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ABSTRACT 

Most of the researches on profit and cost evaluation of redundant system focus on the effect of failure and repair on 
revenue generated. However, as these systems continue to work, their strength gradually deteriorates. Where such dete- 
rioration occurs, minor and major maintenance is employed to remedy the deterioration. Little or no attention is paid on 
the effect of deterioration on the impact of deterioration and their maintenance on the revenue generated. In this paper, 
we study the profit generated of two-stage deteriorating linear consecutive 2-out-of-3 system. Failure, repair and dete- 
rioration time are assumed exponential. The explicit expressions of availability, busy period of a repairman and profit 
function are derived using Kolmogorov’s forward equations method. Various cases are analyzed graphically to investi- 
gate the effect of deterioration parameters such as slow deterioration, fast deterioration, and their maintenance such as 
minor and major minimal maintenance on profit generated. 
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1. Introduction 

During operation, the strengths of systems are gradually 
deteriorated, until some point of deterioration failure, or 
other types of failures. Minor and major maintenance 
policies are vital in the analysis of deterioration and dete- 
riorating systems as they help in improving reliability, 
availability and the overall revenue generated. Both mi- 
nor and major minimal maintenance are employed to 
check the effect of slow and fast deterioration and return 
the system to its state prior to slow and fast deterioration. 
Maintenance models assume perfect repair (as good as 
new), minimal repair (as bad as old) and imperfect repair 
which is between perfect and minimal repair. Many re- 
search results have been reported on the reliability of 
2-out-of-3 redundant systems. For example, [1], analyzed 
reliability models for 2-out-of-3 redundant system are 
subject to conditional arrival time of the server. Refer- 
ence [2] presented reliability and economic analysis of 
2-out-of-3 redundant system with priority to repair and [3] 
studied MTSF and cost effectiveness of 2-out-of-3 cold 
standby system with probability of repair and inspection,  

while [4] examined the cost benefit analysis of series 
systems with cold standby components and repairable 
service station. Reference [5,6] examined the cost analy- 
sis of two unit cold standby system involving preventive 
maintenance respectively. Reference [7] studied the cost 
and probabilistic analysis of series system with mixed 
standby components while [8] studied cost benefit analy- 
sis of series systems with warm standby components 
involving general repair time where the server is not 
subject to breakdowns. The failure time and repair time 
are assumed to have exponential distribution. Measures 
of system effectiveness such as MTSF, steady-state 
availability, busy period and profit function are obtained. 
[9] studied availability of a system with different repair 
options, while [10] evaluated the reliability of network 
flows with stochastic capacity and cost constraint. The 
problem considered in this paper is different from the 
work of [4-6]. In this paper, a linear consecutive 2-out- 
of-3 repairable system with two consecutive deterioration 
stages (slow and fast) is studied with minor and major 
minimal maintenance at slow and fast deterioration re- 
spectively. In this paper, a two-stage deteriorating linear 
consecutive 2-out-of-3 system was constructed and de- 
rived its corresponding mathematical models. The main *Corresponding author. 
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contribution of this paper is two fold. The first is to de- 
velop the explicit expressions for system availability, 
busy period and profit function. The second is to perform 
a parametric investigation of various system parameters 
on profit function and capture their effect on the profit 
function. 

The rest of the paper is organized as follows. Section 2 
is the description and states of the system. Section 3 
deals with models formulation. The results of our nu- 
merical simulations are presented and discussed in Sec- 
tion 4. The paper is concluded in Section 5. 

2. Description and States of the System 

We consider a 2-out-of-3 system with three modes: nor- 
mal, deterioration and failure. The deterioration mode 
consists of two consecutive stages: slow and fast. It is 
assumed that the system transits from normal to slow and 
later to fast deterioration with rate 1  and 2  respect- 
tively. It is also assumed that the two consecutive units 
never fail simultaneously. Whenever the system deterio- 
rate with rate 1 , minor minimal maintenance is invoke 
with rate 1  to regain the system to its early stage prior 
to slow deterioration stage or the deterioration will be 
faster with rate 2  where major minimal maintenance 
will be done with rate 2 . Unit I fail with rate 1  and 
is under minimal repair with rate 1  and unit III is 
switch on. It is assumed that the switch from standby to 
operation is perfect. Similarly, unit II fails with rate 2  
and is minimally repaired with rate 2 . The system 
failed when unit I and II have failed. The system is at- 
tended by one repair man. 

States of the System 

0 : Units I and II are in operation, unit III is in st 
Standby, the system is operational.  
S

State 1 : The system is under slow deterioration and 
is receiving minor minimal maintenance. 

S

State 2 : The system is under fast deterioration and is 
receiving major minimal maintenance. 

S

State 3 : Unit I failed and is under repair, units II and 
III are in operation, the system is in slow deterioration 
stage and Operational. 

S

State 4 : Unit I failed and is under repair, units II and 
III are in operation, the system is in fast deterioration 
stage and Operational.  

S

State 5 : Units II failed and is under repair, the sys- 
tem failed. 

S

3. Models Formulation 

Let  P t  be the probability row vector at time , then 
the initial conditions for this problem are as follows: 

t

 
           

 
0 1 2 3 4 5

0

0 , 0 , 0 , 0 , 0 , 0

1,0,0,0,0,0

P

P P P P P P   


 

we obtain the following system of differential equations: 

         0 1 1 0 1 1 1P t P t P t P t         3

4

0

4

 

     
     

1 1 1 2 1

1 0 2 2 1 3

P t P t

P t P t P t

  

  

    

  
 

         2 1 2 2 2 1 1P t P t P t P t          

       
     

3 2 2 1 3 1

1 1 2 4 2 5

2P t P t P t

P t P t P t

   

  

     

  
 

     
     

4 2 1 2 4

1 2 2 3 2 5

P t P t

P t P t P t

  

  

    

  
 

       5 2 5 2 3 22P t P t P t P t             (1) 

The differential equations in (1) above is transformed 
into matrix as 

P TP                       (2) 

where 
 

 
 

 
 

 

1 1 1 1

1 1 1 2 2 1

2 1 2 1

1 1 2 2 1 2

1 2 2 1 2

2 2

0 0

0 0

0 0

0 2

0 0

0 0 0

T

   
     

   
     

    
2

2

2

0

0

2




  

  
    
  

  
   

   
 

  

 

 
3.1. System Availability Analysis 

For the availability case of Figure 1 using the initial con- 
dition in section 3 for this system, 

             

 
1 2 3 4 5 60 0 , 0 , 0 , 0 , 0 , 0

1,0,0,0,0,0,0

P P P P P P P   


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The system of differential equations in (1) for the sys- tem above can be expressed in matrix form as: 
 

 
 

 
 

 

0
01 1 1 1

1
11 1 1 2 2 1

2 22 1 2 1

31 1 2 2 1 2 23

41 2 2 1 2 2
4

52 2

5

0 0

0 0

0 0

0 2

0 0

0 0 0 2

P
P

P P

P P

PP
P

P
P

P

   
     

   
      

     
  

 
      
            
      

     
        

            
       

  
2

0

0
 

 
Let  be the time to failure of the system. The 

steady-state availability is given by 
V

        0 1 2 3 4VA P P P P P             (3) 

In steady state, the derivatives of state probabilities  

become zero, thus (2) becomes 

  0TP                    (4) 

which in matrix form is 
 

 
 

 
 

 

01 1 1 1

11 1 1 2 2 1

22 1 2 1

31 1 2 2 1 2 2

41 2 2 1 2 2

52 2 2

00 0

00 0

00 0

00 2

00 0

00 0 0 2

P

P

P

P

P

P

   
     

   
      

     
  

      
            
      

     
       

       
     

        

0

0

0

0

 

using the normalizing condition 
 

           0 1 2 3 4 5 1P P P P P P             (5) we substitute (5) in the last row of (4) following [2,3,5]. 
The resulting matrix is 

 

 
 

 
 

 

01 1 1 1

11 1 1 2 2 1

22 1 2 1

31 1 2 2 1 2 2

41 2 2 1 2 2

5

00 0

00 0

00 0

00 2

00 0

11 1 1 1 1 1

P

P

P

P

P

P

   
     

   
      

     

      
            
      

     
       

       
     

       

 

Expression for  thus is: VA

2 2VA N D  


 



2 2
2 1 2 1 1 2 1 2 1 1 2 2 1 2 1 2 2 1 2 1 1 1 2 1 2 1 2 2 1 2 2

2 2 2 2 2
1 2 1 2 2 1 2 1 2 1 2 1 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 2 21

2
2 2 1 1 2 2 1 2 1 1 2

4 4 4 3 2 2 2 2 2

2 4 2 4 2 4 2 2 2

3 2 2

N                              

                             

           

         

          

     
 

2
1 2 1 2 1 1 1 2 1 1 2 1 1 2 1 2 2 2 1 2 1 2

2 2 2 2
1 2 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 1 1 2 1 2 2 1 2 1 1 2

2 2 2
1 2 1 1 2 1 1 1 2 2 1 1 2 1 2 1 1 2 1 2

2 2 4 2 4 2

2 2 2 3 2 2 2 2

2 2 2 2 2 2 2

                    

                              

                    

     

          

       

 



2 2 1 2 2 2 1 1 2 2 1 2 1

2
1 2 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 2 2 2 1

2 2 2 2
2 1 2 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1

2

2 2 2 4 2

2 2 2 2 2

           

                                 

                         

   

          

         
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2 2 2 2 2 2 2 2 2 2 3
2 1 2 2 2 1 1 2 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2

2 2 3 2 2
2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 1 2

2
2 1 1 2 2 2 1

2 2 2 4 4

2 2 6 2 2 2

2 2

D                                 
                                 
       

        
       
  2 2 2

1 2 2 1 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1
2 2 2 2 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 2 1 2 1 2 1
2 2 2 3 2 3

1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 2 2

2 2 4

2 2 2 2 2 2 2

2                          
                               
                

     
       
     3 3 2 2 2 2 2

2 1 2 2 1 2 2 1 2 1 2 2 1 2 2
2 2 2 2 2 2 2 2

1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2
2 2 2 2 2 2

1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 2 2

2 2 6 3 4

4 4 2 4 4 4 4

2              
                               
                        

    
       
       2

1 2 2 1 1 1 2 1 2

1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 1 1 2 2 1 2

1 2 1 2 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 2 1

2
2 6 3 3
3 3 6 3 3 6

       
                                  
                             


      
     

 

 
3.2. Busy Period Analysis 

Using the same initial condition in section 3 above as for 
the reliability case 

             
 

1 2 3 4 5 60 0 , 0 , 0 , 0 , 0 , 0

1,0,0,0,0,0,0

P P P P P P P  


and (4) and (5) the busy period is obtained as follows: 



2

0

0

 

In the steady state, the derivatives of the state prob- 
abilities become zero and this will enable us to compute 
steady state busy period: 

The system of differential equations in (1) for the sys- 
tem above can be expressed in matrix form as: 

 

 
 

 
 

 

0
01 1 1 1

1
11 1 1 2 2 1

2 22 1 2 1

31 1 2 2 1 2 23

41 2 2 1 2 2
4

52 2

5

0 0

0 0

0 0

0 2

0 0

0 0 0 2

P
P

P P

P P

PP
P

P
P

P

   
     

   
      

     
  

 
      
            
      

     
        

            
       

  

 

 
Let  be the time to failure of the system. The 

steady-state busy period is given by 
V

        1 2 3 4 5VB P P P P P             (6) 

In steady state, the derivatives of state probabilities  

become zero, thus (2) becomes 

  0TP                    (7) 

which in matrix form is 
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using the normalizing condition 

           0 1 2 3 4 5 1P P P P P P             (8) 
we substitute (8) in the last row of (7) following [2,3,5]. 
The resulting matrix is 
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In the steady state, the derivatives of the state prob- 

abilities become zero and this will enable us to compute 
steady state busy: 

   01B P     

The steady state busy period  is therefore:  B 
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3.3. Profit Analysis 

The system/units are subjected to minor and major mini- 
mal maintenance and corrective maintenance at failure as 
can be observed in states 1, 2, 3, 4, and 5. From Figure 1 
the repairman is busy performing corrective maintenance 
action to the units/system at failure in states 1, 2, 3, 4 and 
5. According to [1-3], the expected profit per unit time 
incurred to the system in the steady-state is given by: 

Profit = total revenue generated – accumulated cost 
incurred due maintenance/repairing the failed units. 

   0 1PF C A C B               (9) 

where : is the profit incurred to the system. 2

: is the revenue per unit up time of the system. 
PF

0C
C1 : is the cost per unit time which the system is under 

repair. 

4. Results and Discussions 

In this section, we numerically obtained the results for 
mean time to system failure, system availability, busy  
 

S0 S1 S2 

S3 S4 

S5 

1  

1  2  

2  

1  
1  

2  
1  

1

2  

2
2  

1  

1  

2  
2  

 

Figure 1. Transition diagram of the system. 

period and profit function for all the developed models. 
For the model analysis, the following set of parameters 
values are fixed throughout the simulations for consis- 
tency: 

1 0.1  , 2 0.2  , 1 0.4  , 2 0.1  , 1 0.1  , 

2 0.1  , 1 0.3  , 2 0.4  , ,0 50,000C  1 10,000C   

The impact of 1  on profit can be observed in Figure 
2. From this figure it is evident that the profit decreases 
as 1  increases while in Figure 3, the increases with 
increase in 1 . Similar results can be observed in Fig- 
ures 4 and 5 of profit with respect to 2  and 2 . From 
these figures, the profit decreases as 2  increases and 
increases with increase in 2 . Results of profit with 
respect to 1  is given in Figure 6. It is evident from 
Figure 6 that as 1  increases, the profit decreases while 
from Figure 7, the profit increases with increase in 1 . 
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Figure 2. Effect of 1  on Profit. 
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Figure 3. Effect of 1  on Profit. 
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Figure 4. Effect of 2  on Profit. 
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Figure 5. Effect of 2  on Profit. 
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Figure 6. Effect of 1  on Profit. 
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Figure 7. Effect of 1  on profit. 

5. Conclusion 

In this paper, we constructed a two-stage linear consecu- 
tive 2-out-of-3 system to study the impact of deteriora- 
tion and maintenance on the generated profit. Explicit 
expressions of steady-state availability, busy period and 
profit function were derived. We performed numerical 
investigation to see the effect of slow deterioration, fast 
deterioration, minor minimal maintenance, major mini- 
mal maintenance, failure and repair rates on the gener- 
ated profit. It is evident from the results obtained that 
repair rate, minor minimal maintenance rate and major 
minimal maintenance rates increase the profit generated 
while slow deterioration, fast deterioration and failure 
rate decrease the profit. It is evident from the results ob-
tained that deterioration makes a tremendous effect on 
the generated revenue (profit). 

Copyright © 2013 SciRes.                                                                                JAMP 



I. YUSUF, F. S. KOKI 

Copyright © 2013 SciRes.                                                                                JAMP 

27

6. Acknowledgements 

The authors are grateful to the anonymous reviewers for 
their constructive comments which have helped to im- 
prove the manuscript. 

REFERENCES 
[1] R. K. Bhardwaj and S. Chander, “Reliability and Cost 

Benefit Analysis of 2-out-of-3 Redundant System with 
General Distribution of Repair and Waiting Time,” DIAS 
Technology Review: The International Journal for Busi- 
ness & IT, Vol. 4, No. 1, 2007, pp. 28-35. 

[2] S. Chander and R. K. Bhardwai, “Reliability and Eco- 
nomic Analysis of 2-out-of-3 Redundant System with Pri- 
ority to Repair,” African Journal of Mathematics and 
Computer Science Research, Vol. 2, No. 11, 2009, pp. 
230-236. 

[3] R. K. Bhardwai and S. C. Malik, “MTSF and Cost Effec- 
tiveness of 2-out-of-3 Cold Standby System with Prob- 
ability of Repair and Inspection,” International Journal of 
Engineering Science and Technology, Vol. 2, No. 1, 2010, 
pp. 5882-5889. 

[4] K. Wang, C. Hsieh and C. Liou, “Cost Benefit Analysis 
of Series Systems with Cold Standby Components and a 
Repairable Service Station,” Journal of Quality Technol- 
ogy and Quantitative Management, Vol. 3, No. 1, 2006, 
pp. 77-92. 

[5] K. M. El-Said, “Cost Analysis of a System with Preven- 
tive Maintenance by Using Kolmogorov’s forward Equa- 
tions Method,” American Journal of Applied Sciences, 
Vol. 5, No. 4, 2008 , pp. 405-410.  
doi:10.3844/ajassp.2008.405.410 

[6] M. Y. Haggag, “Cost Analysis of a System Involving 
Common Cause Failures and Preventive Maintenance,” 
Journal of Mathematics and Statistics, Vol. 5, No. 4, 
2009, pp. 305-310. doi:10.3844/jmssp.2009.305.310 

[7] K. H. Wang and C. C. Kuo, “Cost and Probabilistic 
Analysis of Series Systems with Mixed Standby Compo- 
nents,” Applied Mathematical Modelling, Vol. 24, 2000, 
pp. 957-967. doi:10.1016/S0307-904X(00)00028-7 

[8] K. C. Wang, Y. C, Liou and W. L. Pearn, “Cost Benefit 
Analysis of Series Systems with Warm Standby Compo-
nents and General Repair Time,” Mathematical Methods 
of Operation Research, Vol. 61, 2005, pp. 329-343.  
doi:10.1007/s001860400385 

[9] M. A. Hajeeh, “Availability of a System with Different 
Repair Options,” International Journal of Mathematics in 
Operational Research, Vol. 4, No. 1, 2012, pp. 41-55.  
doi:10.1504/IJMOR.2012.044472 

[10] H. S. Fathabadi and M. Khodaei, “Reliability Evaluation 
of Network Flows with Stochastic Capacity and Cost 
Constraint,” International Journal of Mathematics in Op- 
erational Research, Vol. 4, No. 4, 2012, pp. 439-452.  
doi:10.1504/IJMOR.2012.048904 

 

http://dx.doi.org/10.3844/ajassp.2008.405.410
http://dx.doi.org/10.3844/jmssp.2009.305.310
http://dx.doi.org/10.1016/S0307-904X(00)00028-7
http://dx.doi.org/10.1007/s001860400385
http://dx.doi.org/10.1504/IJMOR.2012.044472
http://dx.doi.org/10.1504/IJMOR.2012.048904

