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ABSTRACT 

In the paper an axiomatic approach to express rates of growth is presented. The formula is given of rate of growth at a 
point as the limit case of rate of growth on an interval and the inverse formula is derived to compute present and future 
value of capital for an integrable rate of growth. Incidentally some inconsistencies in currently used formulas are 
pointed out. 
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1. Introduction 

The concept of an average change of an objective func- 
tion plays a crucial role in financial mathematics. Re- 
flecting the objective function f, it is called an interest 
rate, an inflation rate, and so on. It is given as the value 
of 

( ) ( )( ) ( )1 .f t f t f+ − t  

For a steady state function the same result may be ob- 
tained from the formula 

( ) ( )( )
( )

1

.
f t f t

f t

δδ
 
 
  + −

  
 

 

In macroeconomics a similar, but instantaneous meas- 
ure, related to a point is needed. Baro (2003) employs the 
formula ( ) ( )f t f t′  (see [1]) which is in fact an aver- 
age change of the first derivative. The relation between 
an average change on an interval and an average change 
of its derivative has not been tackled in the literature. 
This leads to the problem of  

( ) ( )( ) ( )( )
1

0lim f t f t f t δ
δ δ

 
 
 

→ + − . Further, it is desir-  

able to find a formula that gives the future value of the 
objective function including the case when the rate of 
growth is neither constant nor piecewise constant func- 
tion. For a constant rate of growth function with values 
ξ  we have the formula ( ) ( ) ( )0 1

t
f t f ξ= ⋅ +

d
, but its 

generalization ( ) ( )00 e
x s s

f
ξ⋅  (see [2] among others) does 

not work, because the substitution of constant function 

with value ( )tξ ξ=  does not yield ( ) ( ) ( )0 1
t

f t f ξ= ⋅ + . 
Accordingly the aims of the paper are as follows. 

1) To define the concept of a rate of change by means 
of axioms (Section 2). 

2) To formulate the notion of a steady state function to 
model existing interest rates and to find corresponding 
computation formulas (Section 3). 

3) To derive a limit version of a rate of growth (Sec-
tion 4). 

4) To find the inverse formula that enables to calculate 
the values of a state function (Sections 5 and 6). 

5) To point out to some impacts on currently used 
formulas in financial mathematics (Section 7). 

2. Axioms 

The symbol  denotes the set of real numbers. Con-
sider a quantity attaining values ,  for 1


1y 2y ∈ x , 

2  respectively. A function  is said to 
be a generalized rate of growth function (shortly rate of 
growth function) if the following Axioms A1-A4 are 
satisfied: 

x ∈ 4 → :κ

Axiom A1. 

( ) (1 1 2 2 1 1 2 2, , , , , , )x y x y x t y x t yκ κ= + +  

for any  (invariance with respect to shift of time). t ∈
Axiom A2. 

( ) (1 1 2 2 1 1 2 2, , , , , , )x y x y x y k x y kκ κ= ⋅ ⋅  

for any  (invariance with respect to homoteties). k ∈
Axiom A3. κ  is increasing with respect to the first 

and fourth variables and decreasing with respect to the 
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second and third variables. 
Axiom A4. 

( )1 2, , , 0x y x yκ =  

for any  (initial condition-y ∈ κ  has zero value for 
constant functions). 

3. Steady State Functions 

3.1. Definition 

Let κ  be a rate of growth function. For a function 
 the function :f →

( ) ( ) (( )1 2 1 1 2 2: , , , ,f )F x x x f x x f xκ  

is called a -rate of growth of f related to κ 1 2,x x . A 
function f is called a -steady state function if Ff is a 
constant function. For the simplicity we omit  if it is 
clear from the context. Verbally, Ff does not depend on 
the choice 

κ
κ

1x , 2x . 

3.2. Lemma 

1) Every constant function is a -steady state func-
tion for any rate of growth function .  

κ
κ

2) Let  be rate of growth function. Then there exists 
a function  such that 

κ
f 2: → 

( ) 2
1 1 2 2 2 1

1

, , , ,
y

x y x y x x
y

κ λ
 

= −
 



)

         (1) 

which is decreasing with respect to the first variable, 
increasing with respect to the second variable and it 
holds . ( ),0 0xλ ≡

Proof: The statement 1) follows immediately from 
Axiom A4. Now, by Axiom 1 

( ) (1 1 2 2 1 2 1 2, , , 0, , ,x y x y y x x yκ κ= −  

and by Axiom 2 

( ) 2
1 2 1 2 2 1

1

0, , , 0,1, ,
y

y x x y x x
y

κ κ
 

− = − 
 

. 

Putting 2 2
2 1 2 1

1 1

, 0,1, ,
y y

x x x x
y y

λ κ
  

− = −  
  





 we get  

(1). The properties of λ  are obvious and hence the 
statemnt 2) holds true. 

3.3. Theorem 

Let  be a continuous κ-steady state function. 
Then f is an exponential function, i.e. 

:f → 
: eBxf x A  for 

some constants A a B. 
Proof: Let 1x  a 2 1x x h= +  be given. Then there 

holds  

)
( ) ( )( )

( ) (( )
2 2 2 2

1 1 1 1

, , ,

, , 2 , 2

x f x x h f x h

x h f x h x h f x h

κ

κ

+ +

= + + + +
 

Since f is a κ-steady state function, from Definition 3.1 
it follows  

( ) ( )( )
( ) ( )( )

2 2 2 2

1 1 1 1

, , ,

, , ,

x f x x h f x h

x f x x h f x h

κ

κ

+ +

= +
 

+

and with a view to (1) we get 

( )
( )

( )
( )

1 2 1

1 1

, , .
f x h + f x h

h h
f x h f x

λ λ
 +

=      +   
 

As λ is injective in any variable, it holds 

( )
( )

( )
( )

( )
( )

1 2 12

1 2 1

f x h f x h f x+ + +
= =

h

f x h f x f x+
 

and hence 

( ) ( )( )
( )

2

1
1

1

2 .
f x h

f x h
f x

+
+ =  

Further, by induction 

( ) ( )
( ) ( )( )

( )
( )

1
1 1

1

1

1

1

.

n

f x h
f x nh+ = f x n h

f x

f x h

f x

+
⋅ + −

 +
=   
 

 

From here it follows that the values of f at all equidis-
tant points form a geometric sequence. Moreover, the 
implication 

( )
( )

( )
( )

( )
( )

( )
( )

1 1 1

1 1 1

2

1

1

2

2

2

f x h f x h f x h

f x f x h f x

f x h

f x

+ + +
= 

+

 +
=   
 

 

holds true. Therefore f attains the values of some expo-

nential function at all points of the set , ,
2b

ah
a b

 ∈ ∈ 
 

  . 

-

 

Since this set is dense in , the proof is completed be
cause of we obtained 



( ) ( )( ) ( )

1

1
1

1

x x

hf x h
f x f x

−−
+

=
f x


  
 

 

for all and coosing for instance 
we obt

x ∈  
ain  

1 0x = , 1h =  

( ) ( ) ( ) ( )( )ln 1 00 e f f xf x f ⋅= ⋅  

so : eBxf x A , where ( )0A f= , 
t solving fun

( )( ) ( )( )1 0B f f= − . 
ctional equations see (For more details abou
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[3]). 

. Theorem 3.4

Let an exponential function : eBxf x A  be a κ-steady 
state function. Then there exi ng function φ 

 
sts an increasi

with the property

( ) 2 1

1

2
1 1 2 2

1

, , ,
y

x y x y
y

κ φ


 =     
.       (2) 

x x−

 

 

Proof: From the assumption for f it follows that there 
holds 

4( ) ( )31 2
1 2 3 4, e , , e , e , , eBxBx Bx Bxx A x A x A x Aκ κ=  

for all 1 2x x< , 3 4x x< . Denoting 2 1h x x= −  we get (in 
a view of (1)) 

( )
( )

1 2

2

2

Bx
Bhxλ

 
= −

 

1

1 2

1

, e , , e

e
, ,e const

e

Bx Bx

Bx

x A x A

A
x h

A

κ

λ= =
 

for all B. Further, putting ( )1ln hB z=  and usin 1) we 
get 

g (

( ) ( ) ( )1 1 1
ln ln

, , e 1,e 1,
h hh z z

hh z h zλ λ λ λ
    = = =        

 

and 

 
 

( ) 2 1

2 1

1

2
1 1 2 2

1

1

2

1

, , , 0,1,1,
x x

x x

y
x y x y

y

y

y

κ κ

φ

−

−

 
  =     

 
 
  =     
 

        (3) 

as required. 

3.5. Note 

athematics the translation  In financial m

: 1x xφ −  

is employed and consequently the rate of growth function 
is of the form 

( ) 2 1

1

2
1 1 1 2 2

1

, , , 1x y x y
y

κ = − 
 

         (4) 

which is called

x xy − 

 a a compound interest (per unit of time). 
Besides (more or less from historical reasons) also a 
simple interest (per unit of time) is used, given by  

)( ) (
2 1

1 1 2 2
0 2 1

ˆ , , ,
y y

x y x y
y x x

κ −=
⋅ −

         (5) 

where y0 is preselected constant, usually the value in a 
predetermined initial time. This rate does not satisfy 
Axiom A2, and hence there is no rational reason to use it. 
Due to this rate polynomials of the first degree  

(( )0 1 1 2 2ˆ: 1 , , , ) .f t y x y x yκ⋅ + ⋅ t  

4. Infinitesimal Version 

In macroeconomics an instantaneous measure of rate of 
growth is often needed. This may for a function f be na-
turally given by a limiting process as (see (2))  

( ) ( ) ( ) ( )( )

( )
( )

( )
( )

0

0
0

0

0
0

lim e .x x f x
φ φ→

 = =  

0 0 0

1

lim , , ,x x

f x
x x

f x

f x x f x x f xν κ→

 
′ − 

=

   f x



 

 (6) 

 
     

The number ( )( )0f xν  is called a ν-rate of growth of 
f at point x0. An (see (4)) we have d for κ κ= 1  

( ) ( )
( )
( )

0

0
1 0 e 1

f x

f xf xν
′

= − .           

In macroeconomics a measure is used, denoted by

 (7) 

 ν  
obtained from (6) choosing φ = ln, 

( ( ))( ) ( )
0 .0
0

f x
f x

f x
     (8) 

In an analogous way we may use the
th

ν
′

=        

 same function for 
e rate of growth on interval 0 1,x x  yielding 

( ) ( )( )

( )
( )

( )( ) ( )( )

0 0 1 1, , ,x f x x f x

0 1

1

0 10
ln

ln
x x

1 0 1

lnf xf x
 
 − 

 
  

= =   

which represents the relative change of the composite 
function 

f x−   (9) 

f x x x−  
 

κ

ln f  
he fun
terest 

with respect to the change of the argu-
ment of t ction. Notice, that the same limit has the 
simple in  (see (5)) letting κ̂ 1 2x x→ .  

5. Consequence for the Interest Rate 
Calculations 

 thUsing (2), e expression 

) ( )( )( ( )
( )

2 1

1

1 1 2 2, , , 2

1

x xf
x f x x f xκ φ

− 
=   

x

f x
   (10) 

time. For 

 

is the rate of growth of function f per unit of 
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ins ents how the state a dead account 
drawals) depends on time as-

1 f time and the unit of time is 
a year, then

tance, if f repres
(neither deposits nor with
suming x , x  are moments o2

 ( ) ( )( )1 1 2 2, , ,x f x x f xκ  
ereas if we choose in (2)

is the interest rate 
per a year, wh  

( ) 1,tx xφ = −  

we get (denoting the resulting function by tκ ) 

( )( ) ( )( ) ( )
2 1

1

2
1

1

, 1
x x

t

f x
x f

x
κ

− 
−


 

which is a compound interest related t

1 2 2, ,x x f x
f

=  


o time segment 
. Besides, it holds 2 1t x x= −

1 1 1 1.

t

κ κ
 

= + −     
t

  
 

       (11) 

It is known, that banks at the beginning of t  past 
century (due to practical reasons stemming from the 

he

nonexistence of computers) used to find the value 1 tκ  
for small 1 t  the approximation by Taylor polynomial 
of the first degree of function (11) which gives the result  

( ) ( )
1 .

2  1
1 11 1t O

t

κκ κ
 
 
 + − = +

interval of adding of interests” was introduced with the 
clause, that if the current interval was shorter than that 

(where O is Bachmann-Landau big-O). Consequently, 
supposing interest rate was known for some time interval 
(e.g. a month), the interest rate for shorter intervals (e.g. 
a day) was calculated dividing by 30 instead of as the 
30th root. To legalize this inaccuracy, the notion of “an 

under assumption, the interest will be calculated multi-
plying only by a linear part of the increment of the inter-
est rate. Hence function f representing the state of ac-
count being in a steady state was changed from exponen-
tial to piecewise linear having with the original exponen-
tial curve common only breaking points. This practice is 
still surviving, despite banks use software that is defi-
nitely capable to calculate the roots. The reason rests 
(probably) with the shortage of management theoretical 
competence. The difference between the exact value and 
its approximation, i.e. an error of approximation is an 
increasing function when time approaches to infinity 
having finite limit e 1κ κ− −  because it holds 

lim 1 1 lim 1 1

e 1.

t
t

t tt t

κ

κ

κ

κ κ
→∞ →∞

 
    + − = + −       

 
= −

  (12) 

This limit is employed in a number of books on finan-
cial mathematics, its interpretation although is rather 
problematic. When we calculate compound interest and 

manipulate with a compound interest as with a simple 
interest in such a way that we divide time interval in 
equidistant subintervals and apply the interest tha
linear part of the approximation for these subintervals, 
we obtain the result, whose limit for the number of sub-
in

t is the 

tervals approaching to infinity is given by formula (12) 
A magic appearance of Euler constant in this calculation 
gave birth the notion of continuous compounding. It may 
be simply verified that it is in fact a compound interest, 
where in formula (4) the value ( )1ln 1κ +  instead of 1κ  
is applied. The number ( )1ln 1κ +  may be obtained as a 
rate of growth when putting φ = ln in (2) and then by 
limiting we get ν  as in (8). 

6. Inverse Problem 

Let us use for the rate of growth formula (7) and denote 

1ν ν=  with argument t in the sequel. Then we have for a 
fixed t0 

( )
( )
( )( )

0

0
0 e 1f tf tν = − .            (13) 

f t′

Supposing f is given, then (13) is the formule to find 
rnatively, when ν is given, then 

)t

or 

the rate of growth ν. Alte
(13) is a differential equation to get the function f. This 
equation can be rearranged equivalently to 

( )( ) ( ) (ln 1 lnt fν ′+ =   

( ) ( )( ) ( )ln 1f t t f tν′ = + ⋅  

with the solution 

( ) ( )( )( ) ( )0 ln 1 d
e 0 ,

t s s
f t f

ν +=          (14) 

where ( )sν  
nt s. 

is the interest rate per uni e 
me Performing the same calculation for 

t of time at th
mo ν  (see 

, we get 

0

(8))

( )( ) ( ) ( )0 0f t f t f tν ′=  

with the solution 

( ) ( ) ( )0 d
e

t s s
f t f

ν=  0 .  

h 
el

instance if we substitute a constant interest 
rate in (15), we do not obtain the form or a com-
pound interest! The following example illustrates the use 

Example. We assume that the inflation rate per a unit 
of time (e.g. a year) at time 0 and time
po

         (15) 

Althoug the formula (15) is clearly simplier than (14), 
it has disadvantage, because it yields quantitativ y bad 
results. For 

ula f

of formula (14). 

 1 is known. Sup-
se that the inflation rate per unit of time at time 0 is 0.1 

and 0.2 at time 1. Deliberate on the inflation rate on in-
terval 1,0 . It is evident that this depends on the 
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changes of the inflation rate on 1,0 . Consider the fol-
lowing four cases of the inflation rate: 

( )1

0.1, if 1u
ι

<
0.2, if 1,u ≥

u =   

( )
2

2 0.1,
10

u
uι = +  

( )3 0.1,
10

u
uι = +  

( ) 0.1, if 0u
uι

≤
=   4 0.2, if 0.u >

Notice that the first and the last cases are trivial—the 
rate is constant and the interval has a unit length and thus 
the inflation rate should be the same constant. The gen-
eral formula must give the same result. By (14) we have 

( ) ( ) ( )( )( )( )1
0 ln 1 d

1 0 e
i u u

f f
ι

1.
= ⋅ −         (16) 

Applying (16) we get consecutively (setting ) 

+

( )0 1f =

( ) ( )( )

( ) ( )( )

( ) ( )( )

1 2
0

1
0

ln 1.1 10 d

ln 1.1 10 d

for 2 : 1 e 1 0.132945354

for 3: 1 e 1 0.149637533

u u

u u

i f

i f

+

+





= = − =

= = − =




 

( ) ( )( )

1
0

1
0

ln 1.1 d

ln 1.2 d

for 1: 1 e 1 0.1

for 4 : 1 e 1 0.2.

u

u

i f

i f





= = − =

= = − =

Now, applying (15) we obtain results 
1
0

1 2
0

1
0

1
0

0.1d

1 10 0.1d

1 10 0.1d

0.2d

e 1 0.105170918

e 1 0.142630812

e 1 0.161834243

e 1 0.221402758.

u

u u

u u

u

+

+









− =

− =

− =

− =

 

The results are surprisingly not equal (particularly the 
fir ent failure. For-
mula for the future value of the compound interest in 
case of constant interest rate is given by 

.

st and the last one) which is an evid

( ) ( ) ( )0 1
t

f t f ξ= ⋅ +        (17) 

In case of piecewise constant interest rate, i.e. if 

    

iI  
me are the values of constant interest rate per year on ti

intervals ( 1,i it t + , 0, ,i n=  , then the interest rate per 
( 10

,
n

i ii
t t +=  is given by 

( )( )

6.1. Theorem 

Fo n

4) for a iecewise c
Proof: Ass

1
1

0

1 .i i
n

t t

i
i

I +
− −

=
+∏              (18) 

rmula (17) is a special case of formula (18) for a co -

stant interest rate and formula (18) is a special case of 
formula (1  p onstant interest rate. 

ume ( )t Iν =  is constant. Then there holds 

( )( ) ( )( ) ((0 ln 1ln 1 d ln 1e e e
t II u t I ) ) ( )1

t
t

I
++ ⋅ + = = = +  

and hence the fi
let 

rst part of the statement holds true. Now 
ν  be piecewi iIse constant possessing values  on 

intervals ( 1,i it t + , 0, ,i n=   and Aχ  be a character-
istic function of set A. We have ( ) ( )1,i i it tt Iι χ

+
= ⋅  and 

hence 

((( ,0ln 1
e

t
t ti i

χ
+

+ ⋅ ) ) )

( )( ) ( ) ( ) (

1

1

1
0 1

d

ln 1 ln 1 1
ln 1

0 0

e e

i

n

i i i i
i i i i

I u

t I t I n
t t I

i i

−
+

= +

 
+ − + −   − ⋅ + 

= =


= = ∏ )

( )

 

( )

6.2. Theorem 

Formula (14) is a limit case of formula (17). 
Proof: First we show, that for every continuous func-

tion f defined on a closed interval, there exists a sequence 
of piecewise constant functions 

( )1 1

0

1 1
ln 1e 1

t ti i i ii

i

n n
t tI

iI
−+ +

=
− − −+= = +∏ ∏

and the proof is completed. 

iξ  with the property 

i fξ → . Let f be a continuous fun tion. Due to the as-c
sumption ( )Dom f  is the c
tive real number. For eve

ompact set. Let  be posi-
ry


 ( )mDox f

at ( )( )
∈  we find a  

 such thneighborhood O ( )x ( )( )2f O x ⊂ O f x . 

( ){ } ( )Domx f
O x

∈
 forms a covering of (Dom )f . Choose  

a finite subcovery Ω and define ( )( )min DiamU Uδ ∈Ω= , 
where ( )Diam U  is a diameter of U. Consider a parti-
tion of ( )Dom f  given by n disjoint subintervals 

i
( )n

iJ   of the length δ . In every subinterval iJ   we 
choose a p d denote ( )i ioint xi, an y f x= . Fur er, define 

( ) i

th
x yζ =  for all ix J∈  . Then ( )Dom for every x f∈   

it holds ( ) )(f x x ≤   and foζ−  r 1

2n
nξ ζ=  the above 

sfied. Since the functionproperty is sati al 

( )(0 ln 1 d
: e

t )s sιι +Φ   

is continu e topology of uniform convergence, 
t 

( ) ( ) ( )lim lim
i i

ψ ψ
→∞ →∞

Φ = Φ = Φ Ψ  

ous in th
we ge

roof is completed

unding 

As an impact of the preceding considerations let us point 
to the issue of simple compouding. Simple compounding 

i i

and the p . 

7. Interest Rate of Simple Compo
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is a situation in which dependence of a quantity on time 
is a polynomial of the first degree (let us call the de-
pendence of the quantity on time a state func on). In this 
situation, special rate of growth is used (see )) but this 

tual flaws. One of them rests 
with the mixing of different ways of measuring the rate 

ti
(5

rate has fundamental concep

of growth. 
From the above considerations we can conclude, that 

in all situations the only one rate of growth is sufficient 
given by (2). In what follows we compute the rate of 
growth of a quantity, which is simply compounded (it 
may be called “compound interest rate of a simple com-
pounding”). 

It is evident if the rate of growth function is constant 
and positive, then the state function is increasing and 
convex. Further if the rate of growth function is positive 
and decreases sufficiently quickly, then the state function 
is increasing but concave. Now we are looking for the 
rate of growth function, which makes the state function 
affine, i.e. it has the form of a polynomial of the first 
degree. To find it, we consider the state function (see 
(14)) 

( ) ( )( )0ln 1 d
0 e .

t s s
t f

ξ+            (19) 

Its derivative is given by 

( ) ( )( ) ( )( )0ln 1 d
0 ln 1 e

t s s
t f t

ξξ ++  

and second derivative by 

( ) ( )( )

( ) ( )( )( ) ( )( )( ) ( )( )
( )

0ln 1 d
0 e

t s s
t f

ξ+
2 2

ln 1 ln 1

1

t t

t

ξ ξ

ξ

′ + + + +
⋅

+

 

Since the state function is polynomial of the first de-
gree its second derivative must be equal to zero. If 

 and , then second derivative is equal 
at are solution of the differen-

 (

The solution of (20) is 

.
t tξ ξ

( )0 0f ≠

tial equation 

( ) 0tξ >
to zero for such ( )tξ , th

( ) ( )( )( ) ( )( )( ) ( )2 2
ln 1 ln 1 0.t t t tξ ξ ξ ξ′ + + + + = 20) 

( )
1

e 1t Ctξ
 − = −             (21) 

onstant  the given value ( )0ξ  we get 
from (21) 

 

for any c  C. For

( )( )
1

ln 1 0
C

ξ
= −

+
 

( ) ( )( )

( )( ) ( )( )

1
1

ln 1 0

1

ln 1 0 11 0 1t ξξ
 
  + += + −

e 1

.

t

t
ξξ




 
 

+  + 

 

= −

If we substitute this rate into (14), we get 




       (22) 

( ) ( )
( )( ) ( )( )

( ) ( )( )( )

1

ln 1 0 10ln 1 0 d

0 e

0 ln 1 0 1

t
s s

f t f
 

f t

ξξ

ξ

 
 
 + + 

  
  +   


= + +

     (23) 

which is really an affine function, i.e. a stat
a simple compounding. Applying (5), substituting 

 =

e function of 

1x  
and 2x  arbitrary and setting coresponding ( )1 1y f x= , 

( )2 2y f x=
fo

 and  due to (23),  

while rate of growth function of (23) is 

( )0 0y f=  we 
 (23) 

obtain
rmula for the rate of simple compounding of

( )( )ln 1 0 .ι ξ= +  

1e 1t

ι
ι⋅ + −  .

e a

e de-
rived the new formula for the rate of rowth at a point by 
limiting process. This formula enables to assign to state 

reover formula is 
given to find a state function on condition its rate of 
growth function at any point is k wn (see (14)). 

Although the choice of Axioms A1-A4 seems to be 
n that any exponential function is a 

tion,” e-Print Archive of Coronell University, 2003. 

8. Conclusions 

In th rticle we presented an explicit formula for all 
possible rates of growth possessing natural properties 
(described by Axioms A1-A4) (see (2)). Further w

 g

function its rate of growth (see (7)). Mo

no

natural, the conditio
steady state function is of crucial importance. It is an 
open problem of finding a simpler condition or to show 
that this condition may be derived from the axioms. 
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