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ABSTRACT 

Recently the new unique classes of hyperbolic functions-hyperbolic Fibonacci functions based on the “golden ratio”, 
and hyperbolic Fibonacci -functions based on the “metallic proportions” ( is a given natural number), were intro- 
duced in mathematics. The principal distinction of the new classes of hyperbolic functions from the classic hyperbolic 
functions consists in the fact that they have recursive properties like the Fibonacci numbers (or Fibonacci -numbers), 
which are “discrete” analogs of these hyperbolic functions. In the classic hyperbolic functions, such relationship with 
integer numerical sequences does not exist. This unique property of the new hyperbolic functions has been confirmed 
recently by the new geometric theory of phyllotaxis, created by the Ukrainian researcher Oleg Bodnar (“Bodnar’s hy- 
perbolic geometry). These new hyperbolic functions underlie the original solution of Hilbert’s Fourth Problem (Alexey 
Stakhov and Samuil Aranson). These fundamental scientific results are overturning our views on hyperbolic geometry, 
extending fields of its applications (“Bodnar’s hyperbolic geometry”) and putting forward the challenge for theoretical 
natural sciences to search harmonic hyperbolic worlds of Nature. The goal of the present article is to show the unique-
ness of these scientific results and their vital importance for theoretical natural sciences and extend the circle of readers. 
Another objective is to show a deep connection of the new results in hyperbolic geometry with the “harmonic ideas” of 
Pythagoras, Plato and Euclid. 
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1. Introduction 

Recently a number of the important scientific results have 
been obtained in modern science [1-9]. They relate to 
hyperbolic geometry and have a direct relation to the 
theoretical natural sciences in the whole. This direction 
includes the following scientific results: 

1) Fibonacci hyperbolic trigonometry, based on the 
“golden ratio” [1-3]. 

2) A new geometric theory of phyllotaxis (“Bodnar’s 
hyperbolic geometry”) [4,5]. 

3) The general theory of hyperbolic functions, based 
on the “metallic proportions” [6,7]. 

4) The original solution of Hilbert’s Fourth Problem 
[7,8]. 

5) The “mathematics of harmony” [9] as a revival of 
the ancient “mathematics of harmony” (Pythagoras, Plato, 
Euclid) in modern science. 

The purpose of this article is to give a brief survey of 

these scientific results in order to emphasize their unique- 
ness and importance for the development of hyperbolic 
geometry and theoretical natural sciences. The other pur- 
pose is to show a deep connection of these results with 
“harmonic ideas” of Pythagoras, Plato and Euclid. Sear- 
ching for new hyperbolic worlds of Nature, based on the 
“golden” and “metallic” proportions, is a reflection of the 
ancient doctrine on the numerical harmony of Universe 
in modern mathematics and theoretical natural sciences. 

2. The Uniqueness of the Hyperbolic  
Fibonacci Functions 

Definitions. Let us compare the classic hyperbolic func- 
tions 
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with the symmetric hyperbolic Fibonacci functions, in- 

Copyright © 2013 SciRes.                                                                                JAMP 



A. P. STAKHOV 61

troduced in [2,3]: 
Symmetric hyperbolic Fibonacci sine 

 
5

x x

sFs x
                (2) 

Symmetric hyperbolic Fibonacci cosine 
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where x  is a continuous variable with values in the 
range of    

Binet’s formulas and the extended Fibonacci num- 
bers. Let us consider the so-called Binet’s formulas, in- 
troduced by the French mathematician Binet in 19 c.: 
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Binet’s formulas (4) define the so-called “extended 
Fibonacci numbers” (see Table 1). 

The extended Fibonacci numbers are an infinite nu- 
merical sequence, which is determined in the limits from 

 to  and has the following unique property:  

  1
1

n

n nF F


                 (5) 

Let us compare Binet’s formulas (4) with the symmet- 
ric hyperbolic Fibonacci functions (2), (3). This com- 
parison led us to the following result: 
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where k takes the values from the set  0, 1, 2, 3,k     
This means that for the discrete values of the variable 

 the functions (2), (3) coincide 
with the extended Fibonacci numbers calculated accord-
ing to Binet’s formula (4). 

 0, 1, 2, 3,x x     

The graphs of the hyperbolic Fibonacci functions. 
The above unique property of the functions (2), (3) is 
demonstrated on the graphs of the symmetric hyperbolic 
Fibonacci functions in Figure 1. 

Here the graphs of the hyperbolic sine  y sFs x  
and the hyperbolic cosine  y cFs x


 are represented.  

The points on the graph y sFs x  correspond to 
the extended Fibonacci numbers with the even indexes  
 

Table 1. The extended Fibonacci numbers. 

n 0 1 2 3 4 5 6 7 8 9 10

Fn 0 1 1 2 3 4 5 13 21 34 55

F−n 0 1 −1 2 −3 5 −8 13 −21 34 −55

Y

O 1

1

y=sFs(x)

y=cFs(x)

 

Figure 1. Symmetric hyperbolic Fibonacci functions. 
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The points on the graph  y cFs x  correspond to 
the extended Fibonacci numbers with the odd indexes 
2 1n  : 
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Comparison of the hyperbolic Fibonacci functions 
with the classic hyperbolic functions. It is shown in 
[2,3], the hyperbolic Fibonacci functions (2), (3) retain 
all hyperbolic properties of the classic hyperbolic func- 
tions (1), however, these hyperbolic functions have two 
new unique properties. Firstly, the “golden ratio” is the 
base of these functions and, secondly, they are deeply 
connected, according to (6), with the extended Fibonacci 
numbers (4). This means that these functions are, on the 
one hand, harmonic hyperbolic functions, based on the 
main harmonic proportion of Nature (the “golden ratio”), 
and on the other hand, they have the recursive properties, 
similarly to the extended Fibonacci numbers. 

The unique properties (6 - 8) of the hyperbolic Fibo- 
nacci functions (2), (3) are a confirmation of the fact that 
the hyperbolic Fibonacci functions (2), (3) are a funda- 
mentally new class of hyperbolic functions, which differ 
from the classic hyperbolic functions (1). The principal 
distinction of the hyperbolic Fibonacci functions (2), (3) 
from the classic hyperbolic functions (1) consists in the 
fact that they own recursive properties like the extended 
Fibonacci numbers, which are “discrete” analog of the 
functions (2) and (3) (see Figure 1). In the classic hy- 
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ometry “shows that the “phyllotaxis world “is a hyper- 
bolic world based on the Fibonacci hyperbolic functions 
(2), (3). These functions are not “fiction” of mathematic- 
cians, they are “natural functions” that are used in natural 
objects during millions, maybe billions of years long 
before humanity’s appearance. That is why, the hyper- 
bolic Fibonacci functions [2,3], together with “Bodnar’s 
geometry” [4,5] can be attributed to the category of fun- 
damental scientific discoveries, and as such, they are 
destined to remain in science. The vital importance of the 
hyperbolic Fibonacci functions (2), (3) for theoretical 
physics and theoretical natural sciences in the whole fol- 
lows from these reasoning’s. 

perbolic functions (1) such relationship with integer nu- 
merical sequences does not exist. This is the uniqueness 
of the hyperbolic Fibonacci functions (2), (3) in com- 
parison to the classic hyperbolic functions (1). This 
unique property of the new hyperbolic functions (2), (3) 
has been confirmed recently by the new geometric theory 
of phyllotaxis, created by the Ukrainian researcher Oleg 
Bodnar [4,5]. 

Taking into account the unique properties of the hy- 
perbolic Fibonacci functions (2), (3), we have every right 
to say that the hyperbolic geometry, based on the classic 
hyperbolic functions (1), would have developed differ- 
ently if the functions (2), (3) were known to Lobachevski. 

The authority of Nature (Bodnar’s geometry). How- 
ever, the new geometric theory of phyllotaxis, created by 
Ukrainian researcher Oleg Bodnar [4,5], is the most 
powerful confirmation of the uniqueness of the hyper- 
bolic Fibonacci functions. Bodnar has studied growth’s 
problem of the phyllotaxis objects (pine cone, pineapple, 
cactus, sunflower’s head, etc.) and came to the following 
results.The first key Bodnar’s idea is the following: the 
transformation of the phyllotaxis lattices in the process of 
its growth are carried out by means of the hyperbolic 
rotation, the main geometric transformation of hyperbolic 
geometry [10]. This transformation is accompanied by 
the modification of the so-called dynamic symmetry [5], 
which can be simulated by the sequential passage from 
the object with the smaller symmetry order to the object 
with the larger symmetry order.  

3. The Uniqueness of the Hyperbolic  
Fibonacci -Functions 

Definition. In the works [6,7] the hyperbolic Fibonacci 
-functions have been introduced: 

Hyperbolic Fibonacci  -sine 
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Hyperbolic Fibonacci  -cosine 
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where 1,2,3,    is a given natural number,   is a 
positive root of the following algebraic equation: 

However, the use of the hyperbolic Fibonacci func- 
tions (2), (3) for modelling of the growth of phyllotaxis 
objects is the most important Bodnar’s idea. Based on 
these ideas, Oleg Bodnar came to the special class of 
hyperbolic geometry, this geometry differs substantially 
from the classic Lobachevski’s geometry or Minkovski’s 
four-dimensional world, based on the classic hyperbolic 
functions (1). This difference consists in the fact that the 
main correlations of this geometry are based on the hy-
perbolic Fibonacci functions (2) and (3), which are con-
nected with the extended Fibonacci numbers by the sim-
ple correlation (6). 

2 1 0x x                  (12) 

The root   has the following form: 

24
2

                (13) 

Note that for the case 1   the formula (13) is re-  

duced to the classic “golden ratio” 1
1 5

2


  . This  

means that the formula (13) gives an infinite number of 
new mathematical constants called “metallic means” or 
“metallic proportions” by the Argentinean mathematic- 
cian Vera de Spinadel [11]. The most important, that the unique mathematical 

property (6) is the main cause of the Fibonacci spirals on 
the surface of the phyllotaxis objects.  

If we take in (13) 1,2,3, 4  , then we get the fol- 
lowing mathematical constants, having the following 
names (according to Vera de Spinadel [11]):  The importance of the hyperbolic Fibonacci func- 

tions for theoretical natural sciences. “Bodnar’s ge-  It is clear that the number of the “metallic proportions” 
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(13) is theoretically infinite. The most significant is the fact that for the case 1   the formula (13) is reduced 
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to the classic “golden ratio”. This means that the “metal- 
lic proportions” like the “golden ratio” may express some 
new kinds of “mathematical harmony,” which can actu- 
ally exist in Nature. 

Gazale’s formulas. The algebraic Equation (12) fol- 
lows from the recursive relation: 

         2 1 ; 0 0, 1F n F n F n F F         1.  

(14) 

The recursive relation (14) “generates” an infinite 
number of the new numerical sequences, because every 
number   “generates” its own numerical sequence (14). 
The numerical sequences, generated by the recursive 
relation (14), are called Fibonacci -numbers. For the 
case 1   we get the classic Fibonacci numbers:  
0,1,1,2,3,5,8,13, 21,… and for the case 2   we get 
Pell numbers: [12].  0,1,2,5,12, 29,70,...

The Fibonacci  -numbers have many remarkable 
properties, similar to the properties of the classic Fibo- 
nacci numbers. It is proved that the Fibonacci  -num- 
bers, as well as the classical Fibonacci numbers, can be 
“extended” to the negative values of the discrete variable 
n. 

Table 2 shows the four “extended” Fibonacci  -se- 
quences, corresponding to the values 1, 2,3,4  . 

It is easy to prove [7] the following generalized 
Cassini formula for the Fibonacci  -numbers: 

        12 1 1 1
n

F n F n F n  
           (15) 

The formula (14) give the Fibonacci  -numbers re- 
cursively. However, the Fibonacci  -numbers can be 
represented in analytical form through the “metallic pro- 
portions” (13). Such formulas have been deduced by the 
French mathematician Midhat Gazale [13]: 
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where . 0, 1, 2, 3,k     
Gazale’s formulas (16) are a generalization of Binet’s 

formulas (4). A distinctive feature of (16) is that they 
generate an infinite number of the formulas (16), because 
each natural number 1, 2,3,    corresponds to the 
different Gazale’s formulas (16). In particular, for the 
case =1 Gazale’s formulas (16) are reduced to Binet’s 
formulas (4). 

Connection of the hyperbolic Fibonacci -functions 
with Gazale’s formulas. It is proved [6,7] that the hy- 
perbolic Fibonacci  -functions (9), (10) coincide with 
the extended Fibonacci  -numbers, given by Gazale’s 
formulas (16) for the discrete values of the variable  

Table 2. The “extended” Fibonacci  -numbers (λ = 
1,2,3,4). 

n 0 1 2 3 4 5 6 7 8 

F1(n) 0 1 1 2 3 4 8 13 21 

F1(−n) 0 1 −1 2 3 5 8 13 −21

F1(n) 0 1 2 5 12 29 70 169 408 

F2(−n) 0 1 −2 5 −12 29 −70 169 −408

F1(n) 0 1 3 10 33 109 360 1189 3927

F3(−n) 0 1 −3 10 −33 109 360 1189 3927

F1(n) 0 1 4 17 72 305 1292 5473 23184

F4(−n) 0 1 −4 17 −72 305 −1292 5473 −23184

 
0, 1, 2, 3, ,x n       that is, 
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The formula (17) determines the uniqueness of the 
hyperbolic Fibonacci -functions. They retain all the 
above unique mathematical properties of the symmetric 
hyperbolic Fibonacci functions (2), (3). A peculiarity of 
the hyperbolic Fibonacci -functions (9), (10) consists in 
the fact that a number of the hyperbolic functions, given 
by (9), (10), is theoretically infinite because every natural 
number 1,2,3,    “generates” its own variant of the 
hyperbolic functions of the kind (9), (10). 

4. A New Approach to Hilbert’s Fourth  
Problem 

Hilbert’s Fourth Problem. In the articles [7,8] the ori- 
ginal solution of Hilbert’s Fourth Problem is described. 
Hilbert’s Fourth Problem [14,15], which relates to the 
non-Euclidean geometry, was formulated by David Hil- 
bert as follows [16]: 

“The more general question now arises: Whether from 
other suggestive standpoints geometries may not be de- 
vised which, with equal right, stand next to Euclidean 
geometry”. 

Hilbert’s citation contains the formulation of a very 
important scientific problem, which is of fundamental 
interest not only for mathematics, but also for all theo- 
retical natural sciences: are there non-Euclidean geome- 
tries, which are close to the Euclidean geometry and are 
interesting from the “other suggestive standpoints?” If 
we consider it in the context of theoretical natural sci- 
ences, then Hilbert’s Fourth Problem is about finding 
NEW HYPERBOLIC WORLDS OF NATURE, which 
are close to the Euclidean geometry and reflect some new 
properties of Nature’s structures and phenomena. 

Unfortunately, the attempts at solving Hilbert’s Fourth 
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Problem, made by German mathematician Herbert 
Hamel (1901) and later by the Soviet mathematician 
Alexey Pogorelov [17] (1974), have not lead to signify- 
cant progress, as described in Wikipedia’s articles “Hil- 
bert problems” [14] and the “Fourth Hilbert problem” 
[15]. In these articles, the status of Hilbert’s Fourth 
Problem is formulated as “too vague to be stated resolved 
or not” and Pogorelov’s solution [17] even is not men- 
tioned in [14,15]. About the same point of view on Hil- 
bert’s Fourth Problem is presented in the remarkable 
book [18]. So from the standpoint of Wikipedia’s ma- 
thematical community, the reason why Hilbert’s Fourth 
Problem is not resolved until now, is own fault of Hilbert, 
who formulated this problem not clearly enough. 

From the “game of postulates” to the game of func- 
tions”. According to [19], the reason lies elsewhere. All 
the known attempts to solve this problem (Hamel, Po- 
gorelov) were in the traditional framework; let’s call this 
the “game of postulates”. This “game” started from the 
works by Gauss, Lobachevski and Bolyai, when Euclid’s 
5th postulate was replaced by the opposite one. This was 
the most major step in the development of the non- 
Euclidean geometry, called “Lobachevski’s geometry”. 
The first non-Euclidean geometry (Lobachevski’s ge- 
ometry), which changed the traditional geometric ideas, 
is also known as “hyperbolic geometry”. This name 
highlights the fact that this geometry is based on the hy- 
perbolic functions (1). 

It is important to emphasize that the very name of 
“hyperbolic geometry” points on another way for the 
solution of Hilbert’s Fourth Problem: searching for the 
new classes of “hyperbolic functions,” which can be the 
basis for other hyperbolic geometries. Every new class of 
the hyperbolic functions generates its own new variant of 
the “hyperbolic geometry”. By analogy with the “game 
of postulates” this way to solve Hilbert’s Fourth Problem 
can be named the “game of functions” [19]. 

An original solution of Hilbert’s Fourth Problem. 
For the first time, this way (the “game of functions”) is 
used in the works [7,8]. The “game of functions” led in 
[7,8] to the original solution of Hilbert’s Fourth Problem. 
The essence of this solution consists in the following. 
Developing the idea of the metric form of Lobachevski’s 
plane, known in hyperbolic geometry, the following 
formula for the metric form of Lobachevski’s plane, 
based on the hyperbolic Fibonacci -functions (9), (10), 
has been derived in [7,8]: 

        
2

22 22 4
d ln d d

4
2

s u sF u 


      v   (18) 

where 
24

2
  

   is the “metallic proportion”  

(13) and  sF u  is the hyperbolic Fibonacci  -sine 
(9). The forms (18) are called the metric  -forms of 

Lobachevski’s plane [7,8]. 
This formula gives an infinite number of new “Lo- 

bachevski’s geometries” (“golden,” “silver,” “bronze,” 
“copper” and so on to infinity) according to the used 
class of the hyperbolic Fibonacci  -functions (9), (10). 

The formula (18) sets an infinite number of the metric 
forms of Lobachevski’s plane. This means that there is 
infinite number of Lobachevski’s geometries, which are 
based on the “metallic proportions” (13). These new Lo- 
bachevski’s geometries “with equal right, stand next to 
Euclidean geometry” (David Hilbert). Thus, the formula 
(18) can be considered as the partial original solution to 
Hilbert’s Fourth Problem, based on the “game of func- 
tions”. There is an infinite number of Lobachevski’s 
geometries, described by the formula (18), which are 
close to Euclidean geometry. Every of these geometries 
manifest itself in Fibonacci  -numbers (14), which can 
appear in physical world similarly to “Bodnar’s hyper- 
bolic geometry,” where the classic Fibonacci numbers 
appear at the surface of phyllotaxis objects.  

A new challenge to theoretical natural sciences. 
Thus, the main result of the research, described in [7-9], 
is a proof of the existence of an infinite number of the 
hyperbolic functions (9), (10), based on the “metallic 
proportions” (13). In addition, each class of the hyper- 
bolic functions, corresponding to (9), (10), “generates” 
for the given 1, 2,3,    its own “hyperbolic geome- 
try,” which leads to the appearance of the “physical 
world” with specific properties, which depend on the 
“metallic proportions” (13). The new geometric theory of 
phyllotaxis, created by Oleg Bodnar [4,5], is a striking 
example of this. Bodnar proved that “the world of phyl- 
lotaxis” is a specific “hyperbolic world,” in which a 
“hyperbolicity” manifests itself in the “Fibonacci spirals” 
on the surface of “phyllotaxis objects”.  

However, the hyperbolic Fibonacci functions (4), (5), 
which underlie the “hyperbolic world of phyllotaxis,” are 
a special case of the hyperbolic Fibonacci -functions (9), 
(10). In this regard, there are all reasons to suppose that 
other types of hyperbolic functions (9), (10), based on the 
“metallic proportions,” can be good models for the new 
“hyperbolic worlds” that can really exist in Nature. Mo- 
dern science cannot find these special “hyperbolic worlds,” 
because hyperbolic functions (9), (10) were unknown 
until now. Basing on the success of “Bodnar’s hyperbolic 
geometry” [4,5], one can put forward in front to theo- 
retical physics, chemistry, crystallography, botany, biol- 
ogy, and other branches of theoretical natural sciences 
the challenge to search the new “hyperbolic worlds of 
Nature,” based on other classes of hyperbolic functions 
(9), (10). 

In this case, perhaps, the next candidate for the new 
“hyperbolic world” of Nature (after “Bodnar’s hyper- 
bolic geometry”) may be, for example, silver hyperbolic 
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functions: 
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x x x x
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which are connected with Pell numbers [12] and are 
based on the “silver proportion” 2 1 2   , connected 
with the fundamental mathematical constant 2 .  

5. Back to Pythagoras, Plato and Euclid 

Platonic Solids and the golden ratio in the history of 
science. Differentiation of science and its division into 
separate spheres often do not allow to see a general pic- 
ture of science and the main trends of its development. 
However, in science there are research objects, which 
unite disparate scientific facts into a coherent whole. 
Platonic solids and the golden ratio belong to the cate- 
gory of such geometric objects. The ancient Greeks 
raised them up to the level of the main indicators of the 
Universe Harmony, and put the problem of harmony in 
the center of their science. 

Over the centuries, or even millennia, starting from 
Pythagoras, Plato, Euclid, these wonderful geometric 
objects have been the subject of admiration and worship 
of the brightest minds of mankind (Leonardo da Vinci, 
Luca Pacholi, Johannes Kepler in the Renaissance, Zeis- 
ing, Lucas, Binet, Klein in the 19th century, Harold 
Coxeter, Nikolai Vorobyov, Verner Hoggat in the 20th 
century). The development of this direction has led to the 
creation of the “Mathematics of Harmony” as a new in- 
terdisciplinary direction of modern science. [9]. 

A role of the Platonic Solids and the Golden Ratio 
in modern science. The newest discoveries of modern 
science, based on the Platonic solids, the golden ratio, 
and the Fibonacci numbers, (fullerenes [20], quasicrys- 
tals [21], a new geometric theory of phyllotaxis [4,5], the 
“golden “genomatrices [22], the general theory of hy- 
perbolic functions [7], the solution of Hilbert’s Fourth 
Problem [7,8], algorithmic measurement theory and Fi- 
bonacci codes [23-25], the number systems with irra- 
tional base [26], the codes of the golden p-proportion 
[27], the “golden” number theory [28], the ternary mir- 
ror-symmetrical arithmetic [29], the generalized Fibo- 
nacci matrices [30], a new coding theory based on the 
Fibonacci matrices [31], “Proclus hypothesis” and the 
new view on the history of mathematics, starting from 
Euclid [32], the “golden” matrices [33], the Fibonacci 
Lorenz transformations and the “golden” interpretation 
of the special theory of relativity [34], the “Mathematics 
of Harmony” [9,35] and so on) create a general picture of 
the movement of modern science to the “Golden” Sci- 
entific Revolution what is one of the enduring trends in 

the development of modern science. 
The most striking results of modern “mathematics of 

harmony” [9] are the following: the general theory of 
hyperbolic functions [7], which lead to the original solu- 
tion of Hilbert’s Fourth Problem [8] and new geometric 
theory of phyllotaxis (“Bodnar’s hyperbolic geometry”) 
[4,5]. “Bodnar’s hyperbolic geometry” is the most con- 
vincing evidence of the numerical harmony of Nature. 
The above results relate to Lobachevski’s hyperbolic 
geometry, which, according to academician Kolmogorov, 
is opening a new stage in mathematics development. 
Thanks to these scientific results, the hyperbolic geome- 
try becomes a “harmonic theory”. Its “hidden” harmony 
is expressed through the “golden ratio” and “metallic 
proportions”. 

6. Conclusions 

1) The hyperbolic Fibonacci functions (2), (3) with the 
unique mathematical property (6) and the hyperbolic 
Fibonacci -functions (9), (10) with the unique mathe- 
matical property (17) are opening a new stage in the de- 
velopment of the hyperbolic geometry. The peculiarity of 
this stage consists in the fact that the creation of new 
hyperbolic geometries is based on the new classes of the 
harmonic hyperbolic functions (the “game of functions” 
[19]). If the hyperbolic Fibonacci functions (2), (3) were 
well-known to Lobachevski, the development of the hy- 
perbolic geometry has gone in a new direction. 

2) Bodnar’s hyperbolic geometry, which is based on 
the Fibonacci hyperbolic functions (2), (3) and underlies 
the botanical phenomenon of phyllotaxis, is a brilliant 
example of the new class of hyperbolic geometry. The 
authority of Nature is hard to dispute. Bodnar’s hyper- 
bolic geometry is the most convincing proof of the 
uniqueness of the hyperbolic Fibonacci functions (2), (3). 
If we assume that Nature follows to the scenario, sug- 
gested by Oleg Bodnar [4,5], then we must conclude that 
Nature is a unique mathematician, who uses the hyper- 
bolic Fibonacci functions (2), (3) for the creation of life 
forms.  

3) The hyperbolic Fibonacci -functions (9), (10) gen- 
erate an infinite number of hyperbolic geometries, which 
are close to Euclidean geometry. This fact is the basis for 
the original solution of Hilbert’s Fourth Problem, which 
is described in [7,8]. The original solution of Hilbert’s 
Fourth Problem puts forward in front of theoretical natu- 
ral sciences a challenge to search the harmonic hyper- 
bolic worlds, which can exist in Nature.  

4) New approach to hyperbolic geometry is closely re- 
lated to the Pythagorean doctrine of the numerical har- 
mony of the Universe and Plato’s cosmology, based on 
the Platonic Solids. Pythagoras and Plato’s “harmonic 
ideas” were embodied in Euclid’s Elements. The “har- 
monic ideas” by Pythagoras, Plato and Euclid are con- 

Copyright © 2013 SciRes.                                                                                JAMP 



A. P. STAKHOV 

Copyright © 2013 SciRes.                                                                                JAMP 

66 

firmed brilliantly in modern science with the hyperbolic 
Fibonacci functions, “Bodnar’s hyperbolic geometry” 
and the original solution of Hilbert’s Fourth Problem. 
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