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ABSTRACT 

In this paper we focus on the initial value problem of a hyperbolic-elliptic coupled system in multi-dimensional space of 
a radiating gas. By using the method of Green function combined with Fourier analysis, we obtain the pointwise decay 
estimates of solutions to the problem. 
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1. Introduction 

In this paper we consider the initial value problem  
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represent the velocity and radiating heat flux of the gas 
respectively. 

,u q

The system (1.1) is a simplified version of the model 
for the motion of radiating gas in n-dimensional space. 
More precisely, in a certain physical situation, the system 
(1.1) gives a good approximation to the following system 
describing the motion of radiating gas, which is a quite 
general model for compressible gas dynamics where heat 
radiative transfer phenomena are taken into account,  
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where ρ, u, p, e and θ are respectively the mass density, 
velocity, pressure, internal energy and absolute tempera-
ture of the gas, while q is the radiative heat flux, and a1 

and a2 are given positive constants depending on the gas 
itself. The first three equations are motivated by the usual 
Euler system, which describe the in-viscid flow of a 
compressible fluid and express conservation of mass, 
momentum and energy respectively. We refer to the book 
of Courant and Friedrichs [1] for a detailed derivation of 
several models in compressible gas-dynamics. The 
physical motivation of the fourth equation, which takes 
into account of heat radiation phenomena, is given in [2]. 
Moreover, the simplified model (1.1) was first recovered 
by Hamer (see [3]), and for the reduction of system (1.2) 
to system (1.1), see [2-4]. 

Concerning the investigation on the hyperbolic-elliptic 
coupled system in one-dimensional radiating gas, we 
refer to [5,6]. In the case of the muti-dimensional case, 
Francesco in [7] obtained the global well-posedness of 
the system (1.1) and analyzed the relaxation limits. Re-
cently, in [8], Liu and Kawashima investigated the decay 
rate to diffusion wave for the initial value problem (1.1) 
in n(n ≥ 1)-dimensional space by using a time-weighted 
energy method.  

The rest of the paper is arranged as follows. Section 2 
gives the full statement of our main theorem. In Section 3, 
we give estimates on the Green function by Fourier 
analysis which will be used in Section 5. Section 4 gives 
the global existence of solutions to the problem (2.3). In 
Section 5, we obtain the pointwise decay estimates of 
solutions. 

Before closing this section, we give some notations to 
be used below. Let  f  denote the Fourier transform 
of f  defined by 
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Finally, in this paper, we denote every positive con-
stant by the same symbol  or c  without confusion. 
[·] is the Gauss’s symbol. 

C

2. Main Theorems and Proof 
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Our Main results are the following: 

Theorem 2.1. Let  
 3, 1,

 2 2, 2,

n
s

n n

   
 be an inte-

ger. 
Assume that  and put    1

0 ,s n nu H L  
10 0 0: .sH L

 Then there is a small positive con-
stant  such that if 0 0

E u u 
 0 1  ,E 

u x
 then the problem 

(2.3) has a unique global solution  with , t

         2 10, ; , 0, ; ,s n s nu C H u L H        

        1 2 10, ; 0, ; .s n s nq C H L H       

Moreover, if  2 6,s n   and for any multi-indexes 
  with  2 1,s n     there exists some constant 

2
nr   such that    2

0 0 1
r

xD u x CE x


  ,  then for 

any  2 4,s n     the solution to Equation (2.3) 

has the following decay estimate, 

   
2

2
0, 1 1 .  We also have  

1

r
n

x

x
D u x t CE t

t







  
   
  

the following corollary by using Theorem 2.1. 
Corollary 2.2. Under the same assumptions in Theo-

rem 2.1, the solution satisfies the following decay esti-
mates: 

    4 2
2 0 1 ,

n k
k
x L
u t CE t

     with  satisfying k

0 4
2
nk s   ;     

  

   2

1

4 2
0 1 ,

n k
k
x L
q t CE t


     

with  satisfying k 0 5
2
nk s   .     

 

Remark. In Theorem 2.1, we do not need to assume 
that  1

0 ,nu L   if  The results in Corollary 
2.2 is similar to those in [7]. 
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3. The Global Existence of Solution 

This section is devoted to prove the global existence re-
sult stated in Theorem 2.1. In [7], the global existence of 
solutions to the problem (2.3) is obtained, but for the 
completeness of this paper, here we give the sketch of the 
proof.  

Since a local existence result can be obtained by the 
standard method based on the successive approximation 
sequence, we omit its details and only derive the desired 
a priori estimates of solutions. 
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We add up (3.7) with 1 l s    and get that 
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and   1 ,   


     we have that 
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From Lemma 4.1 we obtain that 

   2
1 , ,

n

x N ND G x t C t B x t






 .  

Thus we complete the proof of Proposition 4.2.  
As for  we have the following estimates.  2 ,G x t
Proposition 4.3. For fixed   and , there exist 

positive numbers  and  such that 
R

m C

   2
2 , e ,

t
m

x ND G x t C B x t 

  2
ˆ , e

t

mG t C


 .          (4.14) 

It yields that  2 , e
t

m
xD G x t C 

 .           (4.15) 

Now we shall give an estimate on  2 ,x G x t  by 
induction on .  Assume that, if 1,l    then  

   2
ˆ , 1 e

t

mD G t C t


 


  ,            (4.16) 

which is true as 0   by (4.14) 
By using (4.13), we have the following problem for  
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(4.17) 

By multiplying (4.17), whose variables are now 
changed to  , s  by  ˆ ,G t s   and integrating over 
the region  0,s t , we have that 

     
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In view of (4.16) for 1,l    it yields that 
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    e ,m


 

which shows that (4.16) is valid as .l   This implies 
that, for 1 ,l   

 
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 (4.18) 

By using (4.15) when 
2

1x t   and (4.18) with 
2N   when 

2
1x t  , as well as the fact that 

2
2

2
2

2, 1 ,

1 21 , 1
1

,

x t
x

xt x t
t

  


  
   



 we get that 

.  

   2
2 , e ,

t

m
x ND G x t C B x t 

 .  
Proof. For any fixed  , we choose  sufficiently m
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Thus we complete the proof of Proposition 4.3.  
Next we will come to consider  First we give 

a lemmas which is useful in dealing with the high fre-
quency part. 

 2 ,G x t

Lemma 4.4. If    ˆsupp : ; ,Rf O R      and 
 f̂   satisfies 

    1ˆ ˆ, ,f C D f C


      1, 

,

 

then there exist distributions    1 2,f x f x  and con-
stant  such that 0C         ,1 2 0f x f C xx f x    
where  x  is the Dirac function. Furthermore, for  

positive integer 2 ,N n      2

1 1 ,
N

xD f x C x


   

   12 2,supp ; 2 ,
L

f C f x x x 0    

with 0  being sufficiently small. 
The proof of Lemma 4.4 can be seen in [9]. 
Choose sufficiently large  such that R

2
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1
,

21
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
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
 if 1.R    By Taylor expansion, we  

have that 
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It is obvious that   2
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by direct calculation, we have that for 1,   

  12
3

ˆ , e
t

D G t C


 
   .  

By using Lemma 4.4 we have the following result. 
Proposition 4.5. For  being sufficiently large, 

there exist distributions   and con-
stant  such that  

R
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

   ,  

where  x  is the Dirac function. Furthermore, for 
positive integer 2N n ,   the following estimates 
hold: 
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L
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here 0  is sufficiently small. 
Combining Proposition 4.2, Proposition 4.3, and 

Proposition 4.5, we have the following theorem on the 
Green function. 

Theorem 4.6. For any multi-indexes  , there exists a 

distribution       2
32 0, e ,

t

,K x t G x t C x


   such 
that the following estimate holds: 
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



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here, 
2

n
N


  is an arbitrary positive integer. 

5. Pointwise Estimates 

In this section, we focus on the pointwise estimates of 
solutions to the problem (2.3). 

By Duhamel principle, the solution to the Equation 
(3.4) with initial datum  can be ex-
pressed as following, 
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Now we give a lemma which will be used in the fol-
lowing analysis. 

Lemma 5.1. When 1 2,n n n 2,  and 
 3 1min , ,n n n 2  we have that 
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The proof of Lemma 5.1 can be seen in [9]. 
Since        1 2, , , :u x t G K x t K x t I I     ,   

by using Lemma 5.1 and Theorem 4.6 with  , we 
have that 
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Thus we obtain that  
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     (5.19) 

Next we come to make estimates on  To this 
end, we will use the following lemma.  

 , .u x t

Lemma 5.2. Assume , then the following ine-
qualities hold, 

1n 

1) If  0, t  , and 2A t , then 
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Now we come to make estimates to  by using   ,u x t
 

Theorem 4.6 with  and Lemma 5.2. We decompose N r  ,xD u x t   as following, 
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Next we estimate  respectively by using Theorem 4.6. By using Lemma 5.2 (1), we have that  1,2,3, 4,5iI i  
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Now we estimate 32.I  in two cases. 

Case 1. 
2

x t . By using Lemma 5.2 (1), we have that 
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Combining the two cases, we have that 
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As for 41,I  we also need to divide it into two cases. 
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Case 2. 
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Combining the two cases, we have that 
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As for 42 ,I  by direct calculation, we have that 
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To estimate 5 ,I  we will use the following result, 
which is obtained in [7]. 

Lemma 5.3. 1) If 
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We estimate 5I  as following, 
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Notice that  consists of terms of  2
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By using Gagliardo-Nirenberg inequality and Lemma 
5.3, we have that 
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Thus we have that 
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Combined with Proposition 4.5 and the fact that 
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it yields that  
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Combining 31 32 41 42, , ,I I I I  and 5 ,I  we have that 
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Proof of Theorem 2.1. In view of (5.19) and (5.20), 
we get that 
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It yields that  
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      2

0 0 .M T C E E M T M T    

Thus if 0  is suitably small, we obtain E   0M T CE  
by the continuous dependence on the initial data. In view 
of Theorem 3.1, the proof of Theorem 2.1 is completed. 
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