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ABSTRACT 

The present work details a numerical simulation of forced convective laminar flow in a channel with a heated obstacle 
attached to one wall. The second law analysis is employed to investigate the distribution of entropy generation in the 
flow domain to demonstrate the rate of irreversibilities in thermal system. The conjugate problem including the convec- 
tion heat transfer in the fluid flow and conduction one inside the obstacle is solved numerically to obtain the velocity 
and temperature fields in both gas and solid phases. To reach this goal, the set of governing equations including mo- 
mentum and energy equations for the gas phase and conduction equation for the obstacle are solved by CFD technique 
to determine the hydrodynamic and thermal behaviors of the fluid flow around the obstacle and the temperature distri- 
bution in the solid element. An attempt is made to detail the local Nusselt number distribution and mean Nusselt num- 
ber and also the local entropy generation distribution for the individual exposed obstacle faces. A good consistency is 
found between the present numerical results with experiment. 
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1. Introduction 

In many thermal systems, convection flow is concerned 
to procure the precise thermal control. Besides, in heat 
exchange devices, high performance, light weight and 
compact heat transfer components are design scope. To 
achieve these goals, extended surfaces are widely used in 
heat exchange devices and the design of optimized fins 
has become increasingly important nowadays. There 
were numerous studies on fins performance and it has 
found out that fins increase the rate of convection heat 
transfer by increasing in fluid mixing and also interrupt- 
ing the development of thermal boundary layer on the 
heated surfaces. 

Several researchers studied heat transfer enhancement 
in forced convection duct flow using obstacles with dif- 
ferent shapes. Young and Vafai [1,2] focused on special 
selection of obstacle size and thermal conductivity and 
found out those significant positive effects of them on the 
flow and heat transfer characteristics. They numerically 
studied heated square fin on 2-D laminar flow by finite 
element method. Also they did an experimental study to 
find the effect of one, three and five fins on the fluid flow 

behavior in a wide range of the Reynolds numbers [3]. 
Chen and Huang [4] studied position of fins and their 
arrangement. They investigated force convection cooling 
of fin arrays in a 2-D channel flow and concluded more 
mixing in fluid causes an increase in convective heat 
transfer rate.  

Numerical techniques in solving the set of governing 
equations have special role on results accuracy and re- 
quired run time. In the related subject, Carvalho et al. [5] 
did a theoretical study for convection cooling in duct 
flow. They compared different schemes by analyzing 
hydraulic behavior of laminar flow in a channel with 
mounted obstacle and found that quadratic upstream 
scheme has the most advantageous regarding accuracy 
against computing time and storage space. 

Chen et al. [6] did an experimental research on 3-D 
channel flow with drop shape fin. It was reported in their 
paper that the drop shape fin has better thermal perform- 
ance than circular one.  

In another research, Korichi and Oufer [7] studied on 
channel containing mounted obstacles, in which two ob- 
stacles mounted on the lower wall and the last one on the 
upper wall of a 2-D channel. They investigated a nu- 
merical study on laminar convective flow and studied the *Corresponding author. 
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effect of Reynolds number, block spacing and dimen- 
sions and also solid to fluid thermal conductivity ratio. 
Their results showed that increasing in Reynolds number 
causes more heat removal from the obstacles. Also, it 
was revealed that maximum heat removal occurred 
around the obstacle corners. 

Li et al. [8] carried out an experiment to investigate 
the hydrodynamic and thermal behaviors of forced con- 
vection flow in rectangular channel with staggered arrays 
of elliptic and circular fins. Their results showed that the 
rate of cooling by the elliptic fin is more than that of cir- 
cular one.  

On the other hand, the optimum condition for any 
process can be determined by the entropy generation ana- 
lysis because one of the primary objectives in the design 
of any energy system is to conserve the useful energy 
applied to take place a certain process. The ireversibili- 
ties associated within the process components destroy the 
useful energy. It is clear that using fins in convection 
cooling system increases the amount of irreversibilities. 
Because of the second law of thermodynamics, irreversi- 
bility can not be avoided completely but it can be mini- 
mized in order to save the available energy. The present 
work also deals with the second law analysis in convec- 
tion duct flow with fin to carry out the rate of irreversi- 
bilities due to the presence of obstacle. 

In the related subject, Bejan [9] obtained a systematic 
methodology to calculate irreversibility through fluid 
flow and heat transfer in heat exchangers. Chen et al. [10] 
studied transverse fin in laminar forced convection chan- 
nel flow and analyzed entropy generation. They used 
vorticity stream function method to solve the continuity 
and momentum equations for fluid flow. They found that 
fins increase the rates of irreversibilities, both due to vis- 
cous effect and irreversible heat transfer process, al- 
though they disturb developing of thermal boundary lay- 
er which leads to heat transfer enhancement. 

In several researches, entropy generation were studied 
in detail for different flow and channel conditions. Ko et 
al. [11] carried out a numerical study on wavy channel to 
investigate entropy generation of laminar forced convec- 
tion flow (Re = 100 up to 400). Their studies showed that 
for high Reynolds number convection flows, irreversi- 
bilities are minimums when duct width to height ratio is 
equal to unity. In another study, they numerically ana- 
lyzed entropy generation produced by a forced convec- 
tive flow in a curved rectangular duct with external heat- 
ing [12]. Three important factors such as Dean number, 
external wall heat flux and cross-sectional aspect ratio on 
entropy generated from frictional irreversibility and heat 
transfer irreversibility were investigated in detail. It was 
shown that, at larger Dean number and smaller wall heat 
flux, frictional irreversibility is the most impressive 

source of entropy generation; whereas and vice versa, 
condition for Dean number and wall heat flux, the en- 
tropy generation is dominated by heat transfer irreversi- 
bility. Also, Ko [13] investigated the effect of longitudi- 
nal ribs on laminar forced convection and entropy gen- 
eration in a curved rectangular duct. He found that the 
number of mounted ribs and their arrangement have in- 
fluential effect on flow characteristics and temperature 
distributions. Ko et al. [14] did a numerical study on en- 
tropy generation by turbulent forced convective flow in a 
curved rectangular duct with various aspect ratios. It was 
found that the duct aspect ratio has great effect on the 
distribution of local entropy generation number through 
the flow domain. 

Although there are many studies about numerical ana- 
lysis of convective cooling in channel and also about the 
analysis of such thermal systems by computing the en- 
tropy generation, a careful inspection of literatures shows 
that the entropy generation analysis in convective cooling 
duct flow with obstacles that leads to a conjugate prob- 
lem is still not studied. Therefore, the present research 
deals with the investigation of entropy generation in a 
forced convection flow adjacent to an obstacle in a duct 
with conjugate problem for the fist time. Toward this end, 
the set of governing equations consists of the continuity, 
Navier-Stokes and energy equations for the fluid flow 
and conduction equation for the obstacle are solved nu- 
merically by the CFD method. Because the Cartesian co- 
ordinate system is used for this computation, the block 
off method is employed for simulating the obstacle in the 
computational domain. 

2. Theory 

Computational domain of the problem is shown in Fig- 
ure 1. Laminar convective flow enters a 2-D channel 
which a heated obstacle mounted on bottom wall. Fluid 
has uniform temperature Tin and parabolic velocity at the 
inlet of channel. The duct walls are kept insulated except 
the lower edge of fin which is maintained at constant 
temperature Tw which is more than fluid inlet tem- 
perature. 

The height of the duct is H and the lengths of the duct 
upstream and downstream sides of the fin are Li and Le, 
respectively. This is made to ensure that the flows at the 
inlet and outlet sections are not affected significantly by 
the sudden change in the geometry and flow at the exit 
section becomes fully developed. The height and width 
of the fin are denoted by L and D such that L = D = 0.25 
H is considered in all of the subsequent calculations. 

3. Basic Equations 

The non-dimensional governing equations which are the 
conservations of mass, x- and y-momentum and energy 
for fluid flow in the Cartesian coordinate can be written    
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Figure 1. Schematic of the computational domain. 
 
as follows: 

0
U V

X Y

 
 

 
                             (1) 

2 1 1U U P
U UV

X X YRe Re Y X

                     
  (2) 

21 1V V P
UV V

X X YRe Re Y Y

                     
   (3) 

1 Θ 1 Θ
Θ Θ 0U V

X Pe X Y Pe Y

                  
     (4) 

For solid phase, the conduction equation is considered 
as follows: 
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In the above equations, the dimensionless parameters 
are defined as: 
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4. Boundary Conditions 

As mentioned above, fully developed gas flow with par- 
abolic profile and uniform ambient temperature Tin enters 
the channel. Channel walls are insulated except the ob- 
stacle lower wall which is imposed on constant tem- 
perature of Tw. The adiabatic wall condition is selected to 
elucidate the principal aspects of parametric changes in 
the heated obstacle to the flow and thermal fields within 
the channel. On all solid surfaces, no-slip condition is 
employed for velocity. At the outlet section, zero axial 
gradients for velocity components and fluid temperature 
are applied. Finally on the solid-gas interfaces, the con- 
tinuity of temperature and heat flux is considered that 
leads to the following equations: 
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The value of local Nusselt number on the heated sur- 
faces can be calculated as follows: 
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In this formula, n is normal direction to the heated 
surface and m  is the fluid mean temperature which is 
determined according to the following equation: 
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The mean values of Nusselt number on each obstacle 
walls can be calculated by [2]: 
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Subsequently, the value of mean Nusselt number on 
the obstacle surface which is exposed to the fluid flow is 
calculated as follow [2]: 
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5. Entropy Generation 

In the entropy generation analysis, physical quantities of 
interest are the entropy generation number and Bejan 
number that can be obtained by the second law analysis. 
For this purpose the following dimensionless quantities 
are defined: 
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In the above equations, Ns is the entropy generation 
number, genS   the volume rate of entropy generation, Br 
the Brinkman number and τ is the non-dimensional tem- 
perature parameter. Using the above parameters, the en- 
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tropy generation in dimensionless form can expressed as 
[15]: 
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Above equation contains two parts. The first term on 
the right represents entropy generation due to the heat 
transfer: 
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Whereas the second term represents the entropy gen- 
eration due to the fluid viscous effect: 
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In the second law analysis, the Bejan number denotes 
the relative portion of heat transfer entropy generation to 
total entropy. Accordingly, this parameter is defined as 
follows: 
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Also, integration of the local NS parameter over the 
entire field of the flow domain gives the total entropy 
generation which shows the amount of irreversibilities 
due to the both viscous friction and heat transfer as fol- 
lows: 

 , dt
A

Ns Ns X Y A             (17) 

where, A is the area of flow domain. 

6. Numerical Procedure 

Finite difference forms of the partial differential Equa- 
tions (1)-(5) were obtained by integrating over an ele- 
mental cell volume with staggered control volume for x- 
and y-velocity components. Other variables of interest 
were computed at the grid nodes. The discretized forms 
of the governing equations were numerically solved by 
the SIMPLE algorithm of Patankar and Spalding [16]. 
Numerical calculations were performed by writing a 
computer program in FORTRAN. Numerical solutions 
are obtained iteratively by the line-by-line method such 
that iterations are terminated when sum of absolute re- 
siduals is less than 10−4 for each equation. By this nu- 
merical strategy, the velocity and temperature distribu- 
tions in the fluid flow and temperature distribution inside 

the obstacle can be obtained. After calculation of velocity 
and temperature fields, Equations (13) and (16) are used 
to solve for the entropy generation number and Bejan 
number at each grid point in the flow domain. Then, the 
total entropy generation through the flow is calculated by 
Equation (17). 

To find the grid independence solution, four different 
meshes are tested in grid study. For this purpose, a forced 
convection flow in a duct with an obstacle mounted on 
the lower wall is simulated along a test case. The values 
of mean Nusselt number Num on the obstacle walls are 
computed and are tabulated in Table 1 for different mesh 
sizes. In this test case, the Reynolds number is equal to 
400 with L = D = 0.25H and K = 1000. As it is seen, the 
grid size of 450 × 100 can be chosen to obtain the grid 
independent solution, such that the subsequent numerical 
calculations are made based on this grid size. It should be 
mentioned that a large concentration of nodes in the re- 
gion of fin base is employed to ensure the accuracy of 
numerical computations. 

7. Validation of Numerical Method 

To validate the mathematical model as well as the nu- 
merical scheme used in the present study, comparison 
with relevant theoretical results by other investigators is 
made along a test case. In this problem, a laminar con- 
vection flow over a square obstacle in a duct is analyzed. 
The fin lower wall is imposed by constant heat flux while 
the duct’s walls are kept insulated. Figure 2 shows the 
distribution of local Nusselt number along the obstacle 
surface. It is seen that in the area adjacent to the left root 
of the fin, a poor heat transfer is found due to the local 
stagnant flow. The maximum local Nusselt number oc- 
curs at the upstream corner of the fin caused by an up- 
surge in the flow velocity. After the point of maxNU , 
there is a decreasing trend for the convection coefficient 
which is due to the growth of thermal boundary layer. 
Near to the upper right corner of the fin, NU  increases 
slightly. The increase in heat transfer area around the 
corner results in augmented heat transfer. At the rear of 
the fin, an abrupt drop in convection coefficient takes 
place due to the separated domain and the recirculation 
effect. However, Figure 2 shows a good consistency 
between the present numerical results with theoretical 
findings in Ref. [1]. 
 

Table 1. Grid study results. 

Grid nodes Num 

200 × 40 8.38 

330 × 110 8.46 

450 × 100 8.69 

500 × 160 8.70 
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In a similar test case, the value of average Nusselt 
number on the obstacle surface is calculated and the 
variation of this parameter with the Reynolds number is 
plotted in Figure 3 with comparison to experimental data. 
This figure shows that there is a slight increase in aver- 
age Nusselt number with Re. This figure also shows a 
good consistency between the present results with ex- 
periment. 

8. Result and Discussion 

In this section, a forced convection air flow over an ob- 
stacle in a duct is analyzed for obtaining the hydrody- 

namic and thermal behaviors of the system. Also, in or- 
der to show the rate of irreversibilities in the flow do- 
main, the distributions of entropy generation number at 
different steady conditions are presented based on the 
second low analysis. All of the subsequent results are 
about convection duct flow over a cubic obstacle with L 
= D = 0.25H, 1000s fK k k   while Re is varied in 
the range of [100 - 700]. In order to show the flow pat- 
tern in convection duct flow over the obstacle, the 
streamlines are plotted in Figure 4. It is seen that the 
streamlines are deflected toward the upper wall of the 
duct as the flow approaches the obstacle. Figure 4 shows  
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Figure 2. Distribution of Nusselt number along the obstacle walls and comparison with theoretical results by Young and 
Vafai [1]. Re = 500, Pr = 0.72, K = 10 and L = D = 0.25H. 
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Figure 3. Mean Nusselt number variation with Reynolds number and comparison with experiment [3]. Pr = 0.72, K = 6818, 
L/H = 0.32 and D/H = 0.29. 
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Figure 4. Distribution of streamlines contours, Re = 400. 
 
two recirculated regions adjacent to the fin surface. A 
very small extent recirculated zone near to the left root of 
the fin and a large one beyond the protruding fin, which 
is reattached further downstream of the duct bottom wall. 

In Figure 5, the fluid pressure field near to the obsta- 
cle is presented by plotting flooded pressure contours in 
this region. The blocking effect of obstacle in increasing 
fluid pressure is clearly seen in this figure, such that there 
is a high pressure domain in upstream side of the obsta- 
cle. Also, low pressure regions inside the separated zones 
near to the obstacle are clearly seen in Figure 5. 

The temperature variations in the convection flow and 
also inside the solid element are shown in Figure 6. It is 
evident that high temperature region exists near to the 
heated surface (obstacle bottom wall) and heat removes 
from this region first by conduction inside the fin and 
then by convection process in the fluid flow. Because of 
considering high conductivity ratio 1000s fK k k   
in the computation of Figure 6, the region inside the ob- 
stacle becomes nearly as an isotherm one with a tem- 
perature which is much closer to the fin base temperature 
Tw. The existence of relatively high temperature near to 
the fin surface and then decreasing in fluid temperature 
far from the heated obstacle shows how heat removes in 
this convection flow. In Figure 7, the distributions of 
local Nusselt number along the obstacle walls for four 
different values of the Reynolds number are presented. 
This figure shows that Nu has high fluctuations along the 
heated surfaces of the obstacle such that the maximum 
value of convection coefficient takes place at the fin up- 
per right corner. This figure shows the same trend as it 
was observed and explained before in Figure 2, with this 
fact that the value of convection coefficient on the obsta- 
cle surface increases with increasing in Reynolds num- 
ber. 

As it was mentioned before, the amount of irreversi- 
bilities (viscous and conductive) at each nodal point in- 
side the thermal system is evaluated in the present paper 
by the second law analysis and computation of the en- 
tropy generation number. The distribution of viscous en- 
tropy generation is plotted in Figure 8(a). The maximum 
value of this parameter takes place near to the upper right 
corner of the obstacle and the minimum value in the vi- 

cinity of two stagnant points at the two lower fin corners. 
From this result, it can be concluded that changing the 
sharp corner of the fin into a round one can be an effect- 
ive method in omitting the high reversibility regions 
from the flow domain. Besides, it is seen that in the re- 
gion closed to the upper surface of the obstacle, the value 
of viscous entropy generation is high because the exis- 
tence of high velocity gradient in this area due to pushing 
the convection flow by the obstacle toward the upper 
duct’s wall. 

The distribution of conductive entropy generation is 
presented in Figure 8(b). Again it is seen that the maxi- 
mum entropy generation occurs at the upper right corner 
of the obstacle. Relatively high rate of irreversibility due 
to heat transfer takes place in a small region adjacent to 
the lower duct's wall in upstream side of the fine and in a 
great extent domain in the rear side of the obstacle. These 
are the domains in which heat is diffused by conduction 
at relatively high rate from the heated obstacle toward the 
convection flow. Besides, Figure 8(b) depicts that the 
rate of entropy generation by heat transfer is more in the 
left half of the obstacle domain in comparison to the right 
half of it. Finally the variation of entropy generation both 
by heat transfer and viscous effect 
 viscous conductionNS NS NS   is shown in Figure 8(c). 
The regions with high rate of irreversibilities can be dis- 
tinguished by this figure. It is seen that the maximum 
entropy generation takes place closed to the obstacle sur- 
face. 

Finally, to study more about the pattern of irreversibil- 
ity due to both heat transfer and viscous effect in the con- 
vection flow, the distribution of Bejan number is plotted 
in Figure 9. As it was explained before, this parameter 
shows the relative portion of heat transfer entropy gen- 
eration to total entropy generation, such that Be = 1 
means that no viscous entropy generation exists in the 
flow domain and Be = 0 corresponds to the case in which 
all of irreversibility is by viscous friction. It is evident 
that the value of Bejan number must be equal to unity 
inside the obstacle as it is seen in Figure 9. This figure 
shows that in the region near to the obstacle and espe- 
cially at the downstream side of it, the value of Bejan 
number is relatively high and as we moves far from the 
obstacle, the value of Bejan number decreases. It means 
that in the region far from the heated element, viscous 
effect is the only source of irreversibility. 

In the whole domain of any thermal system, total en- 
tropy generation which can be calculated by Equation (17) 
is the only parameter than can show the amount of total 
irreversibilities take place in the process. Low value of 
this parameter means that both processes of fluid flow 
and heat transfer approach to their reversible shapes. The 
variation of total entropy generation number with Re is plot- 
ted in Figure 10. It is seen that totalNs  has an increasing 
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Figure 5. Distribution of pressure near the obstacle, Re = 400. 
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Figure 6. Temperature distribution near the obstacle, Re = 400. 
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Figure 7. Variation of Nu on the obstacle walls at different values of the Reynolds number. 
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(c) 

Figure 8. Distributions of entropy generation numbers in 
the convection flow near the obstacle, Re = 400. (a) 

viscousNS ; (b) NSconduction ; (c) viscous conductionNS NS NS  . 
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Figure 9. Distribution of Bejan number near the obstacle, 
Re = 400. 
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Figure 10. Variation of total entropy generation number 
with Reynolds number. 
 
trend by increase in Re. It means that more irreversibili- 
ties take place in high Reynolds number convection 
flows in comparison to the flows with small Re. 

9. Conclusion 

In the present work, second law analysis is done for 
laminar convection duct flow over a heated obstacle in 
order to determine the performance of convective cooling. 
The Navier-Stokes and energy equations for convection 
flow and conduction equation for the obstacle are solved 
numerically in a conjugate problem to determine the ve- 
locity and temperature distributions. Then, the value of 
entropy generation number that can show the rate of ir- 
reversibility in any thermal system is calculated from the 
second law of thermodynamics. Numerical results can be 
very useful in designing such thermal systems with high 
performance. 
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Nomenclature 

Be: Bejan number 
Br: Brinkman number 
D: obstacle height (m) 
Dh: hydraulic diameter (2H) 
h: height of channel 

ch : convection heat transfer coefficient 
H: height of the channel (m) 
k: thermal conductivity  m CW   

K: thermal conductivity ratio s

f

k

k

 
  
 

 

L: obstacle length (m) 
Lt: total length of the duct (m) 
Ns: entropy generation number 
Nu: Nusselt number 
p: pressure (Pa) 
P: dimensionless pressure 
Pe: Peclet number 
Pr: Prandtl number 

gens  : volume rate of entropy generation (W/m3K) 
T: temperature (K) 
u: x-velocity component (m/s) 
U: dimensionless x-velocity component 
U0: mean velocity at the inlet section 
v: y-velocity component (m/s) 

V: dimensionless y-velocity component 
x: horizontal coordinate (m) 
X: dimensionless form of x 
y: vertical coordinate (m) 
Y: dimensionless form of y 

Greek Symbols 

 : thermal diffusivity (m2/s) 
Θ : dimensionless temperature 
 : dynamic viscosity  2N s m  
 : kinematic viscosity  2m s  
 : density (kg/m3) 
 : dimensionless temperature parameter 
Ψ : viscous dissipation number 

Subscripts 

cond : conduction 
e: end 
f: fluid 
in: inlet section 
s: solid 
t: total 
visc: viscous 
w: wall 

 
 


