to effectively ig- 
nore illumination change in subsequent processing. 
GMM methods, such as those defined in [8], rely on ex- 
tensive post-processing to remove regions with illumina-  
 

 

Figure 7. Chaos-based background removal processing. 
 

 
(a)                          (b) 

Figure 8. Rotated phase plots with line fit and width o
background to re in 

f 
move: (a) phase plot for grid cell (2, 2) 

Figures 3(a) and (b) phase plot for grid cell (3, 1) in Figure 
3(b). 

tion change, using computationally demanding methods 
such as texture comparison, and they remain highly sen- 
sitive to fast illumination changes. The benefits of the pro- 
posed approach over grayscale methods such as GMM can 
be seen when the reader contrasts with the minimal change 
in phase space in Figures 8(a) and (b) due to illumina- 
tion change with the resultant GMM-processed images in 
Figure 3. 

Figure 9 shows the results of the background removal 
process where after the line and width are computed (hi- 
ghlighted in Figure 9(a)), the background in phase space 
is masked and the resultant phase plot (Figure 9(b)) is 
then ready to compute the fractal dimension. There are 
three classes of measures from the domain of fractal ana- 
lysis can be used for computing fractal dimensions in the 
Compute Fractal Dimension task: (i) morphological di- 
mensions, (ii) entropy dimensions and (iii) transform di- 
mensions [22]. We will be employing the morphological 
dimension in this work. 

Most morphological-based dimension measures are ei- 
ther directly related to or motivated by the Hausdorff di- 
mension,  h A  which is defined as [23]: 

   
0 0

lim inf
ss

i
i

h A diam U




 



s


  
    

 ,       (4) 

 iU  
diam

where is the set of hyperspheres of di
and of eter of 

mension s 
 idiam U  , provid

ions, it is n

ing an open 
cover over space A. 

While the Hausdorff dimension is a member of the 
morphological dimens ot easily calculated. 
Fortunately, there are numerous dimensions, such as the 
Box Counting dimension which are closely related (and 
provably upper bounds to the Hausdorff dimension) and 
is attractive because it is relatively easy to compute. The 
Box Counting dimension,  dimB A , is defined as [23]: 

   
0

log
dim limB

N
A

log

A

 
 ,            (5) 



where  N A  is the smallest number of boxes of size 
  that c  space A. Very simpover the ly, the Box Count-  
 

 
(a)                           (b) 

Figure 9. Removal of background contribution to phase plo
prior to comput hase plot
with backgroun plot with 

t 
 ation of the fractal dimension, (a) p

d line highlighted, and (b) phase 
background portion of phase plot removed. 
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ing dimension is a computation of the number of boxes 
of a given size within which some portion of the trajec- 
tory can be found. Note, however, that it does not count 
how many points from the trajectory fall within the box. 

Another closely related dimension is the Information 
dimension which is also quite popular and in some cases 
believed to be more effective, but slightly more compli- 
cated to compute compared to the Box Counting method 
[24]. The Information dimension provides a weight as to 
how often the trajectory can be found in the box and is 
defined based on Shannon’s definition of the sum of the 
information across all boxes at a given resolution [25]: 

     2log ,    where i i i i
i

S AP P P B      (6) 

The Information dimension is then defined to be [25]: 

   
info

0
dim lim

log
A



S





                (7


) 

The management of the box sizes a
upon the phase plot are identical
Fi

nd their overlay 
 in each method and 

gure 10 shows excerpts from the sequence of boxes of 
increasingly finer resolution and their resulting cover of 
the phase plot. For each method, a simple least squares 
fit of the log-log plot of the number of boxes required for 
the cover versus the size of the boxes used provides the 
final dimensional measure. Figure 11(a) shows the resul- 
tant least squares line fit that is used to compute the ac- 
tual Box Counting dimension. Note that at both extremes 
of the calculation, the data deviates from a straight line. 
This is a well-known effect, and it is recommended that 
the end points corresponding to one box the size of the 
image and to boxes the size of an individual pixel be ig- 
nored [23]. The resultant dimensional measure computed 
using either the Box Counting or Information dimension 
methods will allow us to quickly detect possible non-li- 
near dynamics in the phase plot to identify regions of an 
image sequence where interesting (i.e. not illumination- 
based) change has been detected. 

Other approaches for pre-attentive change include the 
sum of absolute differences (SAD), Mutual Information, 
and GMM [2,5,8,11,19,26,27]. SAD is simply computed 
by computing the difference between two images and 
computing the absolute value of each difference, while 
Mutual Information involves the calculation of [26]: 
 

   
(a)                   (b)                  (c) 

Figure 10. Calculation of box counting for phase plot show
ing rec ining
traject

- 
 ursively smaller boxes overlaid on regions conta

ory. 

 
(a) 

 
(b) 

Figure 11. Calculation of box counting for (a) box countin  
calculation shown in Figure ounting calc  
lation for illumination-only phase plot in Figure 2(b). 

g
u-10, and (b) box c

 

     
   ,

,
; , log  ,

p a b
I A B p a b

 
         

a b p a p b 
  (8) 

where  p a  and  p b
B, and 
d B, 

 are the individual d
of dat  and is the joint distribu- 

 that i

istributions 
a sets A
data se

 ,p a b  
tion of ts A an and a is a value in dataset A and 
b is a value in dataset B. Note mage differencing and 
mixture models are not immune to illumination which 
can dramatically change the SAD value. Likewise Mu- 
tual Information can be insensitive to small changes in an 
image since it is overwhelmed by the constant background 
contribution and it can also be affected by illumination 
change since it results in changes in the joint histogram 
used to calculate the MI. GMM relies on calculating im- 
ages of the number of mixtures, mean, variance, and 
weight of every pixel in the image for each of the collec- 
tion of mixtures which results in considerable processing 
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[8]. 
The final step of processing is Select Grid Cell of In- 

terest which passes the detected regions of interest on to 
the higher level attentive processing. There are two com- 
pl

f interesting left-bag scenarios from the 
AVSS-2007 datasets [28,29] are used to 

the benefits of the proposed chaos-based 

sets of 
da

ementary goals of this step, either process regions of 
interest to detect long term change or process them to 
detect motion to match the objective of the system being 
developed. The objective of the proposed system is to 
detect regions with long term change related to detecting 
left bags. The proposed system sets two flags for each 
grid cell if there are detections in the motion or the con- 
text processing, respectively. Only the grid cells with 
long term contextual change detected but no short term 
motion detected will be passed on to the attentive proc- 
essing engine. 

4. Results 

A collection o
CAVIAR and 
demonstrate 
approach using Box Counting or the Information dimen- 
sion and the traditional approaches, SAD, MI, and GMM. 
The CAVIAR data sets are interesting because the bags 
are left near large objects which would make it very dif- 
ficult for human observers to readily detect the objects. 
The AVSS images are interesting because of the signifi- 
cant distracting motion and spatio-temporal illumination 
present in the sequences due to both the subway cars that 
transit the station and the crowds of people they dis- 
charge. Two image sequences are used from each of the 
collections. All of these sequences were hand-processed 
off-line to develop ground truth files to identify regions 
where there was one of four possibilities: (i) nothing, (ii) 
motion, (iii) non-bag contextual change (e.g. subway car), 
and (iv) a left bag. The left bag that must be detected in 
the CAVIAR 1 data set is shown in Figure 12(b), left 
bag that must be detected in the CAVIAR 2 data set is 
shown in Figure 12(a), the left bag in the AVSS Easy 
dataset is shown in Figure 12(d), and the left bag in the 
AVSS Medium dataset is shown in Figure 12(c). 

We provide results in terms of Receiver Operating 
Characteristics (ROC) curves Figure 13 through Figure 
20. The results provided in these comprehensive 

ta clearly demonstrate the performance improvement 
of the chaos-based methods over the traditional methods 
for all four data sets and for detecting motion as well as 
contextual change from left bags. We provide ROC curv- 
es for motion detection with the time-lag between frames 
being set to four frames (Figure 13 through Figure 16). 
The actual selection of the time lag is based on the ex- 
pected speed of motion within the image sequences; 
hence for human detection the time lag would be larger 
than for vehicle detection. This is an intuitive parameter 
to set based on the application domain. While it was not  

    
(a)             (b)           (c)             (d) 

    
(e)             (f)           (g)            (h) 

Figure 12. Fractal measure versus object of interest size:, (a  
grayscale region showing bag from CAVIA se 
plot of re- 

)
R-2; (b) pha

region with fractal measure 1.21; (c) grayscale 
gion showing bag from, CAVIAR-1; (d) phase plot of region 
with fractal measure 1.37; (e) grayscale region showing bag 
from AVSS_medium; (f) phase plot of region with fractal 
measure 1.42; (g), grayscale region showing bag, from 
AVSS-Easy and (h) phase plot of region with fractal meas- 
ure 1.62. 
 

 

Figure 13. Motion (delta t = 4 frames) ROC curves for 
AVSS easy, (a) Box counting; (b) Information dimension; (c) 
Mutual Information; (d) SAD; and (e) GMM. 

imum delay 
 defined by the application. 

 
part of this study, it is possible to automatically scroll 
through a range of time-lags where the max
is

In all the ROC curves the chaotic approaches worked 
better both for motion and for contextual detection. In the  
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Figure 14. Motion (delta t = 4 frames) ROC curves for 
AVSS medium, (a) Box counting; (b) Information dimen- 
sion; (c) Mutual information; (d) SAD; and (e) GMM. 
 

 

 

Figure 16. Motion (delta t = 4 frames) ROC curves for 
CAVIAR II, (a) Box counting; (b) Information dimension
(c) Mutual information; (d) SAD; and (e) GMM. 

; 

 

 

Figure 17. Contextual change detection ROC curves for 
AVSS easy, (a) Box counting; (b) Information dimension; (  
Mutual information; and (d) SAD. 

son of the chaos-based 

 

c)

 
comparison between chaos and MI, the results are indeed 
ompelling. Likewise the comparic

methods to GMM is also dramatic. GMM suffered lower 
performance compared to the chaos-base methods due to 
illumination sensitivity and ghosting due to the slow re- 
covery from objects moving through the grid cells. For 
the comparison between chaos and SAD, the chaos 

Figure 15. Motion (delta t = 4 frames) ROC curves for 
CAVIAR I, (a) Box counting; (b) Information dimension; (c) 
Mutual information; (d) SAD; and (e) GMM. 
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Figure 18. Contextual change detection ROC curves for 
AVSS medium, (a) Box counting; (b) Information dimen- 
sion; (c) Mutual information; and (d) SAD. 
 

 

Figure 19. Contextual change detection ROC curves for 
CAVIAR I, (a) Box counting; (b) Information dimension; (c) 
Mutual information; and (d) SAD. 

ting method performed 
ightly better than the Information dimension. 

e subway 
ca

 

 
methods performed better in every image sequence. In- 
terestingly, the simpler Box Coun
sl

Two example sets of grid cells detected contextual 
change from the AVSS sequences are provided in Fig- 
ures 21(a) and (b). Note that in Figure 21(b) th

r is present in the left of the image and a person is de- 
tected standing at the ticket machine in the upper right 
grid cell of the image. In Figure 21(a) a number of peo- 
ple are standing quite still or sitting on the benches wait- 
ing for a subway car. For these cases, the higher level 
vision system would sort out the longer term tracking of 
these objects and similar to the tracking algorithms em- 
ployed by Tian [8]. Therefore many of the detections of 
all three approaches are legitimate change that pre-atten- 

 
Figure 20. Contextual change detection ROC curves for 
CAVIAR II, (a) Box counting; (b) Information dimension, 
(c) Mutual information; and (d) SAD. 
 

  
(a)                          (b) 

Figure 21. Examples of regions where no immediate motion 
is detected but there is sign icant contextual change, (
people being  stopped at 

haos approaches is 
e intuition which can be applied in setting the thresh- 

on 
ch

a 
ba

if a) 
relatively still, and (b) subway car

station on left side and person at ATM. 
 
tion would detect but not be responsible for resolving. 

One significant advantage of the c
th
olds as they are set directly on the amount of informati

ange the operator is interested in seeing. The MI and 
SAD approaches, however, rely on adaptive thresholding 
based on image amplitude information which can be very 
difficult to set as can be seen in the three plots in Figure 
22. The threshold values for SAD which varied by a fac- 
tor of 5 and was extremely difficult to set due to no clear 
modality in the histogram as can be seen in Figure 22(c). 
Likewise setting the threshold automatically for the MI- 
based detector was impossible due to the complexity of 
the histogram of values as can be seen in Figure 22(b). 

GMM relies on thresholding at the desired percent of 
detected pixels in the image grid cell, which is often quite 
large due to the fact that the moving person dropping 

g is much larger than the bag being discarded. Addi- 
tionally, there is a variety of parameters that must be set 
for GMM as well, namely the initial variance, the learn- 
ing rate, the number of mixtures, the fraction of region 
with change, and the decay rate for the Zivkovic method 
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Figure 22. Histograms of measures for motion and contex- 
tual change for the AVSS sequence in Figure 24, (a) chaos 
measure for motion; (b) chaos measure for context; (c) MI 

trin- 
c characteristics of the objects being detected. These 

h the thresh- 
ol

or surveil-  

measure for motion; (d) MI measure for context; (e) SAD 
measure for motion; and (f) SAD measure for context. 
 
[27]. Note that all of these are based on the expected 
grayscale behavior in the image rather than on any in
si
grayscale behaviors are extremely difficult to anticipate 
and are highly variable across applications. 

The limitations of all the other methods are in sharp 
contrast to the detection threshold and time lags for the 
chaos-based approach. In the chaos approac

d is based on how fractal the phase plot should appear 
for the desired change detection sensitivity. The fractal 
value of the phase plot is directly related to the space fill- 
ing nature of the phase space trajectory which is a meas- 
ure of the amount of information created in the image se- 
quence. Thus the fractality is directly related to the desir- 
ed object size to be expected by the desired contextual 
change. Likewise the time lag is directly related to the 
anticipated motion characteristics of the object which are 
commonly known for the desired application. 

Figures 23(a)-(c) and Figures 24(a)-(c) show baseline 
images and a typical frame pair from a sequence of real- 
time images from CAVIAR and AVSS indo

   
(a)                 (b)                 (c) 

  
(d)                          (e) 

  
(f)                          (g) 

Figure 23. Results of attention direction to contextual 
change, (a) original empty image; (b) image at time one; (c)
image at tim ace; (e) con- 

n- 
xtual phase plot. Subplot (f) in each of these is the re- 

 Dif- 
fe

 
e two; (d) motion-based phase sp

textual change phase space; (f) phase space showing (con- 
text-motion) regions; and (g) resultant regions in image. 
 
lance datasets. In each figure, subplot (d) is the motion- 
based phase plots, and subplot (e) is the long-term co
te
gion remaining after using the motion windows to ignore 
regions in the contextual plot where the change in scene 
has been determined to be motion, and subplot (g) in each 
case shows the resultant grayscale image. Notice that in 
both cases the bags which were left are detected. In Fig- 
ure 24(g) there is also a significant region of spatio-tem- 
poral illumination change in the lower left that still pass- 
ed detection. This region has a slightly elevated fractal 
dimension since the illumination change is due to com- 
plex moving illumination patterns caused by passengers 
in the subway door. Most other spatial-temporal illumi- 
nation regions in the image have been successfully ignor- 
ed by the chaos-based methods, as can be seen by the lo- 
wer false alarm rate inferred from the ROC curves. 

In summary, the benefits of using the chaos-based 
approach are: (i) it is amplitude independent, unlike a 
simple difference measure such as Sum of Absolute

rences (SAD) which often requires adaptive threshold- 
ing [17], (ii) it allows the user to define a threshold based 
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(a)                 (b)                 (c) 

  
(d)                          (e) 

  
(f)                          (g) 

Figure 24. Another result of attention direction due to con- 
textual change, (a) original empty image; (b) image at time 
one; (c) image at time two; (d) motion-based phase space; (e) 
contextual change phase space; (f) phase space showing 
(context-motion) regions; and (g) resultant regions in im- 
age. 
 
on the relative change in in rmation in the image based 
on the chara t rather than 

onclusions and Future Work 

imaging sensor re-
litude 

ajectories is a 

 for determining optimal time 
la

. 
802-817. doi:10.1109/TPAMI.2006.86

fo
cteristics of the objects of interes

the grayscale behavior, and (iii) it is less sensitive to il- 
lumination change, being invariant to global changes and 
typically having a lower value for a broad spectrum of 
spatio-temporal illumination changes. 

. C5

In this paper we presented an approach to pre-attentive 
processing based not only on the structural form of bio- 
logical vision systems, but also on the characteristics of 
the neural waveforms. The approach is based on a model 
of object changes serving as aperiodic forcing functions 
which drive non-linear behavior in the  
sulting in complex trajectories in pixel amp
space. The fractality of the phase space tr

phase 

direct measure of the information content within the tra- 
jectory, thereby serving as a direct measure of pre-atten- 
tive interest unlike other common measures such as image 
amplitude difference or mutual information which mea- 
sure directly in grayscale space. The approach also exp- 

loits the fact that effects due to illumination changes are 
non-chaotic and follow highly deterministic and hence 
dense and non-fractal trajectories in phase space, thereby 
making the approach less sensitive than the other ap- 
proaches, particularly SAD and GMM, to spatio-tempo- 
rally varying illumination. 

The approach is demonstrated on two standard data 
sets and shows that the chaos-based approaches provide a 
robust and efficient algorithm for developing a pre-at- 
tentive vision processing system. Future work will be fo- 
cused in three directions, (i) determining additional mea- 
sures to work with the fractal dimension for detecting the 
unique nature of spatio-temporal illumination in phase 
space, (ii) developing an interaction between the contex- 
tual and motion processing

gs for each grid cell and (iii) continuing the application 
of chaotic measures to higher level vision at the attentive 
and post-attentive processing stages. The work directed 
at (i) will investigate additional detectors of phase space 
structure beyond the fractal dimension to handle the most 
complex spatio-temporally varying illumination, since as 
stated by Tricot in [30], “The measure of a set does not 
determine its topological properties”. Thus it should be 
possible to consider additional topological measures to 
differentiate these changes from contextual change. The 
addition of any algorithmic sophistication must be weight- 
ed carefully against the added processing burden since 
pre-attentive processing must be simple and high speed. 
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